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Learning Human-Robot Collaboration Insights through the Integration

of Muscle Activity in Interaction Motion Models

Longxin Chen, Juan Rojas, Shuangda Duan, and Yisheng Guan.

Abstract— Recent progress in human-robot collaboration
(HRC) makes fast and fluid interactions possible, even when
human observations are partial and occluded. Methods like
Interaction Probabilistic Movement Primitives (ProMPs) model
human Cartesian trajectories through motion capture systems.
However, such representation does not properly model tasks
where similar motions are used to handle different objects. As
such, under current approaches, a robot would not be able
to properly adapt its pose and dynamics for proper handling.
We propose to integrate the use of Electromyography (EMG)
into the Interaction ProMP framework and utilize EMG-
based muscular signals to augment the human observation
representation. The contribution of our paper is the increased
capacity to discern tasks that have similar trajectories but
ones in which different tools are utilized and require the
robot to adjust its pose for proper handling. Multidimensional
Interaction ProMPs are used with an augmented vector that
integrates muscle activity. Augmented time-normalized trajec-
tories are used in training to learn correlation parameters
and robot motions are predicted by finding a best weight
combination and temporal scaling for a task. Collaborative
single task scenarios with similar motions but different objects
were used and compared. For one experiment only joint angles
were recorded, for the other EMG signals were additionally
integrated. Task recognition was computed for both tasks.
Observation state vectors with augmented EMG signals were
able to completely identify differences across tasks, while the
baseline method failed every time. Integrating EMG signals
into collaborative tasks significantly increases the ability of the
system to recognize nuances in the tasks that are otherwise
imperceptible, up to 74.6% in our studies. Furthermore, the
integration of EMG signals for collaboration also opens the
door to a wide class of human-robot physical interactions based
on haptic communication that have been largely unexploited in
the field. Supplemental information including video, code, and
results analysis can be found at [1].

I. INTRODUCTION

Interest in HRC has significantly increased in recent years.

The promise of synergistically combining the best of what

robots and humans have to offer has led to numerous

studies. However, many challenges remain in facilitating

programming robot collaborative partners. The variety of

tasks in which a human needs assistance is practically

unlimited. Robots must easily learn and adapt to unstructured

scenarios. Recent progress in HRC now makes fast and

fluid interactions possible, even when human observations

are partial and occluded.

Numerous approaches used to generate robot motion in

response to human motion observations have relied on the
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Fig. 1. A robot collaborator is empowered when it is able to discern
different tasks that consist of similar human trajectories. In this figure, three
tasks are shown where a human uses a similar trajectory to hand over three
distinct objects to the robot. In each case, we augmented the observation
vector with EMG-based muscular activity signals that enabled to robot to
discern across tasks and choose the correct robot response.

use of joint angle or Cartesian trajectory information. Works

like Dynamic Movement Primitives (DMP) [2]–[4], Interac-

tive Meshes [5]–[7], and Interaction ProMPs [8]–[10] use

motion capture systems to record human motion trajectories.

However these systems are unable to properly model tasks

where similar motions are used to perform different tasks,

such as that of passing, holding, or coordinating motion of a

human using different tools with different shape and inertial

properties. As such, under current approaches, a robot is

unable to properly adapt its pose and dynamics when two

tasks with similar motion but different objects are used.

In this paper we explore techniques that enable increased

task recognition discernment given human observations. Par-

ticularly, we explore the impact of integrating EMG-based

muscular activity signals when used alongside motion trajec-

tories in the Interaction ProMP framework. The contribution

of this paper is the discernment of tasks that have similar

motion trajectories, but ones in which objects of different

shapes and dynamics are used. Better action recognition

also leads to more natural interactions as a robot can adjust

its pose and dynamics to minimize (mental, emotional, and

physical) load placed on the human to compensate for poor

adjustment on the robot’s part. Fig. 1 illustrates a hand-over

interaction in a collaborative task.

