
Safe-To-Explore State Spaces: Ensuring Safe Exploration in Policy
Search with Hierarchical Task Optimization

Jens Lundell∗, Robert Krug‡, Erik Schaffernicht†, Todor Stoyanov†, Ville Kyrki∗

Abstract— Policy search reinforcement learning allows robots
to acquire skills by themselves. However, the learning procedure
is inherently unsafe as the robot has no a-priori way to predict
the consequences of the exploratory actions it takes. Therefore,
exploration can lead to collisions with the potential to harm
the robot and/or the environment. In this work we address the
safety aspect by constraining the exploration to happen in safe-
to-explore state spaces. These are formed by decomposing target
skills (e.g., grasping) into higher ranked sub-tasks (e.g., collision
avoidance, joint limit avoidance) and lower ranked movement
tasks (e.g., reaching). Sub-tasks are defined as concurrent con-
trollers (policies) in different operational spaces together with
associated Jacobians representing their joint-space mapping.
Safety is ensured by only learning policies corresponding to
lower ranked sub-tasks in the redundant null space of higher
ranked ones. As a side benefit, learning in sub-manifolds of
the state-space also facilitates sample efficiency. Reaching skills
performed in simulation and grasping skills performed on a
real robot validate the usefulness of the proposed approach.

I. INTRODUCTION

Real-time robot motion planning and control is a key
ability for autonomous robots operating in unstructured envi-
ronments. In recent years, policy search has emerged as one
of the most promising approaches to enable simultaneous
motion planning and execution. It is a branch of reinforce-
ment learning (RL) focusing on optimizing parameterized
controllers. Policy search scales gracefully to high dimen-
sions [1], but typically requires handcrafted low-dimensional
policy parameterizations to learn in as few roll-outs as
possible [2], [3], [4], [5]. In addition, policy search requires a
robot to explore its environment, an inherently unsafe process
as it can lead to dangerous situations, such as collisions with
obstacles, which might cause damage to the robot and/or
the environment. Also, in many practical applications the
number of samples needed to ensure successful skill learning
is prohibitive.

Classical approaches overcome such limitations by enforc-
ing conservative policy updates between iterations [6], [7] or
by discouraging entering parts of the state space by imposing
penalties [8]. These approaches, however, only limit the risk
of collision but cannot completely remove it. Instead, we
propose a method to implicitly form safe-to-explore state

∗Intelligent Robotics Group, Department of Electrical
Engineering and Automation, Aalto University, Finland.
{firstname.lastname}@aalto.fi
†AASS Research Center, Örebro University, Sweden.
{firstname.lastname}@oru.se
‡ Robotics, Learning and Perception lab, KTH Royal Institute of Tech-

nology, Sweden. rkrug@kth.se
This work was supported by Academy of Finland decision 314180 and

by the Swedish Foundation for Strategic Research (SSF).

Fig. 1: System setup consisting of an ABB YuMi robot and
a toy to be grasped.

spaces (STESS) that focuses exploratory actions in arbitrary
operational spaces to a collision free subset of the original
state space. This is accomplished by first decomposing a
robotic skill (e.g., reach-to-grasp movements) into prioritized
elemental tasks defined in potentially different operational
spaces of choice together with a map (i.e., a Jacobian)
from operational space to joint space. Then, a whole-body
real-time inverse kinematics scheme [9], [10] is used to
obtain the corresponding joint velocities while ensuring that
higher ranked tasks (e.g., obstacle/joint limit avoidance) are
prioritized over lower ranked movement tasks. Therefore we
can limit exploration to obey a pre-defined operational space
hierarchy. The control laws corresponding to lower ranked
movement tasks are learned via policy search.

The main contributions of this work are:

• a novel approach for ensuring safe exploration in pol-
icy search (Section II) consisting of a task-prioritized
inverse kinematics framework (Section II-A) which fa-
cilitates safe learning of a time-invariant policy (Section
II-B);

• an experimental evaluation (Section III) for a simulated
reaching skill (Section III-A) and grasping skill on the
platform shown in Fig. 1 (Section III-B) demonstrating
that our method increases both safety, by removing the
collision risk, and learning rate, by reducing the number
of roll-outs before convergence.

