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Strong Recursive Feasibility
in Model Predictive Control of Biped Walking

Matteo Ciocca1, Pierre-Brice Wieber2, Thierry Fraichard1

Abstract— Realizing a stable walking motion requires sat-
isfying a set of constraints. Model Predictive Control (MPC)
is one of few suitable methods to handle such constraints.
The capacity to satisfy constraints, which is usually called
feasibility, is classically guaranteed recursively. In our appli-
cations, an important aspect is that the MPC scheme has to
adapt continuously to the dynamic environment of the robot
(e.g. collision avoidance, physical interaction). We aim therefore
at guaranteeing recursive feasibility for all possible scenarios,
which is called strong recursive feasibility. Recursive feasibility
is classically obtained by introducing a terminal constraint
at the end of the prediction horizon. Between two standard
approaches for legged robot, in our applications we favor a
capturable terminal constraint. When the robot is not really
planning to stop and considers actually making a new step,
recursive feasibility is not guaranteed anymore. We demonstrate
numerically that recursive feasibility is actually guaranteed,
even when a new step is added in the prediction horizon.

I. INTRODUCTION

Walking depends on contact forces between the feet and
the ground. The unilateral nature [1] of this interaction (the
feet can only push on the ground) limits the motion that
a legged robot can realize and plays a crucial role in its
stability. In the case of walking on a flat ground, this corre-
sponds to having the Center of Pressure (CoP) stay within
the support polygon [2]. Realizing a stable walking motion
requires satisfying a set of constraints [3]. Model Predictive
Control (MPC) is one of few suitable methods to handle
such constraints [4]. It has been used therefore extensively
for the control of legged robots [5], [6]. For example, the
MPC scheme in [7] generates a walking motion online with
automatic footstep placement. It was expanded to ensure safe
navigation in a crowd [8] and physical collaboration with
humans [9].

MPC solves an optimal control problem over a prediction
horizon. The solution is a control sequence that satisfies
a set of constraints. The first element of the sequence is
applied to the system. The whole process is then repeated.
The capacity to satisfy constraints, which is usually called
feasibility, is classically guaranteed recursively [10]. An
important aspect of our applications is that the MPC scheme
has to adapt continuously to the dynamic environment of
the robot: collision avoidance [8], physical interaction with
humans [9], or visual feedback [11]. We aim therefore at
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guaranteeing recursive feasibility for all possible scenarios,
which is called strong recursive feasibility [12].

Recursive feasibility is classically obtained by introducing
a terminal constraint at the end of the prediction horizon [10]
to make sure the system remains feasible indefinitely after
the end of the horizon. Two standard approaches for legged
robots are (i) to consider that the robot keeps repeating
indefinitely the same cyclic motion [13], [14], [15] or (ii)
that it stops after a given number of steps [16], [17], [8],
what corresponds to capturability [18], [19]. Passive safety
requires that the robot is able to stop before any collision
occurs [20]. For that reason we favor a capturable terminal
constraint as in [8].

We can see in Fig. 1 how such a capturability terminal
constraint makes sure that the system remains feasible indef-
initely. This way, when the prediction horizon advances as in
Fig. 2, we are sure that the MPC scheme remains feasible:
strong recursive feasibility is guaranteed by construction. The
problem is when the robot is not really planning to stop, and
considers actually making a new step. With such a sudden
change, recursive feasibility is not guaranteed anymore, as
shown in Fig. 3. It seems that this issue has been overlooked
in the literature of MPC for legged robots. Note that this
issue is unrelated to the length of the prediction horizon.
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Fig. 1: A capturability terminal constraint (that defines a
terminal constraint set Xf ) makes sure that the motion of
the legged robot remains feasible indefinitely.

