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Abstract— This paper proposes a method to learn from
human demonstration compliant contact motions, which take
advantage of interaction forces between workpieces to align
them, even when contact force may occur from different direc-
tions on different instances of reproduction. To manage the un-
certainty in unstructured conditions, the motions learned with
our method can be reproduced with an impedance controller.
Learning from Demonstration is used because the planning of
compliant motions in 3-D is computationally intractable. The
proposed method will learn an individual compliant motion,
many of which can be combined to solve more complex tasks.
The method is based on measuring simultaneously the direction
of motion and the forces acting on the end-effector. From these
measurements we construct a set of constraints for motion
directions which, with correct compliance, result in the observed
motion. Constraints from multiple demonstrations are projected
into a 2-D angular coordinate system where their intersection
is determined to find a set of feasible desired directions, of
which a single motion direction is chosen. The work is based
on the assumption that movement in directions other than the
desired direction is caused by interaction forces. Using this
assumption, we infer the number of compliant axes and, if
required, their directions. Experiments with a KUKA LWR4+
show that our method can successfully reproduce motions which
require taking advantage of the environment.

I. INTRODUCTION

Many assembly tasks require high precision. Humans man-
age such tasks through taking advantage of interaction forces
caused by contacts between objects. These kind of motions
are often called compliant motions. This paper looks into the
question how compliant motions can be programmed easily.
An example of compliant motion in workpiece alignment is
depicted in Fig. 1.

To perform compliant motions, the interaction forces be-
tween objects must be limited. The simplest method for
this is hybrid force-position control which, however, requires
switching if the contact configuration changes and often
exhibits force overshoot at contact transitions [1]. To alleviate
this, it is beneficial to be able to use the same controller for
both free space and contact motions. Impedance control is a
natural choice for this [2]. An impedance controller features
a virtual spring with adjustable stiffness, which allows a
controlled amount of deviation from the planned trajectory.

Impedance control has the drawback that it makes motion
planning difficult. Preimage planning [3] can be used for
planning compliant motions in two dimensions. However, in
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Fig. 1: Compliant motions can be used to align workpieces.

3-D preimage planning has been shown to be computation-
ally infeasible [4]. There is an on-going interest in developing
methods for motion planning under uncertainty [5].

In contrast to automatic planning, learning from demon-
stration (LfD) [6] can be used to transfer skills from a
human expert to a robotic system. Most LfD methods try
to reproduce any kinds of motions, and use tools such as
dynamic movement primitives (DMP) [7] or hidden semi-
Markov models [8]. Recently, there has been research to use
DMP for assembly and workpiece alignment as well [9].
However, as DMP’s use attractors to form the trajectory, they
cannot take full advantage of geometries such as in Fig. 1,
where contact force from either side could be used to guide
the workpiece into the correct place.

We propose a method for learning compliant assembly
motions from demonstrations. The intuition of our method
stems from geometry: there is always a certain range of
angles from which a human can push an object to make
it slide along a surface. We use kinesthetic teaching to
collect the demonstrations. From these demonstrations, both
position and force data are recorded. From one or more
recordings we learn the direction which will lead the end-
effector through the motion, either directly in free-space or
in contact. In addition, we learn the necessary compliant axes
for performing the current task.

To allow the recording of forces in kinesthetic teaching,
the robot must be equipped with a force/torque sensor and
have a gravity compensation mode. The main application of
our method is an assembly task consisting of phases and we
assume that each phase can be defined by a motion with a
single desired motion direction, possibly with directions of
compliance to facilitate sliding in contact. Consequently, our
method can be viewed as a primitive in a complex task. The
combination of primitives for more complex tasks is outside
the scope of this paper, but there are numerous publications
on the topic (for example [10]).

The biggest advantage our method has over traditional LfD
methods is the aforementioned ability to take advantage of
the current task’s geometry. With suitable workpiece design,
this will greatly increase the the robustness of the method.
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Force measurement is only required when collecting the
demonstrations, and the sensor can be removed for reproduc-
tion since there is no force feedback. It is not necessary to
know the exact location or orientation of the target workpiece
due to the robustness against position errors, and therefore
vision is not strictly required. This enables the use of our
method in more difficult and unpredictable environments
than, for example, DMP for workpiece alignment.

