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Abstract— In task-based inverse dynamics control, reference
accelerations used to follow a desired plan can be broken down
into feedforward and feedback trajectories. The feedback term
accounts for tracking errors that are caused from inaccurate
dynamic models or external disturbances. On underactuated,
free-floating robots, such as humanoids, good tracking accu-
racy often necessitates high feedback gains, which leads to
undesirable stiff behaviors. The magnitude of these gains is
anyways often strongly limited by the control bandwidth. In
this paper, we show how to reduce the required contribution
of the feedback controller by incorporating learned task-space
reference accelerations. Thus, we i) improve the execution of
the given specific task, and ii) offer the means to reduce
feedback gains, providing for greater compliance of the system.
In contrast to learning task-specific joint-torques, which might
produce a similar effect but can lead to poor generalization,
our approach directly learns the task-space dynamics of the
center of mass of a humanoid robot. Simulated and real-world
results on the lower part of the Sarcos Hermes humanoid robot
demonstrate the applicability of the approach.

I. INTRODUCTION

Unmodeled dynamics (i.e. friction, link flexibilities, un-
modeled actuator dynamics or approximate model param-
eters) can have severe effects on tracking performance of
legged robots, and can be problematic not only for balancing
but also to properly achieve other tasks. Models, however, are
often difficult to obtain and/or incorrect, and while parameter
identification can improve their quality [1], [2], it does not
take into account unmodeled dynamic effects. The lack of
accurate models has led to the use of combined feedforward
and feedback control, which preserves stability and robust-
ness to disturbances. The greater the error of the model,
the greater the feedback gains necessary to ensure robust
task achievement. This comes at the cost of a significant
increase in stiffness and damping requirements, which can
be a problem due to limited control bandwidth and which is
often undesirable to prevent high impedance behaviors.

Different methods of acquiring dynamic models [3] and
exploiting them in control have been proposed [4]. Optimiza-
tion based approaches, such as hierarchical inverse dynamics
[5]–[7], have gained in popularity in the recent years for
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Fig. 1. Simulated and real-world lower part of the Sarcos Hermes humanoid
robot used in the experiments.

the control of legged robots. However, these approaches rely
on dynamics models and often necessitate high task-space
feedback gains to ensure good tracking performance on real
robots which do not have accurate dynamic models.

Acquiring dynamic models of robots and tasks can be
partially offset by iterative learning of the control signals,
which relies on one of the main characteristics of robots:
repeatability of the control actions from the same input
signals. Iterative learning control (ILC) [8] was extensively
applied in robotics, including for learning task-specific joint
control torques [9].

A. Problem Statement

In this paper we investigate task-specific dynamics learn-
ing to improve task execution while increasing compliance
in the scope of optimization-based inverse dynamics control.
Therefore, we pursue the following objectives:

• reduce the required contribution of the feedback term
in the control,

• consequently improve task-space tracking while increas-
ing compliance, and

• act directly in the task space of interest, typically the
center of mass (CoM) dynamics.

Acting directly in the task space as opposed to joint space
will potentially enable applications beyond the scope of the
learned dynamics, i. e., through generalization.

The intended application of the proposed algorithm is to
improve control of dynamic tasks on humanoid robots. We
performed our experiments on the lower part of the Sarcos
Hermes humanoid robot, depicted in Fig. 1.
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This paper is organized as follows:. Section II provides
a short literature overview. Section III gives an overview
of the QP inverse dynamics controller used in the paper.
Section IV presents our new algorithm that provides learned
torques for task-space inverse dynamics control. Simulation
and real robot experiments are present in Section V. Finally,
we discuss our results and conclude in Sections VI and VII.

II. RELATED WORK

Two bodies of work are relevant to this research: 1)
learning and exploiting control torques for improved task
execution, and 2) task-space inverse dynamics control of
floating-base systems.

Learning control signals to iteratively improve task execu-
tion using the aforementioned ILC [8], has been extensively
used in robotics [10]. Feedback-error-learning, where the
feedback motor command is used as an error signal to train
a neural network which then generates a feedforward motor
command, was proposed by Kawato [11]. The idea was
extended for learning of contact interaction. In their work,
Pastor et al. [12] combined learning of forces with dynam-
ical systems to improve force tracking in interaction tasks.
Similarly, in [13], dynamic movement primitives (DMP) [14]
were used in combination with learning of interaction forces.