Per se, our method is not tied to a specific policy search
algorithm. In this work, we use a time-invariant version of the
model-free Policy Improvements with Weighted Exploration
(PoWER) algorithm [11].

ar
X

iv
:1

81
0.

03
51

6v
1

 [
cs

.R
O

]
 8

 O
ct

 2
01

8

II. APPROACH

Our approach consists of a hierarchical inverse kinematics
(IK) whole body control framework and a policy search
component. The aim of the framework is to produce joint-
level commands by inverting a set of concurrent hierarchical
controllers which operate in arbitrary operational spaces.
In this work, we use policy search to learn a subset of
lower ranked controllers responsible for movement gener-
ation. The policy is optimized with policy search where
the goal is to learn policy parameters θ that maximize the
expected reward Eπθ

[∑T
t=1 r(ut, xt)

]
over trajectories τ =

{x1,u1, . . . , xT ,uT−1}, where x are states, u are actions and
expectations are taken with respect to the policy’s trajectory
distribution p(τ) = p(x1)

∏T
t=1 p(xt+1|xt,ut)p(ut|xt)

where p(xt+1|ut, xt) represent system dynamics. In this
work, actions are operational space velocities as the IK
framework produces joint velocities, while states and rewards
are application specific (Section III).

A. Task-prioritized inverse kinematics

The following task-prioritized real-time inverse kinematics
scheme is described in depth in our previous work [12],
which in turn builds upon the method developed in [9]. Here,
we give a brief summary for completeness as it is an essential
component of the presented approach.

As in prior works [12], [10], we consider kinematic
manipulator control with the goal of computing joint velocity
commands q̇ by inverting a set of hierarchical tasks defined
in different operational spaces. The obtained joint velocities
are then executed by a low-level tracking controller. We
describe the joint configuration of a manipulator with the
vector q. Following [9], we define task Jacobians via the
derivatives of user-defined task functions e(q). To give an
example, consider a static plane described by its unit normal
n and offset d. The task of moving an end-effector point
p(q) onto this plane can be achieved by driving the residual
of the function e(q) = nTp(q) − d to zero. Here, the
corresponding operational space is defined by the normal
n and the Jacobian mapping from joint space to operational
space is given by J(q) = nT

∂p(q)
∂q . A desired task evolution

can be imposed via control laws (policies) ė∗ achieving, e. g.,
exponential convergence by setting ė∗ = −λe with λ ∈ R+.
In the following, we drop dependencies on q for notational
convenience. For a single equality task, finding joint space
controls corresponds to solving the following least-squares
problem

arg min
q̇

1

2
‖Jq̇ − ė∗‖2 , (1)

which can easily be done via a pseudoinverse of J . In order
to allow for inequality tasks and without loss of generality we
henceforth use a general task formulation with upper bounds

Jq̇ ≤ ė∗. (2)

As shown in [9], this allows for lower bounds Jq̇ ≥ ė∗,
double bounds ė∗ ≤ Jq̇ ≤ ė∗, and equalities Jq̇ = ė∗, by

reformulating them, respectively, as −Jq̇ ≤ −ė∗,
[
−J
J

]
q̇ ≤[

−ė∗

ė
∗

]
, and

[
−J
J

]
q̇ ≤

[
−ė∗
ė∗

]
. If the constraint in (2) is

infeasible, a least squares solution for q̇ as in (1) can be
found by including the slack variable s among the decision
variables and solving the Quadratic Program (QP)

min
q̇,s

1

2
‖s‖2

s.t. Jq̇ ≤ ė∗ + s.