Our earlier work [11] considered a similar problem under
the assumption that the forces exerted by human during
demonstration can be directly measured, as is the case for
example in teleoperation. In contrast, this work provides a
solution to a more general problem where only the interaction
forces can be measured.

Section II reviews related work in use of compliant mo-
tions and LfD. In Section III we explain the model used
for learning the direction of motion and compliant axes in
various scenarios. Next, experiments with a KUKA LWR4+
robot arm and their results are presented in Section IV.
Finally, the results are discussed and future work is outlined
in Section V.

II. RELATED WORK

The benefits of impedance control and compliant motions
in assembly tasks have been known for a long time [12] and
are still under active study [13]. However, most industrial
robots sold today are still not equipped to perform impedance
control [14]. In industrial settings, passive compliance [15]
is often used to limit forces at time of initial contact.
In contrast, this paper considers active compliance using
impedance control in order to have adjustable compliance.
Similar idea of motions constrained by physical restraints
has been applied to manipulating articulated objects [16] by
learning task dynamics. In contrast, in this paper we aim to
identify a control strategy which is applicable over a variety
of dynamics.

There are a few approaches for learning compliance pa-
rameters. Kronander and Billard [17] proposed learning them
from human demonstration by halting a trajectory demon-
stration at intervals and using direct human demonstration
of desired compliance by wiggling the robot. Later they
developed a method for also increasing the compliance by
gripping the robot tighter [18]. However, wiggling a tool
which is in contact is not physically feasible and therefore
the method is not suitable for in-contact tasks as considered
in this paper. In addition, our proposed method estimates the
parameters from demonstrations without extra halting.

Automatic learning of the stiffness matrix has been pro-
posed by Carrera et al. [19] and Rozo et al. [20]. However,
Carrera et al. used DMPs for the learning. We observed
that DMPs cannot reproduce motions where at a stage of
the motion there are multiple correct directions of motion,
such as inserting a tool to a funnel. Rozo et al. learned the
stiffness matrix from positional deviation using least squares
estimation in a cooperative assembly scenario. The main
difference between our method and Rozo et al. is that we
require the interaction forces to complete the task, whereas in

Fig. 2: Force/torque sensor configuration, the position where
external force by the human teacher FextFextFext is applied and the
forces which sum up to the reading of the force/torque sensor.

their work the forces were an unnecessary consequence of the
collaborative partner’s actions. In our previous publication
[11] we assumed that it is possible to directly measure the
forces initiated by the human teacher, but in this paper we
solve the more general case where only the interaction forces
between the tool and the environment can be observed.

III. METHOD

We assume that a force/torque sensor is mounted between
the location where the human holds the robot and the end-
effector. One possible setup is illustrated in Fig. 2. The
force/torque sensor measures the forces between the sensor
and the contact point in a Cartesian coordinate system with
compensation of the gravity force of the tool. Then when
sliding the end-effector along a surface, the force measured
by the force/torque sensor FmFmFm is the combination of normal
force of the surface FNFNFN , Coulomb friction working against
the motion, and acceleration of the end-effector aaa,

FmFmFm = FNFNFN + |µFNFNFN | (−v̂âvâva) +maaa (1)

where v̂âvâva is the direction of tool motion. Throughout this
paper, we will use the circumflex notation to denote normal-
ized version of a vector. The forces are defined in the world
coordinate system and obtained via forward kinematics. We
assume that the demonstrations are performed with almost
constant speed, in which case we can ignore the acceleration
term maaa.

Assuming the human demonstrator exerts a constant force
and the system is in a stationary case where the velocity
is constant, a particular motion direction v̂âvâva can result from
any of a set of force directions presented as unit vectors v̂d̂vd̂vd,
which we call the desired directions (see Fig. 2). The set of
desired directions, v̂d̂vd̂vd, include all directions between −F̂m−F̂m−F̂m
and v̂âvâva, because a force applied along any of those would
cause sliding in the direction v̂âvâva.