Learning to improve contact interaction was also applied
directly to actuation torques. Joint torques along kinematic
trajectories were learned and encoded as DMPs in [15] and
used to increase the accuracy in subsequent executions of in-
contact tasks. This approach was also applied to full-sized
humanoid robots, for example in [16], where a particular
trajectory was run, and the joint torques from that trial
were used as the feedforward term on the next trial. These
methods can go beyond mere repetition of the same task. In
[9], the authors show how the learned joint-torque signals,
encoded in parametric form as compliant movement prim-
itives (CMPs), can be generalized for new task parameters
(weight, speed, etc.), and in [17] how to effectively learn
them. However, because the approach is rooted in joint-
torques, generalization is somewhat limited to variations of
the same full body motions, which is a strong limitation for
highly redundant robots such as humanoids that can perform
several concurrent tasks.

Optimization-based inverse dynamics control has become
a very popular method to control legged robots [5], [6],
[18] as it allows to directly specify control objectives for
multiple tasks, while ensuring priorities between tasks and
constraint satisfaction (actuation limits, friction cones, etc).
The redundancy of a complex robot such as a humanoid
can therefore be optimally exploited. It is also possible
to compute optimal feedback gains in a receding horizon
manner directly in task space by leveraging the task reduced
dynamics [5], [7], [19]. Such methods have remarkable
capabilities, but are often limited by modeling errors which
necessitate to significantly increase feedback gains, which
is either very limited by the effective control bandwidth or
leads to very stiff behaviors.

Some approaches, as far back as [20], have proposed to
learn task-specific dynamic models that can then be used
to synthesize control laws. Iterative methods to compute
locally optimal control policies have, for example, recently
been used with such learned models [21]. Iterative repetitions
of the process are then used to collect additional data and
re-learn a new policy [21], [22]. In these approaches, the
learned models and resulting control policies operate on the
whole robot. It is therefore not clear how other tasks and
additional constraints can be incorporated without impairing
the resulting behaviors.

In this paper, we learn task-specific feedforward models
which take into account the error in dynamic models during
task execution and combine them with a Quadratic Program-
ming (QP) based inverse dynamics controller. This allows
to significantly improve task tracking while creating more
compliant behaviors.

III. CONTROL

In this Section we briefly introduce the task-space inverse
dynamics controller we use in the paper and that was origi-
nally proposed in [5]. We model the floating-base dynamics
of a legged humanoid robot as

M(q)q̈ + h(q, q̇) = ST τ + JTc λ, (1)

with a vector of position and orientation of the robot in
space and its joint configurations q ∈ SE(3)×Rn, the mass-
inertia matrix M ∈ R(n+6)×(n+6), the generalized Coriolis,
centrifugal and gravity forces collected in h ∈ Rn+6, the
actuation matrix S ∈ [On×6 In×n] and the end-effector
contact Jacobian Jc ∈ R6m×n, where n is the number of
robot’s degrees of freedom, τ are actuation torques and λ
are the contact forces.

As discussed in [5], the dynamics can be decomposed into
actuated and unactuated (floating base) parts, respectively

Ma(q)q̈ + ha(q, q̇) = τ + JTc,aλ, (2)

Mu(q)q̈ + hu(q, q̇) = JTc,uλ. (3)

and it is only necessary to enforce Eq. (3) to ensure dynamic
consistency as τ is a redundant variable which can be
eliminated and replaced by a combination of q̈ and λ
according to Eq. (2) where necessary. Eq. (3) is the first
constraint to be satisfied by the controller. Kinematic contact
constraints ensuring that the part of the robot in contact with
the environment does not move,

Jcq̈ + J̇cq̇ = 0, (4)

are additional equality constraints for the optimization, where
Jc is the Jacobian for mc constrained endeffectors. Addition-
ally, we limit foot center of pressure (CoP), friction forces,
resultant normal torques, joint torques and joint accelerations
with linear inequality constraints. The cost to be minimized
is

min
q̈,λ

∑
t

||ẍt − ẍt,des||2Wt
+

||Pnull(q̈ − q̈des)||2Wq
+ ||λ− λdes||2Wλ

(5)



where xt are either Cartesian end-effector poses (xt ∈
SE(3)) or the center of mass position (xt ∈ R3). The Wt

are weighting positive definite matrices, Pnull projects into
the null space of all the Cartesian tasks, Joint and Cartesian
tasks are related through

