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Abstract— We introduce a real-time, constrained, nonlinear
Model Predictive Control for the motion planning of legged
robots. The proposed approach uses a constrained optimal
control algorithm known as SLQ. We improve the efficiency
of this algorithm by introducing a multi-processing scheme
for estimating value function in its backward pass. This pass
has been often calculated as a single process. This parallel
SLQ algorithm can optimize longer time horizons without
proportional increase in its computation time. Thus, our MPC
algorithm can generate optimized trajectories for the next few
phases of the motion within only a few milliseconds. This
outperforms the state of the art by at least one order of
magnitude. The performance of the approach is validated on a
quadruped robot for generating dynamic gaits such as trotting.

I. INTRODUCTION

One of the essential requirements for robust planning in
real world applications is the capability of finding solu-
tions in real-time to adjust the plan with the current state
measurements. Many of today’s online approaches have
achieved this efficiency through task decomposition and
model reduction approaches. The main idea behind these
approaches is to decompose the locomotion problem into
a set of simpler tasks which effectively reduces the number
of control coordinates in each subtask. This simplification
is the key to make the computation of the motion planner
faster [1], [2] and facilitates finding solutions in real-time.
Thus, these approaches are often used in most of the practical
implementations of the Model Predictive Control (MPC) in
legged robots [3-7]. However, the simplification generally
comes at the cost of limiting the maneuverability. This, in
turn, can reduce the reachable set of solutions and renders
the task synergy synthesis approaches overly conservative.

In contrast to the task decomposition approach, single
task formulation offers the potential to treat the whole
aspects of planning as a single problem without sacrificing
performance. Due to the high complexity of legged systems,
hand-designing the plan is often impractical. Therefore,
an optimization method is often used to plan the robot’s
motion based on an user-defined performance index. This
optimization problem is often formulated as an optimal
control problem which provides the theoretical basis for
designing a control policy. In general, there is no closed
form solution for the optimal control problem with nonlinear
system dynamics and cost function. Thus, the whole-body
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optimization often renders a computationally expensive nu-
merical problem which can not be solved in real-time.

While many of the applied optimization methods for
motion planning of the legged robots do not scale favor-
ably, the optimization methods based on using a Gauss-
Newton Hessian approximation and a Riccati backward
sweep demonstrate a great potential to be run in real-time on
the high dimension problems. The notable examples of such
approaches are DDP-based methods such as iLQR/G [8], and
SLQ (Sequential Linear Quadratic) [9]. Application of these
algorithms in an MPC settings have been shown previously
for a humanoid robot [10]. In this work, we will show an
implementation of a constrained SLQ algorithm in an MPC
setting for motion planning of a quadrupedal robot. Unlike
[10], we use a relatively longer time horizon due to our new
approach which allows us to distribute the most expensive
part of the computation in parallel.

Contributions

In this contribution, we introduce a constrained, nonlinear
MPC approach for the motion planning of legged robots
which its performance exceeding the current state of the art
in robotics applications by at least one order of magnitude.
Our MPC algorithm continuously re-optimizes the state and
control input trajectories for the next few phases of the mo-
tion within only a few milliseconds. In order to achieve such
a performance, we propose a variant of the SLQ algorithm
which uses a multi-processing scheme for estimating value
function in its backward pass.

We demonstrate the performance of this algorithm for
planning highly dynamic gaits such as trotting in an MPC
fashion. The robustness and real-time planning capabilities of
the approach is verified by inserting significant disturbances
during execution. To the best of our knowledge, this work
is the first to demonstrate a whole-body nonlinear MPC for
periodic gait generation of the legged systems. Last but not
least, our solver is available as an open-source software [11].

II. MODEL PREDICTIVE CONTROL APPROACH

Our nonlinear MPC approach uses an efficient SLQ algo-
rithm as its solver which can solve optimal control problems
with nonlinear dynamics, cost, and equality constraints [12].
The performance of this approach for generating various
gaits and obstacle avoidance has been shown previously in
[12]. In this paper, we show how this algorithm can be used
in an MPC loop. To this end, we first briefly introduce our
optimization algorithm. Then, we propose a new approach
which allows us to break the most computationally intensive



part of the algorithm into several smaller calculations which
can be carried out simultaneously. Finally, we discuss our
MPC approach.