The objective of this paper is to investigate this issue
and provide a numerical evidence that recursive feasibility
is actually guaranteed, even when a new step is added in the



prediction horizon.
Outline of the Paper: Section II introduces the defi-

nition of strong recursive feasibility in MPC. Section III
describes how to provide a numerical evidence of strong
recursive feasibility. The dynamics of walking is described
in Section IV. Section V describes where we apply our
numerical approach. Results of our numerical approach are
presented in Section VI.
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Fig. 2: When the prediction horizon advances, thanks to the
fixed terminal constraint set Xf , the MPC scheme remains
feasible.
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Fig. 3: When the robot considers making a new step, with
such a sudden change, recursive feasibility is not guaranteed
anymore.

II. STRONG RECURSIVE FEASIBILITY IN MODEL
PREDICTIVE CONTROL

Consider a linear time-invariant discrete-time system

xi+1 = Axi +Bui , (1)

where xi, ui and xi+1 are respectively the state, control
and successor state, and (A,B) are matrices of proper

dimensions. For a state xi, an MPC sheme aims to find a
control sequence Ui = {u(i|i), u(i+1|i), . . . , u(i+N |i)}[1] that
satisfies a set of constraints

Eixi + FiUi ≤ di , (2)

where (Ei, Fi) are time-varying matrices and di is a time-
varying vector of proper dimensions. Let the set of solutions
be

Wi , {(xi,Ui) |Eixi + FiUi ≤ di} . (3)

An MPC scheme classically chooses a sequence Ui that
minimizes an objective function [4], and its first element
u(i|i) = κ is applied to the system. Two useful projections
of Wi are therefore:

(Wκ)i , {(xi, κ) | ∃ Ui s.t. (xi,Ui) ∈ Wi ∧ u(i|i) = κ} ,
(4)

and
Xi , {xi | ∃ Ui s.t. (xi,Ui) ∈ Wi} . (5)

With these sets, we can define strong recursive feasibility in
the following way:

Definition 1 (Strong Recursive Feasibility [12]): The
MPC scheme is strongly recursive feasible if and only if ∀i

∀ (xi, κ) ∈ (Wκ)i , xi+1 = Ai, xi +Biκ ∈ Xi . (6)

The sets W , Wκ and X and Definition 1 are represented in
Figs. 4 and 5. By definition, these sets are convex polytopes
[21]. In our case, they also happen to be closed. Thanks to
these properties, it is sufficient to check property (6) only on
the vertices of Wκ, as can be seen on Fig. 5.

Fig. 4: The polytope W , defined in (3), and its projection
Wκ defined in (4).

III. NUMERICAL EVIDENCE OF STRONG RECURSIVE
FEASIBILITY

The number of vertices of these polytopes is finite, but
enumerating all of them from definition (3) and (4) is

1the double subscript notation (i + k|i) indicates a prediction k steps
ahead from time i



Fig. 5: Strong Recursive Feasibility (Def. 1).

actually an NP-hard problem [22]. Various algorithms and
approaches exist, e.g. [23], [24], [25]. We are going to use
here a simple randomized approach. The method we propose
is based on the observation that the simplex method for
Linear Programming (LP) always terminate on a so-called
basic solution, which is actually a vertex [26]. We propose
therefore to solve LPs of the form

min
xi,Ui

γT
[
xi
Ui

]
s.t.

[
Ei Fi

] [xi
Ui

]
≤ di ,

(7)

for randomly chosen directions γ, which will provide a
random selection of vertices of Wi. Each vertex found in
this way is projected in (Wκ)i and property (6) is checked
simply verifying that the following LP

min
Ui+1

ψTUi+1

s.t. Ei+1 (Axi +Bκ) + Fi+1Ui+1 ≤ di+1

(8)

has a solution for any direction ψ, chosen arbitrarily.

IV. DYNAMICS OF WALKING

The horizontal motion of the Center of Mass (CoM) c ∈
R2 is linearly related to the Center of Pressure (CoP) p ∈ R2

when walking on a flat ground with constant height [3]:

c̈ = ω2 (c− p) (9)

where ω2 = g/h, h is the height of the CoM above the
ground and g is the norm of the gravity vector. This assumes
zero rate of change of centroidal angular momentum.