ẍt = Jtq̈ + J̇tq̇, (6)

where Jt is the Jacobian of the unconstrained end-effector
or CoM. Desired end-effector and CoM accelerations are
computed through

ẍt,des = ẍt,ref + Pt (xt,ref − xi) + Dt (ẋt,ref − ẋt) . (7)

Positive definitve matrices Px and Dx represent stiffness
and damping gains of the PD controller, respectively. Desired
joint accelerations are specified by

q̈des = Pq(qref − q)−Dqq̇.

For more details on the solver, see [5].

IV. TASK SPECIFIC DYNAMICS

The controller presented in the previous section allows to
track any type of Cartesian task. To improve tracking in task
space, we introduce an additional feedforward term. Indeed,
tracking performance depends on the accuracy of the model.
This can be seen in (7), where

ẍdes = ẍref︸︷︷︸
feedforward

+Px (xref − x) + Dx (ẋref − ẋ)︸ ︷︷ ︸
feedback

.

If the model were perfect, the contribution of the feedback
part would amount to 0. However, in the real world it is
not, and the feedback part accounts for the discrepancy. We
propose recording the feedback contribution part and adding
it in the next repetition of the exact same task (desired
motion). Thus, we get

ẍdes,i = ẍref + ẍfb, i−1︸ ︷︷ ︸
updated feedforward

+Px (xref − x)+Dx (ẋref − ẋ) ,

(8)
where

ẍfb, i−1 = ẍfb,i−2 +Px (xref − xi−1) +Dx (ẋref − ẋi−1) .
(9)

It means that at each iteration, we add to the new feed-
forward term the previous contributions of the feedback
terms, therefore learning the error dynamics. The number
of learning iterations is arbitrary, depending on the desired
accuracy. However, stability of the learning process needs to
be ensured, see [8] for details on ILC. In our experiments, we
only used the feedback from 1 previous iteration (i = 2) as it
was sufficient to already significantly improve performance.

Unlike [16] or [9], the feedforward part is added in the
task-space of the robot, and not in its joint space. It is then
combined with the QP-based inverse dynamics controller.

Using the recorded (learned) feedback signal in the next
iteration of the same task provides us with an improved
feedforward signal, which is task-specific. However, we

can build up a database of such signals for different task
variations. Thus, the proposed algorithm can significantly
correct the discrepancy between the model and the real
system. Furthermore, we can use the database to generate
an appropriate signal for previously untested tasks and task
variations using statistical generalization as in [9].

A. Encoding the Feedforward Signal

The recorded (learned) signal can be encoded in any form.
For example, for end-to-end (discrete) tasks, discrete DMPs
can be used [14]. The use-case example in this paper is
periodic squatting. Because our task is periodic, we chose
to encode the signal as a linear combination of radial basis
functions (RBF) appropriate for periodic tasks. Using RBFs
has the advantage that the signal encoding is compact and
the signal itself is inherently filtered. As discussed in [9],
this representation allows for computationally light1 gener-
alization using Gaussian Process Regression (GPR) [23]. A
linear combination of RBF as a function of the phase φ is
given by

ẍfb, i−1(φ) =

∑L
j=1 wjΓj(φ)∑L
j=1 Γj(φ)

, (10)

where Γj denotes the basis function, given by

Γj(φ) = exp(hj(cos(φ− cj)− 1)), (11)

wj is the weight of the j-th basis function, L is the number
of basis functions, ci are centers of the basis functions and
hi > 0 their widths. The periodic phase φ is determined by
the phase oscillator

φ̇ = Ω, (12)

where Ω is the frequency of oscillations. While in our use-
case the phase is linear because of a constant task frequency,
it can change over time and even adapt to external signals
[24].

B. Generalization

In the manner of generalizing joint-space feedforward
torques [9], we can also generalize the learned task-space
CoM accelerations. Having chosen RBF encoding, we can
generalize between the weights, for example using GPR. The
goal of generalization is to provide us with a function

FDb
: κ 7−→ [w] (13)

that provides the output in the form of a vector of RBF
weights w, given the database of trained feedforward terms
Db and the input, i. e., the query κ. We refer the reader to
[9], [23] for details on GPR. This kind of generalization is
analog to the one in [9], but in task space.