Before considering how v̂d̂vd̂vd can be estimated from demon-
strations, we note that we assume that a complex task can
be divided into simple motion segments, each of which
has a single desired direction of motion. Applying force
to end-effector in this desired direction will bring it to
the desired position of the current motion, either by free-
space motion or sliding along a surface leading towards
the position. This paper does not consider the problem of



(a) Human variation in 2-D (b) P in 3-D

Fig. 3: Visualizations of how (a) the error εεε from (2) is added
to both F̂̂F̂F and v̂âvâva and (b) how the polyhedron P from (3) is
constructed at each time step.

dividing a demonstration into segments and we assume that
the segmentation can be performed.

A. Learning desired direction

We define the desired position of a motion as a point or a
set of points where the demonstrator wants the end-effector
to move to. The desired direction of motion v̂∗d̂v

∗
d̂v
∗
d , chosen from

the set of possible desired directions v̂d̂vd̂vd, is a direction vector
in 3-D Cartesian space. If the robot applies a force in this
direction, the end-effector will move towards the desired
position, either by free-space motion or by sliding along a
surface. The whole process of finding v̂∗d̂v

∗
d̂v
∗
d is formulated in

Algorithm 1.
From Fig. 2 and (1) we observe that in the direction

of motion, v̂d̂vd̂vd is constrained by v̂âvâva and −F̂mF̂mF̂m. In addition,
we consider that a human can not demonstrate a desired
trajectory perfectly, resulting in small differences between
the demonstrated v̂âvâva and human intent. Because contact
constrains the motion, this needs to be taken into account
only perpendicular to v̂âvâva. We define the maximum error εεε
such that it forms an angle of α degrees with the plane
spanned by unit vectors v̂âvâva and F̂̂F̂F ≡ −F̂mF̂mF̂m, as illustrated
in Fig. 3a. Formally, we write

εεε = tanα
F̂̂F̂F × v̂âvâva
|F̂̂F̂F × v̂âvâva|

(2)

Now for each point kkk along the demonstrated trajectory,
we can construct a polyhedron P consisting of the following
vectors commencing from origin measured at point kkk:

Pk =


v̂âvâva + εεε
v̂âvâva − εεε
F̂̂F̂F − εεε
F̂̂F̂F + εεε

 (3)

The polyhedron is illustrated in Fig. 3b. P represents the set
of possible desired directions of motion v̂d̂vd̂vd of a single point
in 3-D. This is described in Algorithm 1 on row 2.

A small value of measured force FmFmFm signifies free space
motion and renders the result of normalization in (2) volatile.
We detect such cases using a manually chosen threshold for
FmFmFm. When the force threshold is not met, we construct the
polyhedron P from a number of points on a circle with

Algorithm 1 The whole algorithm to calculate desired
direction from demonstrations

1: Find R which rotates v̄āvāva to positive z axis
2: for each point kkk do
3: Calculate P from (2) and (3)
4: Rotate P : Pr = RP
5: Call Algorithm 2 for each ppp in Pr to compute Θ
6: end for
7: G(i, j) = 0 ∀ i, j
8: for Each cell (i, j) in G do
9: for Each Θ do

10: if (i, j) inside Θ then
11: G(i, j) = G(i, j) + 1
12: end if
13: end for
14: end for
15: gi,j indices of vector median of max(G)
16: for each Θ do
17: if gi,j inside Θ then
18: add Θ to Θ∗

19: end if
20: end for
21: Compute intersection Φ of all Θ∗

22: Calculate Chebyshev center φ∗φ∗φ∗ of Φ
23: Call Algorithm 3 with φ∗φ∗φ∗ to compute v̂∗des−rv̂∗des−rv̂∗des−r
24: Rotate back: v̂∗d̂v

∗
d̂v
∗
d = R−1v̂∗des−rv̂∗des−rv̂∗des−r

center at v̂âvâva, perpendicular to it, and with radius εεε. With
this addition, our method covers pure free space motion as
well.

To find the set of feasible desired directions for the
whole motion, we must satisfy all the constraints through
the trajectory represented by n polyhedra P . To simplify the
computation, we transform the direction vectors to a 2-D
angular space. Thus we project the 3-dimensional polyhedra
into 2-dimensional polygons. This is performed by calling
Algorithm 2 with polyhedra P .