(3)

To enforce a hierarchy of p = 1, . . . , P priority levels, we
stack all task Jacobians of equal priority p in a matrix Ap.
Also, all corresponding operational space controls ė∗ are
stacked in a vector bp to form one constraint of the form
Ap ≤ bp per hierarchy level. The aim is to sequentially
satisfy a constraint in the least-square sense while solving
for the subsequent constraints of lower priority in the null
space of the previous constraint, such that the previous
solution is left unchanged. Therefore, the following QP,
with the previous slack variable solutions si frozen between
iterations, needs to be solved for p = 1, . . . , P

min
q̇,sp

1

2
(‖s‖2 + λ ‖q̇‖2)

s.t. Aiq̇ ≤ bi + s∗i , i = 1, . . . , p− 1

Apq̇ ≤ bp + sp.

(4)

Here, λ ∈ R+ is used to regularize the solution in order to
avoid large velocities due to singularities. The control vector
q̇ is obtained from the final (P -th) solution of (4).

The main underlying mechanism of the hierarchical frame-
work outlined above is to solve lower ranked tasks as good
as possible (in the regularized least-square sense) in the null
space of higher ranked task. We exploit this property to
incorporate prior knowledge for, e. g., obstacle avoidance or
desired end-effector alignments. These are posed as tasks on
a higher priority level then movement tasks for which control
policies are learned as described below. Therefore, no matter
what exploration strategy is chosen for learning, by definition
the resulting motion can not violate higher prioritized tasks
for avoidance and thus a safe behavior is guaranteed. Also,
as we will demonstrate in Section III, posing additional
tasks encapsulating desired behaviors prunes the null space
remaining for exploration on lower task levels and thus the
policy search space. Therefore, learning in the remaining
obstacle free low-dimensional space also facilitates learning
rate.

B. Policy search in operational spaces

As discussed above, the tasks we consider in this work
are described by Jacobian maps from joint space to opera-
tional spaces of choice, and corresponding operational space
controllers. Here we describe how to learn the corresponding
control laws (policies) ė∗ in operational space. Following the
work in [5], a natural choice to represent such a policy is a
normalized Radial Basis Function (RBF) network

y(x;θ = [Θ1, . . . ,ΘN]) =

∑N
i=1 Θiρ(‖x− ci‖)∑N
i=1 ρ(‖x− ci‖)

, (5)

where x is the state of the system (e.g location of the end-
effector) and N is the number of basis functions, each of
which is centered at individual positions ci and weighted by
Θi. The function ρ(‖x− ci‖) = exp(−‖x−ci‖2

2σ2) denotes a
Gaussian kernel with variance σ. In this work, σ is set to

dmax√
2N

, where dmax is the maximum distance between kernel
centers, as this finds a compromise between locality and
smoothness [13].

A RBF network is essentially a single hidden layer neural
network with ρ as the activation function, x as the input, and
Θi as the linear output weights. It represents a mapping from
(potentially high-dimensional) input data to a scalar value
y : x ∈ Rn 7→ R. In this work, the RBF network constitutes
a local, time-invariant policy parameterization that represents
operational space policies

ė∗π(x;θ) = y(x;θ), (6)

where x is the input and θ is the parameter vector. Explo-
ration takes place directly in parameter space

ė∗π(x;θ + εt) = y(x;θ + εt), (7)

where εt ∈ RN represent Gaussian noise with variance Σ.
The policy parameters θ are iteratively updated using

a time-invariant version of the PoWER algorithm [11]. In
each iteration, stochastic roll-outs are executed by adding
Gaussian noise to the parameter vector. The parameters
are then updated as a convex combination of noise and
their respective reward, where noise that resulted in higher
rewards contributes more to the overall update. An in depth
explanation of the algorithm is given in our previous work
[14].

Noise is only sampled once per roll-out and added to
the most active kernel every time step. To further control
the magnitude of noise, we follow [14] and use a modified
covariance matrix Σ = γβI. Here, I is the identity matrix, γ
is a constant controlling the initial magnitude and β is given
by

β =
1∑K

k=1 r
2
k

. (8)

The sum in (8) is taken over the K best rewards {rk}Kk=1.
Parameter β essentially lowers the amount of exploration
required once a policy starts converging towards higher
rewards.

III. EXPERIMENTAL EVALUATION

We validate our approach by means of two illustrative
examples: reaching (Section III-A) and grasping (Section
III-B). To this end, we use one of the 7 DOF arms of the
platform depicted in Fig. 1. The reaching experiment was
simulated in Gazebo, while the grasping experiment was
executed on the actual robot.