Multidimensional Interaction ProMPs are used with an

augmented state vector that integrates EMG-based muscle

activity. This works builds on the Phase Estimation approach

of [8]. Provided a set of human-robot collaborative task

demonstrations, time aligned trajectory way-points and EMG

signals are parameterized into a lower dimensional weight

space as a linear combination of basis functions. A Gaussian
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distribution is built from the set of weight vectors obtained

in training and a normal distribution is also built from

time-scaling values used to normalize training data yielding

a probabilistic movement primitive. As for the Interaction

segment, the correlation of all human-robot data dimensions

is computed and the robot motion is inferred by computing

a posterior probability distribution over the weights condi-

tioned on the partial augmented human observation. The

weight distribution requires a new mean and covariance

from the partial observations, both of which are computed

by using a Kalman filter. For task recognition, the task

with the highest posterior probability for new observations

given the task probability is selected. In Maeda et al. ’s

work, temporal variance is included in the model. A phase

ratio needs to be computed from the sparse sequence of

observations, to determine an associated observation matrix

to finally condition and do prediction.

To test the effects of EMG signals in Interaction ProMPs,

three distinct hand-over tasks were performed, all of which

consisted of similar motions but used different objects.

Experiments were done with and without EMG-signals. Task

recognition was reported for both scenarios for different

number of demonstrations and observation ratios. Integrating

EMG signals into collaborative tasks significantly increases

the ability of the system to recognize nuances in the tasks

that were otherwise imperceptible, up to 74.6%. EMG signals

recognized tasks better in 11/12 of our comparative studies

and did it overwhelmingly better. We also purport that

user-loads (mental, physical, and emotional) would diminish

significantly as humans would not need to adjust their

handling to make up for the robot’s deficiency. Finally, the

integration of EMG signals in HRC opens the door to a

wide class of human-robot physical interactions based on

haptic communication that have been largely unexplored in

the field. Supplemental information including video, code,

and results analysis can be found at [1].

II. RELATED WORK

HRC poses a dual problem: one of action recognition

and movement generalization. This section we discuss the

conventional interaction motion models and previous works

related to the use of EMG signals in HRC.

In [2]–[4], DMPs are introduced as a time-dependent

movement representation. DMPs comprise a proportional-

derivative (PD) controller and a non-linear forcing function.

Based on the DMP framework, Interaction Primitives (IPs)

capture the variance of DMP parameters and generate a

probability distribution. The probabilistic model learns the

inter-agent correlations and allows to generalize skills in

HRC.

In [7], Interaction meshes (IM) were used to learn

human-robot interactions from human-human demonstra-

tions. IMs capture spatio-temporal relationships between the

body movements of two interacting partners. For any given

time-step, an IM represents a pair of postures in the human-

human demonstration. IMs allow to transfer a collaborative

skill from one pair of partners to another (i.e. a human-

robot pair) given the set of IMs. IMs are coupled with

Hidden Markov Models (HMMs) to have both the ability

to generate robot motions (through the IMs) and perform

task recognition (through the HMMs). HMMs have been a

popular modeling approach in which the process is assumed

to be Markov and consist of unobserved hidden states that

are inferred [11], [12]. Furthermore, IMs can be deformed

to adapt to varying trajectory observations in the interacting

partners [5], [6], [13].

In [14], [15], ProMPs were introduced as an alternative to

DMPs. ProMPs are a time-dependent movement representa-

tion that do not need a forcing function, instead trajectories

are approximated by a weighted sum of time-dependent basis

functions. More recently, Maeda et al. proposed Interaction

ProMPs based on ProMPs for HRC [8]–[10]. Interaction

ProMPs capture temporal and spatial variances of motion

trajectories as well as correlations across all human and robot

dimensions. The model can recognize executed tasks and

generate corresponding robot motion given human motion

observations. That is, both motion generalization and action

recognition are jointly implemented in the framework.

All previous works are limited in that they only model-

ing motion trajectories. In situations where different tasks

are executed with similar trajectories, these techniques are

unable to discern across tasks. This is important given that

in collaboration, it is not uncommon to to perform similar

motions with different tools. Consider any kind of hand-over

task, the same motion is used for a variety of tools that

have unique shape and dynamical properties. Thus, it is of

significant interest to explore techniques that enable greater

insight into tasks with similar spatio-temporal relationships

in motion trajectories. In our work, we propose to integrate

the use of EMG-based muscular activity in the previously

presented Interaction ProMP model. By integrating EMG

signals, the system is able to gain insights unavailable in

spatio-temporal trajectory patterns in motion trajectories.

Muscular activity contains signatures that differentiate both

pose and dynamical patterns hence providing key information

to our model.