A. An Overview of the SLQ Algorithm

The continuous constrained SLQ algorithm is based on
dynamic programming, which designs both a feedforward
plan and a feedback controller through a quadratic approx-
imation of the value function. Our continuous-time SLQ
algorithm can handle state-input equality constraints through
a Lagrangian method and state-only constraints through a
penalty method. The complexity of the algorithm scales
linearly with the time horizon of the optimization [12].

In general, planning algorithms based on Nonlinear Pro-
gramming (NLP) require first to transcribe the infinite-
dimensional, continuous problem to a finite-dimensional
NLP. This discretization is often carried out using heuristics,
which can result in numerically poor or practically infeasible
solutions. In contrast, the continuous-time SLQ uses variable
step-size ODE (Ordinary Differential Equation) solvers in its
forward and backward passes. Given the desired accuracy,
it can automatically discretize the problem using the error
control mechanism of the variable step-size ODE solvers.
Furthermore, using such an adaptive scheme — in average —
decreases the number of discretized points in comparison to
the discrete-time SLQ algorithm. This, in turn, can improve
the run-time of an iteration since the number of calculations
significantly decreases for the expensive operations such as
linearization of the dynamics and the constraints.

In this paper, we use the SLQ algorithm for solving
optimal control problem for switched systems. Switched
systems are a subclass of a more general family known as
hybrid systems. A hybrid system consists of a finite number
of dynamical subsystems subjected to discrete events. These
events are triggered either by an external input, or through
intersection of the state trajectory to certain manifolds known
as the switching surfaces. Upon triggering an event, a tran-
sition to a different subsystem takes place which can be
followed by a sudden jump in the state vector. As more redis-
tricted hybrid models, switched systems are characterized by
continuous transitions of state trajectory during the switching
moments. Here, we have further restricted our switched sys-
tem model by assuming that the transitions are triggered by
predefined switching times, in between predefined sequence
of subsystems. For more general treatment of this problem
refer to [12], [13].

We formulate the constrained optimal control problem for
switched systems in the finite time interval [fo,7] as
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where 71 to #;_; are the switching times and 7 is the number
of subsystems. For each mode i, the nonlinear cost function
consists of a terminal cost, ®;(-), and an intermediate cost,

Li(-). Here, fi(-), gi1;(-), and g,;(-) are respectively the
system dynamics, the state-input constraints, and the state-
only constraints in mode i.

The SLQ algorithm iteratively solves the extremal problem
around the latest estimation of the optimal trajectories and
improves the optimal control policy based on the solution of
this local extremal problem. The local extremal problems are
defined by the linearized system dynamics and constraints
and the quadratic approximation of the cost function. The
first step of each iteration is a forward integration of the
system dynamics using the last approximation of the optimal
controller. Next, a quadratic approximation of the cost func-
tion is calculated over the nominal state and input trajectories
obtained from the forward integration.
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where ¢;(t), q;(t), ri(t), Pi(t), Qi(t), and R;(r) are the
coefficients of the Taylor expansion of the ith cost function
in Equation (I) around the nominal trajectories. 0x and du
are the deviations of state and input from the nominal trajec-
tories. Constrained SLQ also uses linear approximations of
the system dynamics and constraints in Equation (T)) around
the nominal trajectories.
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Based on this LQ approximation, a generalized, constrained
LQR algorithm is used to find an update to the feedback-
feedforward control policy. For a more detailed discussion
of the algorithm’s derivation, refer to [12].

B. FASTSLQ Algorithm

Each iteration of the SLQ algorithm consists of three
main steps namely forward integration of system dynamics
(i.e. forward pass), constructing the LQ approximation of
the nonlinear problem, and solving Riccati-like equations
(i.e. backward pass). Computing the LQ approximation in
parallel has been proven to be essential in high dimen-
sional problems. However, due to the sequential nature of
integration, the forward and backward passes have been
often implemented as single processes. In this section, we
propose a variant of the SLQ algorithm which uses a parallel-
processing scheme for calculating the backward pass. In
practice, the backward pass is the most expensive part of the
computations. Thus, parallel computation of the backward
pass can significantly improve the speed of the algorithm.
To this end, we refer to this algorithm as FASTSLQ.