Algorithm 2 Conversion from Cartesian 3-D vector ppp to
angular 2-D vector ΘΘΘ.

1: Normalize ppp
2: r = arccos(pz)
3: γ = arctan 2(py, px)
4: θx = r cos(γ)
5: θy = r sin(γ)

To avoid computational problems going from −π to π
radians in the angular coordinate system, we rotate the
vectors before conversion such that the resulting angles
are centered around zero. To do this, we find a rotation
matrix R such that it rotates the mean direction of motion
of a demonstration v̄āvāva to match with the positive z axis
using Rodrigues formula. After performing this on row 3
in Algorithm 1, we can call Algorithm 2 with the result.
Then we form a rectangle Θ from the four (θx, θy) pairs



calculated with Algorithm 2 describing the constraints in the
angle coordinate system, as on row 4 in Algorithm 1. These
points are the angular coordinates of polyhedron P .

To find an intersection of these n rectangles, outliers must
be rejected. We address this by determining inliers by voting.
First we construct a voting grid, matrix G of zeros with a
chosen resolution, for example 1 degree, as on row 6 in
Algorithm 1. The indices of this matrix relate to values in
the angular coordinate system. Then for each element in G,
we check if the element, according to its indices, is inside
each polygon Θ. If it is, we add 1 to the value of the element.
These are rows 7–13 in Algorithm 1. The result is a matrix G
with one or more maxima. An example calculated from two
perpendicular funnel demonstrations is illustrated in Fig. 4.

Fig. 4: Heatmap illustration of the voting grid depicting the
polygon intersection used for outlier rejection. The colormap
unit describes the number of Θ within which each pixel lies.

If there are more than one maximum values, we choose
their vector median [21] gij , as described on rows 14–15
in Algorithm 1. We then loop over polygons Θ again and
calculate the intersection of the set of polygons Θ∗ in which
the indices of gij lie, as shown on lines 16–20 in Algorithm
1. We call the intersection polygon Φ. It describes the set
of feasible desired directions v̂d̂vd̂vd in the angular coordinate
system. To find a single direction, v̂∗d̂v

∗
d̂v
∗
d , we need to choose the

corresponding angular system point φ∗φ∗φ∗ from Φ. We choose
φ∗φ∗φ∗ as the Chebyshev center of Φ, i.e. the center of largest
circle inscribed in the polygon [22].

Finally, we need to convert φ∗φ∗φ∗ to a 3-dimensional vector
v̂∗des−rv̂∗des−rv̂∗des−r. This occurs on row 23 in Algorithm 1 and is
presented in detail in Algorithm 3. The variable s is needed
to deduce the correct sign for the resulting vector, since
arctan 2 can produce this information whereas the ratio of p̂x
and p̂y cannot. The result is a unit vector, but only directions
are important in our application.

We still need to rotate v̂∗des−rv̂∗des−rv̂∗des−r back to the original coordi-
nate system, by calculating v̂∗d̂v

∗
d̂v
∗
d = R−1v̂∗des−rv̂∗des−rv̂∗des−r. Now the result

is the direction along which a force must be applied to guide
the end-effector to the desired position.

If we have multiple demonstrations, the method works
exactly the same way. The polygons Θ are concatenated and
an intersection is calculated. Difference between demonstra-
tions simply makes Φ smaller. If there are multiple viable
approach directions, all of them should be demonstrated to

Algorithm 3 Conversion from angular 2-D vector ΘΘΘ to
Cartesian 3-D unit vector p̂̂p̂p.

1: s = sign(arctan 2(θy, θx))

2: r = cos
(√

θ2x + θ2y

)
3: a =

θy
θx

4: p̂z = arccos(r)

5: p̂x = s
√

1−p̂2z
1+a2

6: p̂y = s · a · p̂x

allow maximal utilization of environment in reproduction.
For example, in the case of the funnel, the demonstrations
should come from parallel directions for the method to learn
to slide along any side. If two demonstration from nearly
same directions are given, the method will assume that this
is the only possible direction to approach from and can only
replicate such motions. No more than one demonstration
from each approach direction is required if the demonstration
is well performed.