We note that there seem to be no other works in which

EMG-signals are used to model and classify human motions

within HRC. Some studies like that of Reed et al. [16],

measured human force profiles in human-human interactions,

where humans developed a specialization of roles. Later

when a human-interacted with robots, no specialization took

place according to the force profiles. This is an example

where human force feedback was used, but not to affect the

response of the collaborative robot. Peterne et al. [17], used

EMG signals to estimate human partner fatigue in human-

human collaborative tasks. Kulic et al. [18], use human phys-

iological signals like heart rate, perspiration rate, and facial

muscle contract to measure the body-language interaction

between a human and a robot. A robot manipulator was

conditioned to move to different distances from the human,

and the physiological response was measured. This study



is similar to our current work in that human signals are

modeled, but differ in the this study did not use them to

tell the robot how to move. Instead the goal was simply to

model the affective state of the human given a robot motion.

III. METHODOLOGY

In HRC tasks, Interaction ProMPs generate a robot col-

laborative motion based on the prediction from a set of

partial human movement observations. The approach also

works in multi-task scenarios. Our work explains the steps

need to integrate and process EMG-based muscle activities

in addition to motion trajectory data.

A. Probabilistic Movement Primitives for a Single Dimen-

sion

ProMPs summarize patterns across demonstrations in a

probabilistic manner. They are able to capture correlations

across all data dimensions and describe variations in which

movements can be executed leading to a probability distri-

bution over trajectories. Representing variance information

correctly is critical as it reflects the importance of single

time steps for a movement execution. For each time step, a

single dimensional position is represented by yt ∈ R
1 and a

trajectory of T time steps as y1:T . We adopt linear regression

with n Gaussian basis functions ψ to represent one motion

trajectory. The probability of observing a trajectory y1:T
given an underlying weight vector ω is given as a linear

basis function model:

yt = ψ
T
t ω + ǫy,

p(y1:T |ω) =
T
∏

1

N (yt|ψ
T

t
ω, σy),

(1)

where, ǫy ∼ N (0, σy) models zero-mean i.i.d. Gaussian

noise. The set ψ = [(ψt)1, (ψt)2, ..., (ψt)N ]
T ∈ R

N×1

contains values of each of the basis function at time t. Given

a basis function, one can compute ω for each trajectory y1:T
using linear regression as:

ω = (ΨT
1:TΨ1:T )

−1
Ψ1:Ty1:T , (2)

where,

Ψ1:T =









(ψ1)1 · · · (ψ1)N
...

. . .
...

(ψT )1 · · · (ψT )N









(3)

The ω vector can compactly represent a single trajectory.

Having a set of motion trajectories, we can compute a proba-

bility distribution over the weights ω. To capture the variance

across trajectories in different demonstrations, we define θ

as a parameter that governs the distribution of weight vectors

in the set ω and we assume that ω ∼ N (µω ,Σω), that is

θ = (µω,Σω).

The trajectory distribution p(y1:T ; θ) can now be com-

puted by marginalizing out the weight vector ω. The dis-

tribution p(y1:T ; θ) defines a Hierarchical Bayesian Model

(HBM) whose parameters are given by the observation noise

variance σy and the parameters θ of p(ω; θ). For now, we

can compute the probability distribution of a position at a

given time from the distribution of ω as

p(yt|θ) =

∫

p(yt|ω)p(ω|θ)dω

= N (yt|ψ
T
t µω,ψ

T
t Σωψt + σy).

(4)

The above framework captures spatial correlations from a set

of demonstrations. To cope with demonstrations of different

durations, the training set must be time aligned (done through

resampling in this work).

B. Correlating Muscular Activity into Interaction Motion

Model

In this section, we extend ProMPs to a multidimensional

setting and compute the correlation for the full set of data-

dimensions for human and robot across demonstrations.

Previous works assume that human-motion collaborative-

task trajectories differ spatio-temporally from one another.

Under this assumption, the use of Cartesian information

from human motion capture systems has been sufficient to

distinguish different tasks. However, if the assumption is

violated and different tasks share similar trajectories, the

task recognition system is bound to fail. We consider the

introduction of EMG-based muscular activities as part of the

observed state in Interaction ProMPs. EMG signals are easily

integrated as a temporal sequence. With them, we attempt to

infer future robot responses from human observations (now

Cartesian pose and EMG information), with more nuanced

insights into the collaborative task. Namely, the ability to

discern different tasks with similar pose observations but

with distinct muscular activities.