In FASTSLQ, we need first to divide the optimization time
horizon into several disjoint intervals. A natural partitioning



Algorithm 1 FASTSLQ Algorithm

1: Given:
Initial stable control policy, {u;(x,#)}2) = {us:(t) + Ki(t)x}'2)
Initial value function, {Vi(x,t),V,(x,t)}=}
Heuristic function for approximating infinite time problem V;(x,7) =

2

3

4:

5: repeat
6

7

8

qur(x)

Forward integrate the system dynamics using adaptive step-size integrator.
T X(10),W(to), X(11), W(tr) ... Xtn—1),W(en—1),X(tw = 11)
for i=171—1 to 0 in parallel do

Quadratize cost function along the trajectory ©
10: Linearize the system dynamics and constraints along the trajectory T
11: Compute the constrained LQR problem coefficients
12: D/ =R;'D/ (DR;'D])"!, A, =A-BD]C
13: Ci= DC D, =D/D;, E,:NI)[e,»
14: Q/7Q1+CRC PC —(P C)Tj—pF‘TF‘ _
15: g, = C ri+ PFTh R, = ( 7D,‘)TR,‘( 7D,‘)
16: L,»:R;'(P,T+B,TS)
17: L =R '(r;+B]s;), L,=R 'B/s,;
18: Calculate final value for Riccati- hke equanons
19: Si(tix1) = Qi+ 25 Vie1 (X(tis1) ti+1)
20: si(tiv1) =qpi+ (;me( (tix1)sti1)s Sei(tiv1) = %Ve.iJr](i(ti-l)JH])
21: sitiv1) = qri+Vin (X(tir1)tiv1) +Veirn ( (tiv1)ti1)
22: Solve the final-value Riccati-like equations in interval [t;,7; 1]
23: —$i=A7S; +~ST§~ L/R, L+ Q;
24: —sl A si— L 'R 1 +q;
25: — .—ATse 7L ng,+(C L) R; €
26: —$i=gq; 7T ﬁ 1
27: Compute value function update
28: Vi(x,t) = 5;(t) + (x = X(1)) "s: () + %(x —x(1))"S;(1) (x —X(1))
29: Vei(x,8) = (x—X(t)) "sei(t)
30: Compute controller update o .
31: L’,:,(I,Di)L’,,C’.? 1; —7(17]),‘) iy le_,‘Zf(IfDiﬂe_i*‘é,‘
32: upp;=u+oli+L; —LiX, uwi(x,r) =ug;(r)+Li(1)x
33: end for
34 line search scheme: optimize the learning rate, c.

35: until convergence or maximum number of iterations
36: return Optimized control policy and value function, {u;(x,7),Vi(x,1),V.(x,)}

scheme for our switched system formulation is based on
the switching moments but in general, any other partitioning
approach can be considered. In order to solve the Riccati-
like equations in each of these partitions, we should estimate
the final value of the equations in each partition.

A naive approach to compute the backward passes of these
partitions in parallel is the following. In each iteration, all
processes — in parallel — integrate the Riccati-like equations
of each partition backward in time. The final-value of these
equations can be calculated based on the solution of the
following partition in the previous iteration. This is in
contrast to the sequential approach which waits until the
computation of the following partition to complete. However,
since the nominal trajectories of the previous iteration are
different from the current ones, the Riccati-like equations in
the subsequent iterations are different.

To tackle this issue, we should first notice that SLQ uses
the Bellman equation of optimality to locally estimate the
value function. This local estimation is based on a quadratic
approximation of the value function around the nominal
trajectories. The coefficients of this quadratic model are
calculated through the Riccati-like equations in the backward
pass. FASTSLQ leverages this approximation in order to
correct the final values obtained from the previous iteration.
To do so, it employs the value function approximation of the
following partition from the previous iteration to estimate
its value and its first order derivative at the partition’s final
time and the corresponding nominal state. Then, it uses the
following equations to improve the estimation of the final

values of the Riccati-like equations.
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where we have defined
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the subscript i and superscript k refer to the subsystem index
and the iteration number respectively. #;s are the switching
times (partitioning times), V*(-) and V¥,(-) are the value
function approximation for the system in the null space and
projected space of the constraints respectively. Finally, X*(-)
is the nominal state trajectory in iteration k.

A high level illustration of the backward pass of FASTSLQ
is shown in Fig. E} Note that, since FASTSLQ provides a
quadratic approximation of the value function, the correction
is only effective up to the first order terms (i.e. s(-),S.(+),s(+))
and the second order term (i.e. S(-)) is directly used from
the previous iteration.