B. Learning axes of compliance

To successfully complete a motion, the compliant axes
need to be identified. If the motion occurs only in free space,
no compliance is required. In-contact tasks require at least
one compliant axis. Certain tasks, such as inserting a tool to a
funnel, require a second compliant axis to take full advantage
of the funnel’s geometry and allow sliding along any side of
the funnel. We assume that if compliance is required, the
axis should be totally compliant.

We first observe that the compliant axes must be per-
pendicular to the desired direction v̂∗d̂v

∗
d̂v
∗
d . This is due to our

definition of no stiffness along a compliant axis—the end-
effector would not move in that direction even if commanded.
The key idea is that if there is movement along other
directions besides the desired direction, this movement must
be generated by interaction forces. When the environment
interaction is causing forces on the end-effector, compliance
is needed to reproduce the demonstrated motions. In contrast,
if only force but no motion is measured in a certain direction,
this direction must be stiff to avoid instability.

To exploit this idea, we first calculate the mean direction
of actual motion v̄āvāva separately for each demonstration used
in calculation of corresponding v̂∗d̂v

∗
d̂v
∗
d . Then we rotate all v̄āvāva

such that in the new coordinate system v̂∗d̂v
∗
d̂v
∗
d is along the z-

axis, after which we use Algorithm 2 to convert the set of
v̄āvāva to angular coordinates φaφaφa. As a result, the values φaφaφa will
be within a unit circle, where origin represents v̂∗d̂v

∗
d̂v
∗
d and the

values on the unit circle are directions perpendicular to v̂∗d̂v
∗
d̂v
∗
d .

As we assume compliance is required in the direction where
we observe motion without human initiative, we can see that
the direction of compliance should be towards φaφaφa and lie on
the unit circle to fulfil the orthogonality requirement. This is
illustrated in Fig. 5.

To choose the correct number of compliant axes, we need
to measure how well each model (number of compliant axes)
explains the observations, but also discourage the choice



(a) 2 compliant axes (b) 1 compliant axis

Fig. 5: Unit spheres in the coordinate system for determining
the compliant axes. Origin (small black circle) represents v̂∗d̂v

∗
d̂v
∗
d

in the angular coordinates, green crosses are the correspond-
ing φaφaφa of each demonstration, blue line is the linear model
u and red cross the identified compliant direction when the
model with 1 compliant axis is chosen.

of an overly complicated model. We take our inspiration
from the Bayesian Information Criterion (BIC) [23], which
is defined

BIC = ln(n)k − 2 ln(L) (4)

where n is the number of data points, k the number of
parameters and L the likelihood of a model.

We assume that the error a human makes while demon-
strating a task is normally distributed with variance σ.
Therefore we calculate the likelihoods for each model from
a 2-D normal distribution

Li =
∏
j

N
(
εi,j | 000,

(
σ 0
0 σ

))
. (5)

where εi,j is the error of data point j in model i.
For the case of no compliant axes (i.e. free space motion)

under no errors φaφaφa = 000. Therefore, the error is defined ε0ε0ε0 =
φaφaφa. With a single compliant axis, the error is the distance
from φaφaφa to a line uuu, illustrated in Fig. 5, which maximizes
the likelihood of φaφaφa and passes through the origin. Because
normal distribution is isotropic, we can set ε1ε1ε1 = [uTuTuTφaφaφa 0].
Finally, 2 compliant axes perfectly explain any data as the
model describes the linear combination of two lines, and
therefore we set ε2ε2ε2 = [0 0].

We calculate the BIC for each of the models and choose
the one with lowest BIC. If the model with a single compliant
axis is chosen, we choose the direction of compliance as the
intersection between uuu and the unit circle, marked with red
x in Fig 5. If no compliance is needed, a position controller
is sufficient. If two compliant axes are needed, any pair of
vectors which form an orthonormal base with v̂∗d̂v

∗
d̂v
∗
d are adequate

as the compliant axes. The whole process is summarized in
Algorithm 4.