Now we introduce the mathematical model for Interaction

ProMPs with the augmented EMG-signals. For human ob-

servations, consider p pose dimensions and e EMG signal

channels, while for robot observations, consider j joint an-

gles. Each collaborative demonstration consists of (p+e+j)
dimensions in the training trajectories. For HRC, the state

vector yt at time t is the concatenation of the (p+e) human

observations and the j joints of the robots, such that

yt = [yH1,t, ...y
H
p,t, y

H
1,t, ...y

H
e,t, y

R
1,t, ...y

R
j,t]

T
, (5)

where, the upper script (.)H refers to the human pose

and EMG signal, and (.)R refers to the robot joint angle

configuration. The weight vector ω for each demonstration

is the concatenation of all weight vectors involved in the

demonstration. Thus, all the interaction dimensions involved

in the task are correlated as:

ωi = [(ωH
1 )

T
, ..., (ωH

p )
T
, (ωH

1 )
T
, ..., (ωH

e )T , (ωR
1 )

T
..., (ωR

j )
T
]
T

.
(6)

And, as in the single dimensional case, the weight vector is

given as a linear regression model:

p(yt|ω) = N (yt|H
T
t ω,Σy), (7)

where, theHt = diag((ψT
t )1, ..., (ψ

T
t )(p+e), (ψ

T
t )1, ..., (ψ

T
t )j)

is the time-dependent basis matrix for the positions.



Given the (partial) observations, we can compute the pos-

terior distribution of both human and robot trajectories using

a Kalman Filter. Where observations only contain human

motion, thus robot observations are set to zero yielding:

yot = [yH1,t, ...y
H
p,t,y

H
1,t, ...y

H
e,t,y

R
1,t, ...y

R
j,t]

T
. (8)

To contrast with a complete observation sequence [t : t′], the

notation [t − t′] ∈ R
s×(p+e) is used to indicate a sequence

s of partial observations in the interval (some measurements

in the interval are missing). Observations can be considered

as modulations to via-points. The operation is done by

conditioning the ProMPs to reach a certain state yot−t′ at

time (t− t′). The conditioning adds a desired observation to

xt−t′ = [yot−t′ ,Σ
o
y] to the probabilistic model and applying

Bayes theorem. Kalman filtering is used to compute the

posterior distribution as:

µnew
ω = µω +K(yot−t′ −Ht−t′µω),

Σ
new
ω = Σω −K(Ht−t′Σω).

(9)

Here, K = ΣωH
T
t−t′(Σ

o
y +Ht−t′ΣωH

T
t−t′)

−1
. And, since

missing observations exist, for each time step of the obser-

vation matrix Ht−t′ , the latter is set as:

Ht−t′ =























(ψT
t )1 · · · 0 0 · · · 0

0
. . . 0 0

. . . 0
0 · · · (ψT

t )(p+e) 0 · · · 0

0 · · · 0 01 · · · 0

0
. . .

... 0
. . . 0

0 · · · 0 0 · · · 0j























(10)

with Ht−t′ ∈ R
(p+e+j)×(p+e+j)N .

C. Phase estimation

It’s natural for a human to execute repetitions of a specific

task with different speeds. The latter leads to uncertainty in

the duration of the demonstration. To capture such spatial

variation correctly, time alignment must been done. What’s

more, phase (or progress) analysis of human observations

during testing must be estimated to aligning them to the

trained spatial models. In our work, each demonstration was

resampled yielding a nominal duration Tnorm. As in [8],

we assume that the ith demonstration also has a constant

temporal change in relation to the nominal duration and can

define a scaling factor in Eqtn. 11 to index all demonstrations

by the nominal time index.

αi = Ti/Tnorm. (11)

For phase estimation in testing, Maeda’s single phase tem-

poral model is used. And a distribution over phase rations

from different demonstrations are modeled according to a

normal distribution and set as the phase prior. We assume

α ∼ N (µα, σα). In testing, given a human observation yot−t′ ,

the posterior for the phase is computed as:

p(α|yot−t′ , θ) ∝ p(yt−t′ |α, θ)p(α), (12)

where the p(α) is the prior probability of the scaling factor

α as previously discussed. Additionally, the likelihood for a

specific task is given as:

p(yt−t′ |α, θ) =

∫

p(yot−t′ |ω, α)p(ω)dω. (13)

For one specific task, given the human observations yot−t′ the

most probable scaling factor is:

α∗ = argmax
α

p(α|yot−t′ , θ) (14)

The best fit scaling factor α∗

k for each task is selected to get

the set {α∗

k, θk}. Then, task recognition is done based on

this set.