1The calculation of the hyperparameters for GPR is computationally
expensive, but it is performed offline. Simple matrix multiplication is
performed online.



V. EXPERIMENTAL RESULTS

Experiments were performed on the lower part of the
hydraulically actuated, torque controlled, Sarcos humanoid
robot. It has in total 17 degrees of freedom (DoFs), with 7
in each leg and three in the torso. The system is depicted in
Fig. 1. We used the SL simulation and control environment
[25] for evaluation in simulation.

To demonstrate the applicability of the approach we use
a periodic squatting task. We compare position error of the
robot’s CoM without and with the added feedforward term,
given by (9). Note that any kind of task, be it periodic or
an end-to-end task, can be implemented in the same manner.
However, for a different kind of task, some other trajectory
encoding might be beneficial.

A. Squatting Simulation

In the first experiment, we performed periodic squatting at
a frequency of 0.25 Hz. For the use-case example, squatting
was defined as a vertical sinusoidal motion of 3cm amplitude;
this range is close to the maximal motion the robot can
perform without hitting joint limits. Any other squatting
trajectory, obtained for example through motion capture,
could also be used.

In the simulation experiments, we use a different dynamic
model for the inverse dynamic computation than for the
simulation, in order to test the performance of our approach
with modeling errors. We changed the model so that there
was a 10% error in the mass and inertia matrices of each link.
A 20% difference would not achieve meaningful squatting
with the given parameter set; we discuss this in Section VI.

Results in Fig. 2 show the difference in tracking error
when using the learned feedforward term, and when not
using it. Reduction of tracking error is clearly visible when
the learned feedforward term is used. Furthermore, when
using the learned feedforward term, we can significantly

Fig. 2. Top: Center of mass position in the vertical z axis during a squatting
experiment without the learned feedforward term (blue), with the learned
feedforward term (red), and with the feedforward term but with 5 times
reduced P feedback gains (ocher). Desired CoM motion in dashed-green.
Black dashed line depicts the start of squatting. Bottom: Error of CoMz

tracking for all three cases.

reduce the P gain (in this case 5X) without visibly increasing
the tracking error. This demonstrates that the contribution of
the feedback term is low and that increased compliance can
be achieved. Before the beginning of squatting (depicted by
the black dashed line), the learned feedforward term was a
constant value learned for the start of the squat from steady-
state squatting. This does not completely match the initial
posture of the robot in simulation, which has a small starting
randomness built-in. The higher error in the starting posture
when using low gains indicates higher compliance of the
robot (i.e. the errors of the model induce an error in steady
state positions).

The plot in Fig. 3 shows the amplitude of the feedback
part of the controller for the same three cases as for Fig. 2.
We can again see the difference in the necessary feedback
correction. Feedback correction is by an order of magnitude
larger if the learned feedforward term is not used. The plot
also shows that the encoded feedforward signal (purple) very
closely matches the original feedback signal. The matching
could be increased, for example, with a higher number of
basis functions. In the experiments we used L = 25 basis
functions; the number was chosen empirically.

B. Generalization to different squatting amplitudes

We performed a generalization experiment over a variation
of the task, to show that the approach can be used with
generated feedforward signals. We used GPR to generalize
the feedforward term for a squatting amplitude of κ = 5 cm.
The database consisted of feedforward terms for different
squatting amplitudes2 κ = 2, 4, 6, 8 cm. Fig. 4 shows that
the generalized feedforward term allowed for very similar,
low CoMz tracking errors as the recorded feedforward term
for κ = 5 cm. While this kind of generalization is similar to
the one represented in [9], in our case the generalization was
in task space, i. e., generalization was between the weights
for 1 DoF. To achieve the same in joint space would require
generalization for all 17 DoF of the robot. Our approach
therefore leads to a simpler generalization function thanks
to the combination of the task-space feedforward term and
the inverse dynamics controller.

2The database is too small. Typically it would consist of tens of entries,
but in this toy example they would be too close together.

5 10 15 20 25

-0.2

0

0.2

0.4

Fig. 3. The value of the feedback term when squatting as defined in
the experiment. Without the additional feedforward term in blue, with the
additional term in red, with the term but with reduced gains in ocher, and
the encoded feedforward signal in dashed purple.