(a) Only the reaching task is spec-
ified.

(b) In addition to the reaching
task a projection task forcing
the red sphere onto the green
plane is added.

Fig. 2: Reaching experiment: The yellow spheres represent
the Gaussian kernels in (5), the red sphere the end-effector
point and the white sphere the target position. The black
surface indicates an obstacle. (Best viewed in color).

The RBF network kernels are evenly distributed over the
whole search space. The total number of policy parameters
depend on the number of kernels and on the number of
control policies to learn, as each policy have their own set
of policy parameters and the number of policies grows with
the search space dimensionality (e. g. one policy for a 1D
search space, two policies for 2D etc.). Initially all policy
parameters are set to zero.

A. Reaching

In this experiment, the main goal is to analyze the impact
optional higher ranked tasks have on safety when learning
movement policies on lower priority levels. As a side objec-
tive, we also want to study the effect on learning rate when
adding additional higher ranked tasks that are not required
for ensuring safety. To achieve this we chose a reaching
experiment where the objective for the robot, illustrated in
Fig. 2, is to colocate the red end-effector point p with the
white target point k defined in the environment. Moreover,
to actually validate the impact higher ranked tasks have on
the learned policy, the experiment was split in three sub-
experiments with varying prior knowledge.

In the first sub-experiment (Exp. 1), shown in Fig. 2a,
no additional tasks were encoded besides the reaching task.
Consequently, the STESS defaulted to 3D Cartesian space
including the black obstacle. The second sub-experiment
(Exp. 2) extends Exp. 1 by encoding a task that avoids
obstacles on a higher priority level but maintains the same
search space. In addition to the constraints in Exp. 2, the
final sub-experiment (Exp. 3), shown in Fig. 2b, encodes a
task that forces end-effector point p to also lie on the green
plane, effectively reducing STESS from 3D to 2D.

Here, the operational space of the reaching task, posed
at the lowest hierarchy level, corresponds to 3D Cartesian
space. Thus, the corresponding task Jacobian in (2) is simply
the manipulator Jacobian with respect to p. For each Carte-
sian dimension, an operational space policy is learned where
the state x in (7) corresponds to the end-effector position.

Each experiment ran for 10 trials with a maximum of 300
roll-outs (including 15 initial roll-outs before policy update)

Exp. 1 Exp. 2 Exp. 3
Collision during
training

4/10 (40%) 0/10 (0%) 0/10 (0%)

Converged trials 0/10 (0%) 0/10 (0%) 10/10 (100%)

TABLE I: Collision frequency and learning performance.

per trial. The importance sampler used the five best roll-
outs for each policy update. If a collision occurred during
training, the corresponding trial was deemed unsuccessful.
The immediate reward function at time t is

r(q̇t,pt) =

{
exp

(
−α1 ‖q̇t‖1 − α2d

2
)
, if t = T

exp (−α1 ‖q̇t‖1) , otherwise
(9)

where q̇ are joint velocities and pt is the 3D Cartesian
position of the gripper. The term d = ‖pT − k‖2 is the
distance between the gripper p and the target point k at
the end of the roll-out. The parameters αj are individual
weighting factors chosen as α1 = 0.001 and α2 = 10.

In Exp. 1 and 2 we chose 249 kernels and, with a 3D
search space, the total number of policy parameters were
747. In Exp. 3, on the other hand, the search was carried out
in 2D and therefore we chose only 49 kernels, resulting in 98
policy parameters. For Exp. 1 and 2, the initial exploration
parameter γ = 4, while for Exp. 3 γ = 0.001. The parameter
β controlling the noise level was calculated using the reward
from the 10 best roll-outs.

Figure 3 shows the convergence rates of Exp. 1, 2,
and 3. These, together with the data presented in Table I,
indicate that obstacle avoidance eliminates the possibility
for collisions during exploration, but does not improve the
actual learning rate. However, encoding additional tasks
that reduced the search space to 2D allowed the policy to
converge in 100% of the trials after an average of 84.4 roll-
outs.