D. Task Recognition

We model a set of k demonstrations from a probabilistic

perspective and compute the posterior distribution of a task

given human signal observations according to Eqtn. 15

p(k|yot−t′) ∝ p(yot−t′ |θk, α
∗)p(k), (15)

where, p(k) is the task’s prior probability and can be

determined by the specific circumstances of an experiment.

The likelihood of each component given the model θ is:

p(yot−t′ ; θk, α
∗) =

∫

p(yot−t′ |H
o
t−t′ω,Σy)p(ω; θk)dω.

(16)

A task is selected by choosing the posterior with the highest

probability:

k∗ = argmax
k

p(k|yot−t′) (17)

Fig. 2, summarizes the multiple task recognition problem.

Motion and EMG signals from a human and robot states

(joint angles or Cartesian) are captured. After demonstrating

a collaborative task, we generate the probabilistic model for

each task to represent multiple demonstrations using our

method. For clarity sakes, sensor data is abstracted to a

single dimension in the Figure. Note how human motion

look similar across tasks. This condition leads to a situation

where the likelihood for multiple tasks is very similar to each

other, rendering it difficult to select a task with any certainty.

IV. EXPERIMENTS AND RESULTS

Our experimental testbed used a dual-armed upper-torso

anthropomorphic Baxter robot, a Myo wearable armband and

ROS Indigo in Linux Ubuntu 14.04. Kinesthetic teaching

was used to drive Baxter in collaborative tasks. The Myo

armband is composed of eight stainless steel EMG sensors

and a nine axis IMU. Raw EMG and IMU data, along

with motion, orientation, and rotation data are streamed over

blue tooth. The band is placed around the forearm, as such

it measures muscle signals in the forearms’ anterior and

posterior superficial muscles. Such data can play a vital

complimentary role to motion data.

To test the effects of EMG signals in Interaction ProMPs,

three distinct hand-over tasks, but ones with similar human

motions, were tested with and without EMG-signals. Namely,
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task 1 observations
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robot joints
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Fig. 2. Multidimensional Interaction ProMPs are used with an augmented state vector that integrates EMG-based muscle activity. Phase aligned trajectory
way-points and EMG signals are parameterized into a lower dimensional weight space as a linear combination of basis functions. The correlation of all
human-robot data is computed and the robot motion is inferred by computing a posterior probability distribution over the weights conditioned on the partial
augmented human observation (shown in green circles). For task recognition, the task with the highest posterior probability of new observations given a
task’s probability is selected.

(i) passing an aluminum rod, (ii) passing a wrench, and

(iii) passing a measuring tape. For the aluminum rod and

measuring tape tasks, the human beings by grasping the

corresponding object and then proceeds to pass them to the

robot, the robot executes a parallel motion and picks the

object. For the wrench task, it is the human who receives

the tool from the Baxter robot. Each of the three tasks

was repeated 10, 15, and 20 times respectively for training

and an additional 10 trials for testing. The different number

of training trials was set to study the impact of training

trials with EMG signals. All trial data was time aligned by

resampling. Fig 1, shows a snap shot for each of the three

experiments at the time the tool is handed over. For the three

tasks the human motion is nearly the same: each experiment

has the human standing in approximately the same location

and the arm pose is also started in approximately the same

location. Such assumptions are really realistic given that a

work site has an established working environment. Similar

motions are attempted by a single user each time. This sets

the stage to measure the task recognition ability when using

the EMG signals. We report results for experiments with

orientation and orientation with EMG data (we did not in fact

use a Cartesian trajectory due to the noisiness of IMU motion

data). Both under different amounts of human observations:

10% and 20% of the duration of the task.

A. Results

We present results in a set of tables. Each table presents the

results according to the number of training demonstrations

as well as the human observation ratio for the task, and the

recognition accuracy result for the three tasks with and with-

out EMG data. Table I shows results for 20 demonstrations

and 10% observation ratio. Table II: 15 and 10% respectively,

Table III 10 and 10% respectively, and Table IV 10 and 20%

respectively.