A summary of FASTSLQ, is given in Algorithm [} For
a reliable implementation of FASTSLQ, extra care should
be taken when selecting the learning rate in the line search
scheme. The line search scheme in the original SLQ algo-
rithm favors the largest learning step which has a lower
cost than the nominal cost. In order to ensure that the
changes of the nominal trajectories in successive iterations
are small enough that the quadratic approximation of the
value function is valid, an extra criterion should be included
in the line search scheme of the FASTSLQ algorithm. To
this end, the following criterion is appended to the line
search scheme’s conditions. The new cost associated with
the updated control policy should be close enough to the
expected cost which is estimated through the approximate
value function. This line search scheme is in particular
necessary in the initial iterations when the solution is far
from the optimal one. []

The backward pass of the SLQ-type algorithms can be
considered as a bootstrapping approach for estimating the
value function. In the original SLQ algorithm, the state
sweeps are carried out in an especial order — from the final
state towards the initial state. Due to the specific structure
of the problem, this process converges in a single sweep. In
contrast, FASTSLQ uses a different sweeping order which
allows to implement the process in parallel. At a very high
level, this is similar to how the value function is estimated in
asynchronous dynamic programing approach where the state
sweep can be carried out in an arbitrary order as long as all
states are visited.

Note that this is not a major issue in a real-time iteration MPC since the
optimal solution of the subsequent problems are in the close neighborhood.



Fig. 1. Comparison of the backward passes of SLQ and FASTSLQ for
estimating the value function based on solving Riccati-like equations. The
top graph (green box) illustrates the sequential approach in which the
Riccati-like equations are solved backward in time. The bottom graph (red
box) illustrates the parallel computation approach. In this approach, instead
of waiting for the solution of the neighboring partition, the approximation
of the value function from the previous iteration is used. However, in order
to account for the changes of the nominal trajectories in two iterations, the
values function and its derivatives are re-evaluated at the current nominal
trajectories.

C. Dealing with State-Input Inequality Constraints

In order to deal with state-input inequity constraints, we
employ an approach similar to [14]. While this method does
not necessarily result in an optimal solution, it ensures that
the planned trajectories are constraint-satisfactory. In this
method, if at any time during the algorithm’s forward pass, an
inequity constraint is violated, the control vector is projected
on the plane defined by the linearized inequality constraint.

D. FASTSLQ-MPC with Real-Time Iteration Scheme

The real-time scheme is proposed for the scenarios such
as MPC where we need to solve a sequence of optimization
problems, but we do not have the time to iterate each problem
to convergence. In the real-time iteration MPC, the optimal
control solver never attempts to iterate to convergence, but
instead only takes one iteration towards the solution of the
most current MPC problem (triggered with new measure-
ments), before proceeding to the next one [15].

In the absence of disturbances and if the terminal time
of the optimization is not receded, this scheme subsequently
delivers approximations of the optimal policy that become
better and better over iterations. However, in the presence of
disturbances or receding horizon MPC scheme, it is crucial
to the success of this method that the transition between
subsequent problems be carefully designed.

In the presence of disturbances, the initial state of the
subsequent optimization problem would deviate from the
planned state. Thus, in a naive real-time iteration imple-
mentation, depending on the amplitude of the deviations, the
convergence can be drastically affected. In order to reduce
this effect, the current solution of the optimizer should be
corrected based on the state deviations. In the FASTSLQ-
MPC algorithm, such a correction can be achieved using its
locally linear feedback policy. This policy generalizes the
optimal open loop solution to a vicinity of the optimal tra-
jectories while respecting constraints. Thus local adjustment

Algorithm 2 FASTSLQ-MPC Algorithm

1: Given:

2 Initial stable control policy, {u;(x,)} = {us/;(t) +K;(r)x}.
3 LQR Quadratic cost function, {Qf"",Rf""}, for heuristic value function.
4: repeat

5 Get the current time and state, 7, X.
6: if 1y —t <1, then
7.

8

9

Append a new subsystem, / — 1, based on the gait pattern.
Adjust final time: 1 =1
Calculate an LQR for subsystem / using linearized system at x(7;_1).

10: Append control policy with LQR controller: u;_; (x,) = K" (x —x(t;)).
11: Set final cost using LQR quadratic value function: V;(x,) = V" (x).
12: end if

13: Adjust the previous controller

14: Rollout from (7,x) using policy {u;(x,#)} and get nominal trajectories
15: T:X(t),u(to),X(t1),u(ty) ... X(tn—1),U(ty—1),X(ty =11)

16: Adjust the previous controller feedforward component, {us;(r)}.