The main objective in this experiment was to study the
implication higher ranked tasks have on learning safety
and, as the results indicate, our method is indeed capable
of forming STESS that are collision free. However, based
on the results from Exp. 1 and 2, it seems impossible
to learn RBF network policies that successfully fulfill the
task in high dimensional search space, probably originating
from poor scaling of RBF networks to high dimensional
state spaces [15]. In such cases special handcrafted policy
representations are preferred [2], [3], [4], [5]. Nevertheless,
as indicated in Exp. 3, adding additional domain knowledge
projecting STESS to a lower dimensionality allowed general
RBF network policies to converge in all trials. In terms of
achieving higher learning rate it is possible to use other
policy search algorithms as our method do not default to any
particular one. Then again, based on the results in Exp. 3, the
most significant learning boost is achieved by further limiting
the STESS with additional constraints, something which is
further demonstrated in the following grasping experiment.

B. Grasping

In this experiment, the goal is to demonstrate our method
working on a real robot in the sense that it learns policies

Fig. 3: The average return over the number of roll-outs for
each experiment.

Fig. 4: Shows the two test objects used in the grasping exper-
iment. The robot could only grasp the toy at specific heights
from the smaller edges, whereas the box was graspable at
all heights from shorter edges.

for grasping nontrivial objects after few roll-outs. To achieve
this, the experiment is to grasp the toy and box displayed in
Fig. 4 with the robot shown in Fig. 1. The results presented
in the previous section indicate that prior data in form
of additional tasks allows for both faster and safer policy
search. Therefore, we attempt to maximize the amount of
prior knowledge in order to reduce the search space. To this
end, we use tasks forming a so-called grasping envelope as
defined in our previous work [16]. These grasping envelopes
are intended to capture grasping strategies observed in hu-
mans [17]. In [16] we used them to successfully produce
robust grasps for a wide selection of objects including
bottles, boxes, and plush toys.

In this experiment orientation constraints of the gripper
are consistent with the grasping envelope in [16], that is: the
gripper’s vertical axis z (see Fig. 5) is enforced to align with
the cylinder axis z0, while the gripper’s approach axis x is
to point towards the cylinder axis x0. Moreover, during the
roll-out the end-effector point p is constrained to lie on a
larger blue cylinder as shown in Fig. 5b, while after the roll-
out the same p is constrained to the smaller green cylinder
displayed in Fig. 5c, thus allowing the gripper to enclose the
object. Finally, when grasping the toy in Fig. 5a the gripper

is constrained to lie between the upper and lower black
planes, while for grasping the box in Fig. 5b it is constrained
to lie on a single black plane. Together these constraints
leave redundancy for the gripper to move both vertically and
horizontally around the manifold when grasping the toy, i.e.
a 2D search space, and only horizontally when grasping the
box, effectively reducing the search space from 2D to 1D.

The movement tasks forcing the gripper to converge onto
the grasp manifold were predefined using simple controllers
of the form ė∗ = −λe. On the lowest priority level (and
thus in the null space of all higher ranked task), we learned
policies modulating the approach motion. In the case of
grasping the toy, the aforementioned predefined reaching
and alignment tasks leave the end-effector free to move
in an operational space which is tangent to the cylinder
shown in Fig. 5a. Therefore, to learn a policy modulating
the movement in this redundant space, we define a task
whose Jacobian maps to the cylinder’s tangent space. In
the case of grasping the box, the redundant space is further
constrained to the pre-defined grasping plane illustrated in
Fig. 5b. Thus, in this case we form an operational space
mapping via a corresponding Jacobian which maps to the
tangent space of the cylinder lying in the plane. When
learning the modulation policy, exploration happens then
only in this reduced redundant space. Based on this, the state
x in (7) when grasping the toy is the (x, y, z) position of
the end-effector while for the box reduces to (x, y) position.