It should be noted that the proposed approach does not
follow the typical use of BIC which is only applicable when
n � k and the variance in the likelihood is calculated
from the data. Instead, we assume that the uncertainty

of demonstrations can be estimated beforehand, making it
possible to use the proposed formulation.

Algorithm 4 Finding the required number of compliant axes
and their directions

1: Find R such that Rv̂d̂vd̂vd = ẑ̂ẑz
2: Calculate set of mean actual directions v̄āvāva
3: Rotate v̄arv̄arv̄ar = Rv̄āvāva
4: Apply Algorithm 2 to convert v̄arv̄arv̄ar to angular coordinates
φaφaφa

5: Calculate L0 = N (φaφaφa|000,Σ)
6: Calculate L1 = N (ε1ε1ε1|000,Σ), where ε1 = [uTuTuTφaφaφa 0]
7: Calculate L2 = N (000 |000,Σ)
8: Calculate BIC (4) of L0, L1 and L2. Choose the model

with lowest BIC value.

C. Reproduction

An impedance controller is used for the reproduction. It
is a feedback controller defined as

FFF = K(xxx∗ − xxx) +Dvvv + fdynfdynfdyn, (6)

where xxx∗ is the desired position, xxx the current position,
K a gain matrix, Dvvv a linear damping term and fdynfdynfdyn the
feed-forward dynamics of the robot including gravity. The
reproduction is performed similarly as in [11]. The stiffness
is set according to K = RV RT , where V is a diagonal
matrix defining the stiffness and the number of compliant
axes. R defines the directions of compliant axes and is
constructed from v̂∗d̂v

∗
d̂v
∗
d and the compliant axes discovered with

Algorithm 4. The desired positions for each time step are
calculated in a feed-forward manner from v̂∗d̂v

∗
d̂v
∗
d and the desired

velocity v as
xxx∗t = xxx∗t−1 + v̂∗d̂v

∗
d̂v
∗
dv∆t (7)

where ∆t the sample time of the control loop.

IV. EXPERIMENTS AND RESULTS

The robot used for the experiments was a KUKA LWR4+
lightweight arm. The control law for the Cartesian impedance
control of the KUKA LWR4+ through KUKA Fast Research
Interface (FRI) [24] is

τττ = JT (diag(kFRIkFRIkFRI)(x
∗x∗x∗−xxx)+diag(dFRIdFRIdFRI)vvv+FFRI)+fdynfdynfdyn

(8)
where diag(kFRIkFRIkFRI) is a diagonal matrix constructed of the
gain values of kFRIkFRIkFRI . As in [11], we implemented our
controller through the FFRIFFRIFFRI by setting kFRIkFRIkFRI = 0 and
FFRI = K(xxx∗ − xxx), getting a controller equal to Eq. (6)
where fdynfdynfdyn is managed by the KUKA’s internal controller.
We set the damping value through dFRIdFRIdFRI to 0.7N ·s

m , the
stiffness of the compliant axes through our own controller to
0 and the non-compliant axes to 500 N

m for safety reasons.
To test our method, we built two different test setups. First

one is a valley consisting of two aluminium plates placed
in 90 degrees angle with each other. The second one is a
plastic funnel with curved slopes. In addition, we tested the



(a) Robot and valley (b) Funnels

Fig. 6: Our test equipment, the KUKA LWR4+ lightweight
arm, the valley setup, and the two funnels, curved and
straight.

reproduction on another funnel, which had straight slopes.
All of the hardware we used is presented in Fig. 6.

In practice, due to noise in the demonstration from human
and measurement uncertainty, averaging over a chosen num-
ber of time steps to compute P of (3) produces more stable
results. To filter the noise, we chose to average over 20 time
steps of original 100Hz measuring frequency, which meant
sampling P in 5Hz. We used a manually estimated maximum
error angle of 20 degrees for human demonstration for value
of α in (2).

A. Desired motion direction

To validate that we can learn the desired direction from
both curved and straight surfaces and multiple directions,
we executed a number of experiments on the physical setups
presented in Fig. 6. We also wanted to study the number of
demonstrations required for learning v̂∗d̂v

∗
d̂v
∗
d . Unfortunately, no

alternative methods exist in the literature that could be used
for comparison, the closest alternative being our earlier work
[11] which assumes direct measurement of demonstrator
forces.