17: uyr(r) =ua(t) — K (0)X(r)
18: Perform single iteration of SLQ

19: Set adjusted policy, {w;(x,£)} =4 = {uyri(r) + Ki(£)x}}.
20: Set augmented value function, {V;(x,1),V,;(x,1)}_,.

21: Perform single iteration of SLQ in time period [fo,#/].
22: Get the feedback policy and value funtion
230w} Vi Veix0)}:

24: until finished

of the plan can be realized by using the optimal feedback
policy of the SLQ instead of using optimized trajectories.

In addition to disturbance, we should also address the issue
arises from the shifting of the optimization’s terminal time in
order to maintain the time horizon of optimization. This issue
arises because of the finite-time optimization setup. To tackle
it, we increment the terminal cost of the optimization with
the value function of a fictitiously infinite-time LQR solution
defined at the final state. Moreover, we have employed a
varying time horizon scheme, in which the final time is
set to a future switching time such that the time horizon
includes exactly n complete switching modes. For example,
for n =2 at time ¢ where subsystem i is active (t; <t <fi41),
the terminal time will be set to #;+3. This means that if the
average activation time of subsystems is Az, the optimization
time horizon varies in between 2Ar and 3At.

In this way, the terminal time of the MPC optimization
is always set to moments of mode switch. As long as
the final states of the modes are controllable, they can be
stabilized by fictitiously linear LQR controllers. Thus, these
LQR problems have finite value functions. Defining such
a stable LQR problem also allows using a quasi-infinite
horizon MPC approach [16], [17]. The stability of this quasi-
infinite horizon MPC can be guaranteed as long as the system
is controllable at the terminal time. For the gait studied in
this paper, this switching moments correspond to 4-leg stance
mode in which the system is fully actuated and controllable.
Our MPC approach is described in Algorithm

III. EXPERIMENTAL SETUP
A. Platform Description

For evaluating our MPC approach, we use a hydraulically
actuated quadruped robot known as HyQ [18]. HyQ is a
fully torque controlled quadruped and it features three joints
per leg. All joints are equipped with absolute and relative
encoders. The joint torques are measured by load cells which
are also used to estimate the contact forces.

In our setup, we use a dedicated computer to run the
MPC control loop. This computer has an Intel Corei7 4790



processor (8 M Cache, 3.60 GHz processor frequency). The
MPC loop receives the current state of the robot from the mi-
dlevel control computer that executes the tracking controller
described in subsection This tracking controller runs
at 250 Hz. The midlevel controller then sends desired torque
to a lowlevel torque controller. In return, it receives current
state measurements and computes the base and ground state
estimates. The lowlevel controller runs a torque tracking
control loop for actuators at 1 KHz.

In order to estimate the base state, we use a Kalman filter
approach introduced in [19]. For estimating the ground plane,
we use a simple approach which approximates the ground
plane by passing a plane at the stance feet of the robot (in
two consequential phases).

B. Modeling Framework

In this paper, we choose to use a whole-body modeling
approach known as the Center of Mass (CoM) dynamics plus
full kinematics [20]. This model includes 12 states describing
the CoM motion as well as robot’s joint positions which
describe the full kinematic of the robot. The control input of
this model includes the contact forces at end-effectors and
the joint velocities. Due to the impact forces at the touch-
down moments of swing legs, the state trajectories are not
continuous. Thus, this model is a hybrid model. However,
here, we model the legged robot as a switched system.

This transition from a hybrid model to a switching model
requires to assume that there is no state jump at the moments
of phase transitions. Here, we reinforce such an assumption
by designing swing leg trajectories with zero approaching
velocity at the touch-downs. Assuming that the phase se-
quence of the motion is predefined, we can construct a
switched model with a set of constraints on the velocities
and the contact forces at end-effectors [12]. For HyQ, The
CoM dynamics plus full kinematics model has 24 states and
24 inputs. It includes 12+NUMBEROFSWINGLEGS active
state-input equality constraints at each phase of motion. The
equation of motion for this model is as following

0 =T(0) (0 —5J&(a) )

p=R(0)v

o=1"(q) (I(gu) ~oxX@)o+ L r7(4) x A7)
V=g(0)+ 5 X1 Ay

q=u

us;(qu) =0 if i is a stance leg
up(qu)-i=c(t), Ag=0 if i is a swing leg

where T is a matrix which transforms the angular velocities
in the base frame to the Euler angles derivatives in the global
frame. R is the rotation matrix of the base with respect the
global frame, g is the gravitational acceleration in the body
frame, I and m are respectively the total moment of inertia
about the CoM and the total mass. gJ®,, is the Jacobian
matrix of CoM rotation with respect to robot’s base frame.
rs, Us, Ay are respectively the position, velocity and contact
force vector of foot i € {1,2,3,4}.