Due to the limited opening size of the gripper, it could only
grasp the toy and the box in Fig. 4 close to the shorter edges.
Additionally the odd shape of the toy made it graspable only
at specific heights, further complicating the situation. Hence,
a suitable reward function for both objects needs to guide the
learning towards either of the short sides. We devised such a
reward function by reusing (9). Here however, the parameter
d represents the shortest distance between end-effector point
p and a vector v passing parallel to one of the principal
components of the object (see Fig. 5c). The reward function
for grasping is given by

r(d, I) = exp (−η1d− η2I) (10)

where I is a binary variable indicating a successful (0) or
unsuccessful (1) grasp. The term d is calculated as d =
‖pT − v‖ where pT is the 3D Cartesian position of the
gripper at the end of the roll-out. The parameters η1 and
η2 were, respectively, set to 700 and 1 when grasping the
box, and 7 and 1.5 when grasping the toy. Grasp failure
is detected if the gripper opening joint value crosses a
predefined threshold indicating an empty grasp.

In this work we predefined a principal component as the
preferred grasp direction v, but it could also be determined
using principal component analysis on a discrete represen-
tation of the target object’s geometry. This, however, we
considered not to be in the scope of the presented work
and the literature offers many techniques to accomplish this
task [18]. The reward function effectively guides the grasp
towards one principal component of the object which, based
on human grasping strategies, have been demonstrated to

(a)

(b) (c)

Fig. 5: Grasping experiment: (a) The grasp manifold consists
of a larger blue cylinder and the black grasping planes. The
red end-effector point p is forced to lie on the blue cylinder
and between the black planes in (a) and on the black plane
in (b). In (c) the red end-effector point is constrained to
lie on the smaller green cylinder. The x and z axis of the
gripper are aligned with the corresponding xo and zo axis
of the cylinder. In (a) and (b), the yellow points indicate the
RBF kernel distribution in (5). Furthermore, one principal
component of the target object is indicated by the cyan vector
v in (c).

produce robust grasps [17]. Although the reward function is
not the core contribution in this work, it is potentially useful
for other learning tasks.

For the grasping experiment the number of trials, maxi-
mum roll-outs, and number of roll-outs used by the impor-
tance sampler was the same as in the previous experiments.
The number of initial roll-outs before policy iteration was
set to 8. By trial and error, we found that 24 kernels were
enough to learn a good policy for grasping the toy and 11
for grasping the box. As the search space was 2D for the toy
and 1D for the box the number of policy parameters were,
respectively, 48 and 11. The exploration parameter γ when
grasping the toy was 0.0006 for kernels modulating vertical
(z) movements and 0.00009 for modulating horizontal (x and
y) movements. The same exploration parameters when only
learning horizontal movements for grasping the box was set
to 0.001. In both cases the seven best rewards were used to
calculate β.

The convergence rate of the policy search is illustrated in
Fig. 6. In both cases the policy converged in all 10 trials after
16.3 roll-outs on average when grasping the box and 39 when
grasping the toy (including 8 initial roll-outs before policy
optimization), after this the robot was able to consecutively
grasp the objects. Fig. 7 shows an example executing the
initial unlearned policy as well as the final learned policy.

The results clearly indicate that forming STESS with
our method enables a real robot to learn both safely and

Fig. 6: The average return over the number of roll-outs for
grasping the box and the toy. The reason the rewards for
grasping the toy and box differs so much is because of
different weighing parameters ηj in (10).

efficiently to grasp even very complex objects. As already
mentioned in the reaching experiment adding additional tasks
boost the learning significantly, a claim further strengthened
by the 49% reduction in number of roll-outs before con-
vergence when learning to grasp the box opposed to the
toy. Although part of the fast learning rates presented in
Fig. 6 originates from well tuned meta-parameters such as
exploration rate γ and decay β, they are not crucial for the
method to work, as poorly tuned parameters will not prohibit
learning but instead just slow it down. In conclusion, the most
important factor for learning is prior knowledge added to the
system in the form of higher ranked tasks, and by adding
tasks intended to mimic human grasping strategies not only
reduced the search space to a collision free low-dimensional
representation, but also led to successful grasping.