TABLE I

NUMBER OF DEMONSTRATION: 20, OBSERVATION RATIO: 0.1

Task w/out EMG with EMG

Aluminum Rod 0.90 1.00
Wrench 0.60 1.00
Measuring Tape 0.10 0.70

We note that out of the 12 measurements that we made

(different number of demonstrations & observation ratios by



TABLE II

NUMBER OF DEMONSTRATION: 15, OBSERVATION RATIO: 0.1

Task without EMG with EMG

Aluminum Rod 0.60 1.00
Wrench 0.60 0.90
Measuring Tape 0.10 0.70

TABLE III

NUMBER OF DEMONSTRATION: 10, OBSERVATION RATIO: 0.1

Task without EMG with EMG

Aluminum Rod 0.00 0.50
Wrench 0.00 0.80
Measuring Tape 0.80 0.70

TABLE IV

NUMBER OF DEMONSTRATION: 10, OBSERVATION RATIO: 0.2

Task without EMG with EMG

Aluminum Rod 0.30 1.00
Wrench 1.00 1.00
Measuring Tape 0.90 1.00

the three tasks), 11 out of the 12 tasks or 91.6%, experiments

with EMG signals out-classified those without. Not only so,

if we average classification rates across all experiments, we

see that without EMG signals we had an accuracy of get a

sum of 49.2%, while for the augmented EMG signals we

get an accuracy of 85.8%. That is 74.6% more accurate

recognition (see our supplemental information for details

[1]). In summary, integration of EMG signals not only is

correct more than without, but is also does it overwhelmingly

better. We believe this too would have significant effects

in user-load (mental, emotional, and physical) as the robot

would handle tasks in ways that do not require the human

to adjust its handling, thus enhancing the overall experience.

However, this is was not formally measured in this study.

We noted that during task recognition inference, there

is a strong dependence on the prior. That is, observations

make a small contribution. For motion trajectory only demos,

failed task recognition predictions result in wrong robot col-

laborative motions. But with the integration of EMG-based

muscular signals to human motion observations, the distinct

EMG signatures disambiguate task recognition yielding large

probabilistic differences across tasks.

V. DISCUSSION

Our work demonstrates that the integration of EMG-

based muscular activity into Interaction ProMPs for tasks

with similar motions significantly increased task recognition

discernment. It was shown that for three different hand-over

tasks (including human-to-robot and robot-to-human passes)

with different number of training demonstrations and differ-

ent number of human observation ratios, experiments with

EMG-signals overwhelmingly outperformed those without,

that is by 74.6%.

This result shows that human muscular activity can sig-

nificantly augment a robot’s insight into human service tasks

and improve its task recognition. This in turn allows a

robot to improve how it handles an object: it’s end-pose

at the time of the hand-over and possibly its dynamics. In

doing so, hand-overs and numerous other tasks would place

a lower user-load on the human: mentally, physically, and

emotional. If the robot does not need to adjust his own pose

upon a handover because the robot has correctly reached

an object and thereafter properly handled, the human would

be at greater ease. We leave it to future work to show

the quantitative effects of this work. While the proposed

methodology of our work did not differ from that in [8],

we believe that the knowledge and insight gained from our

analysis of a rarely used biometric signal in HRC offers a

relevant insight to the field. We estimated this may be the first

work that studies the impact of muscular activity in human

robot collaboration tasks.

There are a number of enhancements we set as future

work. First, is to explore more compelling cases for the use of

muscular-based EMG-signals in physical human interaction.

The authors believe that a wide array of possibilities can

exist through haptic communication with the robot. That is,

through direct physical touch. EMG can serve as a primary

signal, especially if finger motion cannot be tracked or visual

occlusion prevents identifying small nuanced haptic motions.

Other improvements to the current work include the use of

non-parametric methods to estimate an optimal number of

basis functions in modeling trajectories. This will result in

better modeling, particularly when tasks have more complex

dynamics. Bayesian estimation can also yield more confident

beliefs in computing relevant parameters as opposed to MAP

estimates.

VI. CONCLUSION

We proposed the integration of EMG-based muscular

activity into the Interaction ProMP framework to augment

the human observation representation. A probabilistic model

containing the variance of human and robot motion and (fore-

arm) muscle activity was used. Motion Primitive’s temporal

distribution were modeled through a Hierarchical Bayesian

Model with Gaussian distributions. A temporal sequence

distribution is obtained from demonstrations and the cor-

relation across all dimensions jointly modeled and used to

generate a corresponding robot motion from the observation

of human action signals. The result was an increased capacity

to discern tasks with similar trajectories but different tools

aiding the robot to improve object handling and reducing

user-load.
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