To better illustrate the process, we drew the polyhedra P
from (3) at intervals in 3-D in Fig. 7. The trajectory is from
a funnel setup, which explains the curved shape. The form of
Fig. 3b is distinguishable and it can be seen how the direction
of P changes over time.

Fig. 7: The polyhedra P drawn to a trajectory on a funnel
demonstration. Units are in m.

(a) Valley setup (b) Funnel setup

Fig. 8: 2-D polygons Θ (the axes representing θx and θy)
of two demonstrations: (a) down different sides of the valley
and (b) perpendicularly into the funnel. The red and blue
rectangles represent the Θ of separate demonstrations, and
the black polygon is the set of desired directions in angular
coordinate system, Φ.

The intersection calculations are performed in 2-D on the
polygons Θ calculated in Algorithm 2 and concatenated from
multiple demonstrations. Figure 8a shows two trajectory
demonstrations performed by sliding along different sides of
the valley. The difference in the orientation of the polygons is
due to the normal forces being in opposite directions, there-
fore constraining the final intersection Φ. Figure 8b shows
two perpendicular funnel demonstrations. Now we can see
that Θ are almost perpendicular. The funnel demonstrations
were briefer than the valley, which explains that there are less
Θ in Fig. 8b, but still the algorithm finds a clear intersection
Φ.

We also wanted to verify our assumption that one demon-
stration from each viable direction is enough to calculate
v̂∗d̂v
∗
d̂v
∗
d . To do this, we performed 32 demonstrations of the

funnel motion, such that all the demonstrations were either
perpendicular or opposite to each other. In this case every 4th
demonstration came from the same direction. We assumed
that in the funnel demonstration, the ground truth of v̂∗d̂v

∗
d̂v
∗
d is

directly downwards when the funnel is upright. Then we
divided the demonstrations into groups of 2, 4, 8 and 16
demonstrations, calculated the v̂∗d̂v

∗
d̂v
∗
d and it’s error. Box plot of

the results is in Fig. 9. We can see that the error was below
our assumption of human error already on 2 demonstrations
and did not decrease when more demonstrations were added.
Therefore we conclude that one demonstration along each
possible trajectory is enough to learn a valid v̂∗d̂v

∗
d̂v
∗
d .

B. Degrees of freedom

To verify our method for finding the degrees of freedom,
we performed 30 demonstrations of free space motion with
a straight downward trajectory and 30 demonstrations of
sliding down the valley. In free space motion zero compliant
degrees of freedom are required. Sliding down the valley
requires one compliant degree of freedom, since sliding is
required but only in a single direction. The funnel demon-
stration must be reproducible from anywhere within the
projection of the funnel, and therefore two compliant degrees
of freedom are required. The resulting BIC values can be
seen in Fig. 10a for free space motion, Fig. 10b for the



Fig. 9: Box plot of the error angle with different number of
demonstrations used to calculate v̂∗d̂v

∗
d̂v
∗
d . The edges of the blue

boxes are the 25th and 75th percentiles of the data.

(a) BIC values for free space motion

(b) BIC values for the task of sliding to the bottom of the valley

(c) BIC values for insertion to funnel

Fig. 10: BIC values for three different experiments

demonstrations down the valley and Fig. 10c for the funnel.
We can see that our algorithm performs the classification
correctly. The choice of σ in (5) is important for these results.
We used the value σ = 0.03, which corresponds to standard
error deviation of approximately 10 degrees in the human
demonstration.

To study the learning of a challenging motion, we per-
formed 30 demonstrations of sliding along the side of the
valley. Unlike the down the valley motion, which in our
setup would work even with 2 degrees of freedom, strictly
one degree of freedom aligned vertically was required for a
successful reproduction. Figure 11 shows two combinations
of two demonstrations in the same coordinate system as
in Fig. 5. In Fig. 11a the actual directions vavava of the
demonstrations are well aligned and the model with 1
compliant axis is correctly identified. However in Fig. 11b
the demonstrations are not well aligned even if the human
demonstrator attempted to demonstrate the same direction
both times and therefore our algorithm detects that the model

(a) Valid demonstration (b) Poor demonstration

Fig. 11: Two demonstrations of sliding along the side of the
valley depicted on each figure. Same coordinate system as
in Fig. 5.

with 2 compliant axes better explains the data. Therefore care
must be taken when the demonstrations are given, especially
if the minimum number of demonstrations is used for the
algorithm and the motion is difficult for the human teacher
to demonstrate.