IV. RELATED WORK

The core ingredients of our work are safe policy search,
operational space learning and the normalized RBF network
policy. Similar ideas for safe exploration as presented here
was recently studied in [19] where they force output actions
from a neural network to safe spaces by taking closest actions
that satisfy specific constraints. In that work, however, they
only constrained a single QP at each iteration while we
impose hierarchical constraints allowing greater flexibility.
Other methods trying to ensure safe exploration enforce
conservative policy updates between iterations [6], [7], [20],
[21], [11]. These methods are typically combined with
low-dimensional policy representations that are initialized
on prior data, e. g., human demonstrations or trajectories
optimized using an initial model [4], [5], [3]. Limiting
policy updates between iterations lowers the probability of
straying into unexplored state space, but does not provide any
guarantees [22]. The associated risk is also evidenced by the
results reported in Section III: if the search space includes
obstacles, collisions can and, in general, will occur between
the robot and obstacles. Another approach to safe behavior
is to directly discourage entering part of the state space by

inferring penalties [8]. These penalties are incorporated as a
term in the reward function that punishes the robot if it comes
in proximity to obstacles. These method bears resemblance to
classical potential field methods to obstacle avoidance [23].
Similar to potential fields, while significantly reducing the
collision rate, state space penalization does not provide
guarantees while introducing additional tuning parameters. In
comparison, our method can completely remove the collision
risk during exploration without additional tuning parameters
by posing appropriate avoidance tasks.

Regarding the policy representation used in this paper,
previous work in value-based RL uses RBF networks to
approximate the value function [24], while in policy search
it is a vital part of the popular Dynamic Movement Primi-
tives [3]. Only recently was it used as a standalone policy
representation optimized to learn a limit-cycle walking gait
in simulation [5]. This, in addition to our work, indicates
that RBF networks are applicable policy representations for
learning a variety of tasks.

In terms of operational space learning, we can also con-
sider prior methods that learn the maps from joint space
to operational space (i. e., Jacobians) together with the cor-
responding control laws [25]. In that work, the controller is
represented as a locally linear policy which is optimized with
reward weighted regression. If no prior information regarding
a skill is known, learning the Jacobians and potentially the
dynamics in operational space can be valuable. It would be
interesting to extend our framework to account for these
possibilities.

V. CONCLUSION AND FUTURE WORK

We presented a method for safe and sample-efficient
learning of policies in arbitrary operational spaces. The key
concept is a method to implicitly form safe-to-explore state
spaces for policy search by decomposing a skill into ele-
mental sub-tasks focusing exploratory actions to a collision
free subspace of the original search space. By decomposing
a skill of interest into elemental sub-tasks, our method allows
to encode prior knowledge in form of task constraints. Move-
ment policies are learned in the null space of higher ranked
tasks which enforce, e.g., obstacle avoidance or desired end-
effector alignments. Thus, by construction, our approach
ensures safe exploration. Also, the size of the search space
available for learning task policies can be controlled by
posing higher ranked tasks which implicitly prune the re-
dundant space remaining for exploration. We provide an
experimental evaluation by means of a simulated reaching
task demonstrating that our method allows safe, collision-
free movement policy learning while simultaneously leading
to an increased learning rate. Furthermore, we evaluated
our approach via grasping tasks executed on a real robot,
achieving fast policy convergence even for complex objects.

To speed up learning, we predefine some parameters
(kernel placement and width) of the chosen policy represen-
tation. This limits the applicability of the method, but also
opens up interesting future research avenues. One option is
to incorporate visual feedback of the scene [16] in order

Fig. 7: Sequence of images from execution of the initial unlearned policy (top figure) and the final learned policy (bottom
figure) for graping the toy. It is clearly visible that grasping the toy requires precise vertical and horizontal placement of
the manipulator.

to decide on the number of kernels and their individual
placement. Another option is to treat kernel centers and
widths as additional policy parameters and to learn them
using model-free policy search. Also, while our framework
is not tied to a specific policy representation, the policies
learned in this work are local. Therefore, they will not
generalize well to new unseen situations, such as different
object rotations. To allow generalization, one option is to
learn global policy representations such as (deep) neural
networks. Also, it would be interesting to train several local
policies in varying settings and to combine them into a global
model allowing inter- and extrapolation [14].