We use a predefined swing leg trajectory, ¢(¢), in the
orthogonal direction of the contact surface (7)) which ensures
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Fig. 2. Overview of the motion control and planning structure. The planner
is illustrated at far left and the motion controller (red block) in middle. The
EE block transforms the joint’s coordinate to the end-effector’s Cartesian co-
ordinate which is controlled by an impedance controller (inverse-dynamics
+ PD). The CoM controller stabilizes the CoM by providing correction to
the CoM acceleration which is then mapped to an equivalent correction to
A ey of the MPC. Finally, the IMC tracks the corrected end-effector’s forces.

that the touch-down takes place according to the predefined
switching times. Furthermore, it ensures that the velocity of
the swing foot before the contact is zero. The unilateral and

the friction constraints on contact forces are enforced by the
method introduced in subsection

C. Model Comparison

The computational complexity of SLQ scales cubically
with respect to the sum of state’s and input’s dimensions,
0 ( (ny —|—nu)3). In our switched model formulation for HyQ,
this sum is of dimension 48. A comparable model of HyQ
which results in a same computational complicity is the rigid
body modeling approach with a soft contact model [21].
The state space in this model is of dimension 36 which
consists of the base pose and twist as well as joint angles and
velocities. The control inputs only includes the joint torques
with dimension 12. The contact forces are calculated using
a soft model consisting of nonlinear springs and dampers.

Each of these models has their advantages and disadvan-
tages. The switched model uses hard constraints to satisfy
contact unilateral constraints. However, the full model with
soft contacts uses a penalty method in which constraints are
not always fully satisfied. Thus, special care should be taken
to implement them on hardware and in general achieving a
good go-to task is hard. On the other hand, the optimized
plan for the swing leg velocities in the full model with
soft contact is always continuous but the velocities of the
swing legs in the switched model are piecewise continuous.
Therefore, in the switched model, we need to pre-filter the
planned joint velocities before applying them on hardware.

D. Motion Control Structure

In our switched model approach the contact forces at
end-effectors are part of the control authority. However,
the actual commands to the robot are the joint torques.
There are two ways to realize this contact forces. Either,
we should map them back to an equivalent joint torques or
we should directly control the contact forces. Here, we have
chosen the direct approach. To this end, we use a robust
motion control approach introduced in [22] which relies on
the robust tracking of contact forces in face of rigid body
model mismatch, actuator dynamics, delays, contact surface
stiffness, and unobserved ground profiles.
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Fig. 3. CoM pose plots for HyQ trotting in-place. The blue lines are the

planned references and the red lines are the actual states. The robot nicely
maintains its pose and the position and orientation angles are varying in a
small range. The periodic pattern of motion is clearly visible in these plots.

Fig. [2] demonstrates an overview of the motion controller
introduced in [22]. In order to manipulate the contact force
directly, this structure uses an especial system decomposition
which allows to control the swing leg trajectories and contact
forces independently. This motion control structure consists
of three main components: contact force controller, swing leg
controller, and CoM controller. The contact force controller
uses a robust Internal Model Controller (IMC) to track the
planned contact forces. The swing leg controller uses an
inverse dynamics scheme plus a PD controller to track the
desired end-effector motion in the Cartesian space. Finally,
the CoM controller is responsible for tracking desired, fea-
sible motions of CoM.

In theory, if the MPC loop runs fast enough (e.g. 250 Hz),
its re-planing scheme should be able to stabilize the CoM.
However, in practice our MPC loop run at 60 Hz which
is slower than it can be used as a stabilizing controller.
In this case a CoM tracking controller is employed in
order to deal with the discrepancies between the model and
hardware. Our CoM controller uses a PD feedback controller
on the planned trajectories which provides correction to the
CoM acceleration which is later mapped to an equivalent
correction to the MPC planned contact forces.