Since contact forces with the ground are unilateral, the
CoP is always constrained within the support polygon P
[27]:

p− sj ∈ P , (10)

where sj ∈ R2 is the jth footstep on the ground. The CoM
position is constrained to a closed convex region C due to
the maximal leg length of the robot [28]:

c− sj ∈ C . (11)

Biped robots should not cross their legs while walking. The
position of the (j+1)th footstep with respect to the position

of the jth footstep is therefore restricted to a region Sj where
the legs do not cross:

sj+1 − sj ∈ Sj . (12)

The robot is said to be 0-step capturable [19] when it can
stop without having to make any further step. We enforce this
situation at the end of the prediction horizon by introducing
the following terminal constraint:

ξN = pN ,

ξ̇N = 0 ,
(13)

where ξ ∈ R2 is the Capture Point defined as:

ξ = c+ ω−1ċ . (14)

Note that the constraints (10)-(11) and (12) are time varying
due to the introduction of the step position sj .

V. PROBLEM FORMULATION

In both horizontal coordinates x and y, the motion of the
CoM c of a legged robot is commonly modeled as a triple
integrator [29]:

ĉi+1 =

1 T T 2/2
0 1 T
0 0 1

 ĉi +

T 3/6
T 2/2
T

 ...
c i , (15)

where T is the sampling time, ĉi = (ci, ċi, c̈i) and ĉi+1 =
(ci+1, ċi+1, c̈i+1) are two consecutive states, and

...
c i is the

CoM jerk. Thus, the CoM motion state is

xi =

[
ĉxi
ĉyi

]
∈ R6 . (16)

By evolving the state (16) N -times following the dynamics
(15), we obtain:

Ĉ = Āc xi + B̄c (U...
c )i (17)

which relates the sequence Ĉ ∈ R6N of N CoM position
in x and y with a sequence U...

c ∈ R2N of N CoM jerk
in x and y. The same state evolution can be applied to the
relation (9):

P̂ = Āp xi + B̄p (U...
c )i (18)

where P̂ ∈ R2N describes the evolution of the CoP position
and (Āc, B̄c) and (Āp, B̄p) are described in the Appendix
VIII. Similar relationship is applied to the selection of the
footsteps as

Si = Vc sc + Vf (Us)i (19)

where sc ∈ R2 is the current footstep on the ground,
Us ∈ R2m is a sequence of future footstep positions and
(Vc, Vf ) are cyclic time-varying matrices (see Appendix
VIII) that determine which foot is on the ground at what
time. Equations (17)-(18)-(19) are used to formulate the
time-varying constraints

(10) ∧ (11) ∧ (12) ∧ (13) (20)



in the linear form as (2) where

Ui =
[
(U...

c )i (Us)i
]T

. (21)

The set of constraints is used to investigate a numerical
evidence that the recursive feasibility is actually guaranteed
during the critical time transition when a new step appears
at the end of the predicted horizon. We indicate the discrete
time instants before and after the appearance of a new
predicted step at the end of the finite horizon respectively
t and t+ 1. This critical time transition is shown for time t
in Fig. 1 and for t+ 1 in Fig. 3.

VI. EVALUATION OF RANDOMLY SELECTED VERTICES

The parameters of our legged robot were selected accord-
ingly with the kinematics of the robot HRP-2 [30]. The
constraints set (10)-(11)-(12) were defined with respect to the
current footstep position, which in our case can be chosen
arbitrarily: we chose sc = st = (0, 0). The vertices in (Wκ)t
were found with the linear programming problem (7) with
the set of constraints (Et, Ft, dt). Instead of projecting each
solution Wt onto (Wκ)t, it was decided to set to zero the
entries of γ that do not multiply xt or κ and to choose
randomly the others. Each new vertex was determined to
be unique or a duplicate of the ones found before. The
finite number of vertices at time t were used to check
property (6) with the LP (8) with the set of constraints
(Et+1, Ft+1, dt+1).