REFERENCES

[1] S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive motion of
animals and machines. Springer, 2006, pp. 261–280.

[2] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning. ACM, 2007, pp. 745–
750.

[3] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation
with nonlinear dynamical systems in humanoid robots,” in Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 2. IEEE, 2002, pp. 1398–1403.

[4] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning force
control policies for compliant manipulation,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE,
2011, pp. 4639–4644.

[5] D. S. Feirstein, I. Koryakovskiy, J. Kober, and H. Vallery, “Reinforce-
ment learning of potential fields to achieve limit-cycle walking,” IFAC-
PapersOnLine, vol. 49, no. 14, pp. 113–118, 2016.

[6] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[7] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), 2015, pp. 1889–1897.

[8] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control
a low-cost manipulator using data-efficient reinforcement learning,”
Robotics: Science and Systems, 2011.

[9] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Transactions on Robotics, vol. 27, no. 4, pp.
785–792, 2011.

[10] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The

International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[11] J. Kober and J. R. Peters, “Policy search for motor primitives in
robotics,” in Advances in neural information processing systems, 2009,
pp. 849–856.

[12] R. Krug, T. Stoyanov, V. Tincani, H. Andreasson, R. Mosberger,
G. Fantoni, and A. J. Lilienthal, “The next step in robot commis-
sioning: Autonomous picking and palletizing,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 546–553, 2016.

[13] N. Benoudjit, C. Archambeau, A. Lendasse, J. A. Lee, M. Verleysen
et al., “Width optimization of the gaussian kernels in radial basis
function networks.” in ESANN, vol. 2, 2002, pp. 425–432.

[14] J. Lundell, M. Hazara, and V. Kyrki, “Generalizing movement primi-
tives to new situations,” in Conference Towards Autonomous Robotic
Systems. Springer, 2017, pp. 16–31.

[15] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics New York, 2001, vol. 1.

[16] T. Stoyanov, R. Krug, R. Muthusamy, and V. Kyrki, “Grasp envelopes:
Extracting constraints on gripper postures from online reconstructed
3d models,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE, 2016, pp. 885–892.

[17] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka,
“Physical human interactive guidance: Identifying grasping principles
from human-planned grasps,” IEEE Transactions on Robotics, vol. 28,
no. 4, pp. 899–910, 2012.

[18] Y.-S. Liu and K. Ramani, “Robust principal axes determination for
point-based shapes using least median of squares,” Computer-Aided
Design, vol. 41, no. 4, pp. 293–305, 2009.

[19] T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer-practical
constrained optimization for deep reinforcement learning in the real
world,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6236–6243.

[20] H. B. Ammar, R. Tutunov, and E. Eaton, “Safe policy search for
lifelong reinforcement learning with sublinear regret,” in Proceedings
of the 32nd International Conference on Machine Learning (ICML-
15), 2015, pp. 2361–2369.

[21] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search,”
in AAAI. Atlanta, 2010, pp. 1607–1612.

[22] J. Garcia and F. Fernández, “Safe exploration of state and action spaces
in reinforcement learning,” Journal of Artificial Intelligence Research,
vol. 45, pp. 515–564, 2012.

[23] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The international journal of robotics research, vol. 5, no. 1,
pp. 90–98, 1986.

[24] R. M. Kretchmar and C. W. Anderson, “Comparison of cmacs and
radial basis functions for local function approximators in reinforce-
ment learning,” in Neural Networks, 1997., International Conference
on, vol. 2. IEEE, 1997, pp. 834–837.

[25] J. Peters and S. Schaal, “Learning to control in operational space,”
The International Journal of Robotics Research, vol. 27, no. 2, pp.
197–212, 2008.

	I Introduction
	II Approach
	II-A Task-prioritized inverse kinematics
	II-B Policy search in operational spaces

	III Experimental Evaluation
	III-A Reaching
	III-B Grasping

	IV Related Work
	V Conclusion and Future Work
	References