IV. RESULTS

In this section, we show how FASTSLQ-MPC can be
applied for planning of the periodic gait patterns on real hard-
ware. We also demonstrate the robustness and re-planning ca-
pabilities of the approach by adding significant disturbances
during execution. Finally, we benchmark the run-time speed
of our FASTSLQ implementation.

A. Motion Planning for HyQ through FASTSLQ-MPC

In order to assess the performance of our MPC algorithm,
we have performed a series of experiments on HyQ. All of
the experiments presented in this section are implemented on
hardware as well as two different physics engines namely SL
and Gazebo. The performance of the robot was consistent
across different simulators and was comparable to the hard-
ware results. Due to the limited space, here, we only focus on
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Fig. 4. Contact forces for the trotting in-place task. The planned forces

are in purple and the estimated forces are in green. The contact forces
are relatively smooth during support phases, which facilitates hardware
experiments. The contact forces also nicely reflect the stepping pattern.
the hardware results. However, in the attached videcﬂ more
results are presented in both SL and Gazebo simulators.
Three different experiments are presented in this section:
“trotting in-place task™, “go-to task”, and “disturbance rejec-
tion task”. Here, we mainly focus on the trotting gait. We also
assume that the duration of each phase of motion is 400 [ms]
regardless of the given task. We use similar cost functions
for all of the experiments. The cost function in each phase
of motion (each subsystem) has a simple quadratic form.

Ji :% (X(tir1) = Xq(tir1)) ' Qri (X(tis1) —Xa(tis1))

o)+ L R
+ [ SX(0)Qux(0) + Ju(r) Ru(o)d

where Qy;, Q;, and R; are constant, diagonal matrices of
appropriate dimensions. x,(f;+1) defines the desired goal
state which can be used by user to command the robot
to move around. This variable is constant for the in-place
trotting task and it is set to the commanded goal state for
the go-to task. For all of the results presented in this section,
we use 2 phases ahead setting for the MPC time horizon.
In this case, the time horizon varies from 0.8 [s] to 1.2 [s]
(refer to the discussion in [[I-D). Using the four independent
threads of our processor, the MPC loop runs at about 60 Hz.
In the following, we discuss our results in details.

a) Trotting in-place task: In this task, HyQ trots in-
place and tries to maintain its pose. Fig [3] shows the xy
position of CoM as well as the roll and the pitch angles of
the base. The blue lines are the planned references and the
red lines are the actual states. As you see, the references are
nicely tracked and the position and orientation angles are
varying in a small range. The periodic pattern of motion is
clearly visible in these plots.

Fig [] shows the yz-direction contact forces at the same
time period for two opposing legs namely left-front, LF, leg
and right-hind, RH, leg. The planned forces are in purple and
the estimated forces are in green. The contact forces nicely
visualize the stepping sequence where the discontinuities in
the contact forces concur with a moment of touch-down or

Zhttps://youtu.be/EYGVmcd9uds
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Fig. 5. Overhead plot of continuously recomputed MPC paths for CoM

(blue dashed line) and the executed path (green to red gradient) of a go-to
task on HyQ. The time horizon is adapted online based on the goal distance.
The 1 [m] trotting forward command is received at ty,; and after s single
update of the MPC optimizer (under 20 [ms]) the plan for the next two steps
are calculated and send it to robot. The computed plans are down-sampled
and the plans are truncated to half of their total length.

lift-off. Due to the imbalance of the robot’s weight, the force

profiles of the two legs have different patterns.

b) Go-to task: In this task, after the robot starts trotting,
we command it to move 1 [m] ahead (x direction). The time
horizon in which the task should be completed is calculated
based on a heuristic. For a motion with a predefined stepping
time, the problem of estimating time horizon is equivalent
to defining the number of steps for which HyQ requires
to reach to the goal position. To this end, we assume a
virtual average stride length and based on the goal position
displacement, we calculate the number of steps. In this
experiment, we choose average stride length of 35 [cm]. We
have tried different average stride lengths on simulation and
we ultimately choose 35 [cm]. However in general with the
higher values, we can observe more dynamic motions.