A. Results

The choice of robot’s model and constraint parameters is
summarized in Table I. Three millions vertices were found
with (7). Within the set of 3 million vertices, many of them
were duplicates. Without repetitions, the total number of
vertices was 180. In Fig. 6, after ≈1.8 million randomly
found vertices, we found only duplicates of the 180 vertices.
Thus, the search of the finite number of vertices in (Wκ)t
was concluded. Successively, the LP (8) had a solution for
all 180 vertices with the constraints at time t+1. MATLAB
R2016a was used to run both linear programming problems
(7)-(8) with the linprog function (simplex method).

TABLE I: Robot’s Parameters

Parameter Symbol Value Unit

Height of the CoM h 0.8 [m]

Feet dimesions (fl, fw) (0.24, 0.14) [m]

Leg length L 0.3 [m]

Feet separation δ 0.2 [m]

Step duration ts 0.8 [s]

Finite Horizon Dimension N 16 −
Number of predicted steps m 2 −

Sampling time T 0.1 [s]

0 500 1000 1500 2000 2500 3000

random sampled vertices (x,κ) in thousands

40

60

80

100

120

140

160

180

n
o
t
re
p
ea
te
d
ve
rt
ic
es

(x
,
κ
)

0 1000 2000 3000

175

180

185

Fig. 6: In a set of 3 million randomly selected vertices
(xt, κ) ∈ (Wκ)t, only 180 were unique.

VII. CONCLUSIONS

A terminal constraint at the end of the prediction horizon
guarantees recursive feasibility [10]. We favor a capturable
terminal constraint to ensure passive safety of the robot in
a dynamic environment [8]. In the case we do not want the
robot to stop, we have to change the capturable terminal
constraint region periodically in order to consider new steps.
And with such sudden change of the terminal constraint,
recursive feasibility is not guaranteed anymore.

In this paper we proposed a numerical evidence that shows
recursive feasibility is actually guaranteed even when a new
step is added in the prediction horizon. In our case the set of
constraints for walking is linear and defines a close convex
polytope, Section IV. Thanks to these properties we verified
property (6) only for the vertices of the polytope when a new
step is added in the prediction horizon. Despite the sudden
change of the terminal region set, by construction the MPC
for legged robot is actually strongly recursive feasible.

Aspects that can lead to further research are: (i) compare
our method with one of the algorithms in the literature, e.g.
the double description method [24], (ii) investigate whether
the MPC scheme loses the strong recursive feasible property
due to an inappropriate choice of one (or more) of these three
parameters: the length of the finite horizon N , the number of
predicted steps m or the duration of each predicted step ts.
For example, the MPC problem could fail to find a solution
when the change of the terminal constraint region is close
to the present time (small N ) or when it is suddenly on the
next predicted step (m = 1).

VIII. APPENDIX

From Section V, the matrices (Āc, B̄c) are:

Āc =


A
A2

...
AN

 , B̄c =


B 0 . . . 0
AB B . . . 0

...
...

. . .
...

AN−1B AN−2B . . . B

 (22)



and (Āp, B̄p) are:

Āp =


CA
CA2

...
CAN

 , B̄p =


CB 0 . . . 0
CAB CB . . . 0

...
...

. . .
...

CAN−1B CAN−2B . . . CB


(23)

where

A =

[
A0 0
0 A0

]
, A0 =

1 T T 2/2
0 1 T
0 0 1

 ; (24)

B =

[
B0

B0

]
, B0 =

T 3/6
T 2/2
T

 (25)

and
C =

[
C0 0
0 C0

]
, C0 =

[
1 0 − 1

ω2

]
. (26)

And

V0 =



1
...
1
0
...
0
0
...
0


∈ RN×1 , V1 =



0 0
...

...
0 0
1 0
...

...
1 0
0 1
...

...

0 1
. . .


∈ RN×m (27)

are cyclic time-varying matrices that compose (Vc, Vf ) as
follows:

Vc =

[
V0 0
0 V0

]
, Vf =

[
V1 0
0 V1

]
(28)

in which the ones determine which foot is on the ground at
what time [2].
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