C. Reproduction

We studied the execution robustness of our method by
varying the starting positions of the motion and also by
making changes in the test setups. First our algorithm learned
v̂∗d̂v
∗
d̂v
∗
d and the model with two compliant axes using 2 perpen-

dicular demonstrations with the curved funnel. Figure 12
presents four different starting positions and setups in which
the motion was successfully reproduced with the learned
parameters. In Figs. 12a and 12b we used the same funnel
as for learning with a varying starting position. In Figs. 12c
and 12d we used the funnel with direct sides and tilted it 15
degrees. In addition, we performed successful reproductions
in both valley setups after two demonstrations, sliding down
the valley and along the side of the valley. We conclude that
our method can successfully learn the required parameters
from a small number of demonstrations to perform motions
which take advantage of the environment.

V. CONCLUSIONS AND FUTURE WORK

We showed that our method can successfully learn to
replicate assembly motions which require interaction with
the environment. A user will need to give one or more
kinesthetic demonstrations of the task using a robot with
a force/torque sensor attached between the end-effector and
the user’s grasp. The motion is fully described by the desired
direction, number of compliant axes and their directions.
The desired direction is learned using the geometric intuition
that a sliding motion is executed with a sufficient force in
any direction between the direction of motion and the sum
of normal force and Coulomb friction. The compliant axes
are learned by assuming that they must be perpendicular to
the desired direction and that all motion in other directions
besides desired direction must be caused by compliance.

The main advantage of the method compared to existing
LfD methods is that the method can learn how to take



(a) (b) (c) (d)

Fig. 12: Possible setups in which the end-effector is successfully moved to the target at the bottom of the funnel.

advantage of physical guides to align workpieces. Since most
assembly tasks can be represented as a sequence of motions,
learning a single direction together with the compliant axes is
sufficient. However, for tasks where contact force modulation
is required, other methods are more suitable.

Our method does not solve a whole assembly task. The
demonstration of a whole task must first be divided into
motion segments which can be learned with our method. The
segmentation could be performed using threshold values [13]
or machine learning methods such as Hidden Markov Models
[10]. The suitability of various segmentation approaches with
our method remains a future study.

Many assembly tasks require rotational motions such as
screwing. Therefore a natural extension for the method would
be to learn rotational motions from demonstration. This has,
to our knowledge, not been done before and we will pursue
it in our future research.
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[9] L. Peternel, T. Petrič, and J. Babič, “Human-in-the-loop approach for
teaching robot assembly tasks using impedance control interface,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on, pp. 1497–1502, IEEE, 2015.

[10] O. Kroemer, H. Van Hoof, G. Neumann, and J. Peters, “Learning to
predict phases of manipulation tasks as hidden states,” in Robotics
and Automation (ICRA), 2014 IEEE International Conference on,
pp. 4009–4014, IEEE, 2014.

[11] M. Suomalainen and V. Kyrki, “Learning compliant assembly motions
from demonstration,” in Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on, pp. 871–876, IEEE, 2016.

[12] W. Wang, R. N. Loh, and E. Y. Gu, “Passive compliance versus active
compliance in robot-based automated assembly systems,” Industrial
Robot: An International Journal, vol. 25, no. 1, pp. 48–57, 1998.

[13] A. Stolt, On Robotic Assembly using Contact Force Control and
Estimation. PhD thesis, Lund University, 2015.

[14] H. Chen and Y. Liu, “Robotic assembly automation using robust
compliant control,” Robotics and Computer-Integrated Manufacturing,
vol. 29, no. 2, pp. 293–300, 2013.

[15] S.-k. Yun, “Compliant manipulation for peg-in-hole: Is passive com-
pliance a key to learn contact motion?,” in Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on, pp. 1647–1652,
IEEE, 2008.
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