Fig. 5] shows the overhead view of this motion in xy
plane using a gradient color scheme which reflects the time
evolution of the motion. A subsampled set of computed
plans is also demonstrated with dashed blue lines. Here,
we have only plotted the first half of the plans. This graph
demonstrates that the realized CoM position and the plans
are smooth and the MPC plans try to guide the robot toward
the final goal position.

c) Disturbance rejection task: In this task, we com-
mand HyQ to trot in-place. For evaluating the disturbance
rejection capability of our MPC, We pull/push the robot
sidewise, i.e. y direction (refer to video). Fig. |§| shows the
time around one of these unknown disturbances (the gray
area), where the disturbance force results is a sudden increase
of velocities (in particular the y direction). This plot also
shows the xy contact forces as well as the foot xy motion
in the global frame for a specific leg (left-hind). The robot
uses two different strategies to reject the unknown external
force resulted from the pulling. During the stance phase,
it manipulates the contact forces in a way to resist the
disturbance force while respecting the friction cone. Then
in the swing phase, it reacts to the external force through
a side-stepping motion. Fig. [7] shows the snapshots of this
experiment. In the video of this task, you can see that the
robot maintains its balance against relatively strong pulls.
The video also demonstrates the performance of the robot in
response to the disturbances in the x direction.
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Fig. 6. CoM velocity and the left-hind leg’s contact force and position in
the x and y directions. The gray area shows the trajectories at the time around
a disturbance, where the disturbance force results is a sudden increase in
the CoM velocity. The MPC plan for the contact forces and the foothold
position nicely tries to stabilize the CoM.

TABLE I
COMPARISON BETWEEN THE FREQUENCY OF THE MPC ALGORITHM
FOR DIFFERENT NUMBER OS SUBSYSTEMS (NUMBER OF PARTITIONS)
AND DIFFERENT NUMBER OF THREADS. THE VALUE ARE IN HZ.

Min Num. Subsystems Num. Threads

I 2 7
2 319407 404403  617+16
4 175402 252403  323+14

B. FASTSLQ Benchmarking

Table [[] shows the frequency of the MPC loop for a various
number of threads and number of subsystems (number of
phases ahead) for planning. By looking at each column
of this table, we notice that as the number of subsystems
doubles the frequency reduces almost to half. This is due
to the linear computational complexity of SLQ with respect
to the optimization time horizon. As discussed in subsec-
tion [[I-B] an important characteristic of FASTSLQ is that it
scales more favorably with respect to the time horizon. By
comparing the values with the same color in Table [I] this
characteristic becomes evident. We can see that while the
time horizon is doubled the frequency does not reduce to
half since the FASTSLQ algorithm nicely benefits from the
extra computational power (extra threads).

To better understand this, Fig. [8| demonstrates the average
CPU time required for the three main operations of SLQ and
FASTSLQ. As you see on the left, the computational bottle-
neck of SLQ is its backward pass which is almost 65% of
the total computation. FASTSLQ, in contrast, leverages fully
from the extra processing threads and drastically reduces the
computation load of the backward pass (Fig. [§] right graph).

V. CONCLUSION

In this paper, we have introduced a real-time, constrained,
nonlinear MPC approach for the motion planning of legged



Fig. 7. Disturbance rejection task. We insert a lateral disturbance by strongly pulling the robot from its right during trotting (second snapshot). In order to
keep its balance, HyQ demonstrates a side-stepping motion in the third snapshot. Then, it eventually moves back to its initial position. The side-stepping
in this experiment is about 40 cm.
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Fig. 8. Comparison of the required CPU time for three main operations of
SLQ with 1 thread and FASTSLQ with 4 threads. The values are calculated
by averaging over 1500 iterations of the algorithms in the MPC loop.
robots. The proposed approach uses a constrained SLQ
algorithm in order to solve the MPC optimization problems.
Moreover, we have introduced the FASTSLQ algorithm
which allows us to calculate the backward pass of SLQ algo-
rithm in parallel. This drastically reduces the computational
complexity of the backward pass which in turn improves the
MPC loop frequency.

The FASTSLQ-MPC algorithm introduced in this paper
can generate optimized trajectories for the next few phases of
the motion within only a few milliseconds. This work shows
the first application of whole-body MPC on legged robots
for generating periodic gait patterns. We demonstrate that
FASTSLQ-MPC can be run at rates that exceed the state
of the art by an order of magnitude. For example, in the
case of 2 subsystems, the MPC loop can run at about 60 Hz.
The performance of our FASTSLQ-MPC motion planner has
been tested on both hardware and simulation for generating
trotting gait. The capability of the planner for tracking user-
defined goal as well as disturbance rejection is nicely shown
on hardware and simulation.
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