Fig. 4. Top: Center of mass position in the vertical z axis during a squatting
experiment without the learned feedforward term (blue), with the learned
feedforward term (red), and with the feedforward term generalized from a
database (ocher). Desired CoM motion in dashed-green. Black dashed line
depicts the start of squatting. Bottom: Error of CoMz tracking for all three
cases.

C. Real Robot Experiments

We performed the same experiment on the real robot. To
vary the dynamics of the task, we tested our approach for
two different squatting frequencies: 0.25 Hz and 0.5 Hz. The
error of CoMz tracking for both cases is depicted in Fig. 5.
We can see in the plots that the error is again significantly
reduced for both cases. Small oscillations in the behavior are
the consequence of acting on a real system with an imperfect
model and feedback signals. CoM position on the real system
was estimated using the joint encoders and the kinematics,
with assumed flat feet on the ground. Fig. 6 shows a series of
still photos depicting the real system performing one squat.

0 5 10 15 20 25 30

-0.02

-0.01

0

0.01

0 5 10 15 20 25 30

-0.02

-0.01

0

0.01

Fig. 5. Real-world error of CoMz tracking with and without the added term
for the squatting experiment at two different squatting frequencies, 0.25 Hz
in the top and 0.5 Hz in the bottom. In both plots the results without the
added term are in blue, and with the added feedforward term in red.

VI. DISCUSSION

We have proposed a method to learn task-space dynamics
which allows to improve task performance while reducing
feedback gains. Both the simulation and real robot results
show a reduced contribution of the feedback term; a clear
improvement of the tracking performance and the possibility
to reduce the feedback gains to thus increase the compliance.
In the following, we briefly discuss these points.

We first discuss the improvement of the tracking per-
formance and the reduction of the feedback term contri-
bution. The question whether the system behavior is the
same with the additional task-specific feedforward term and
low feedback gains or without the additional task-specific
feedforward term and high gains has previously been studied
[26], [27]. An equivalent feedback can always be constructed
from the ILC parameters with no additional plant knowledge
for proper causal LTI systems, whether or not the ILC
includes current-cycle feedback. Our system (8) is not proper
causal, therefore complete equivalence cannot be claimed,
but the results show a clearly reduced contribution of the
feedback term. Herein lies the main advantage of using the
proposed approach – lower feedback gains can be used,
resulting in increased compliance. Compliance of the system
has been recognized as one of the key elements for real-
world deployment of robots in unstructured environments,
as it provides robustness for unplanned disturbances [18].

Our approach reduces the contribution of the feedback
term in a manner similar to an improved dynamic model. As
shown in the literature (e. g. in [1]), a dynamic model never
completely describes the behavior of a complex system. On a
real system, such as the lower part of the Hermes humanoid
robot used in this work, unmodeled hydraulic hoses, actuator
dynamics, friction and flexibilities can have a significant
effect. The originality of our approach is that we improve a
task-specific dynamic model. The learned feedback torques
for squatting are by default only applicable to squatting. As
already outlined in Section III, building up a database is
a rather straightforward solution. This has not only been
applied to the model (for lack of a better word), but also
to control policies as a result of optimization. In [28], a
database of such control policies is used to warm-start the
optimization. A more advanced solution than just building
up a database is to use the database to generate feedforward
terms for previously untrained situations. Different methods
can be applied, for example statistical learning, such as GPR,
which was used in a similar manner for joint torques in [9].

As shown in Section V, one of the advantages of the
proposed approach of generalization in the task space is the
reduced dimensionality of the task. Another advantage of
learning and applying the feedforward terms in task space
is the similarity it has over different tasks. The proposed
approach requires first a working solution, so that the feed-
forward term can be learned. However, this working solution
might be difficult to achieve for complex tasks if the model
is not sufficiently accurate. Even our squatting use-case will
not work if the model is 20% off. Achieving a complex



Fig. 6. Still images of the real-world lower part of the Sarcos Hermes robot performing one squat. See also the accompanying video.

task can be challenging but we posit that the feedforward
term of a less-complex task could be used to bootstrap
the execution of the more complex task. During walking,
the CoM position is moving from one side to the other,
which is (from the CoM point of view) the same as simply
shifting the weight from one side to the other without lifting
the feet. With feedforward terms for shifting of the weight
from one side to the other, which makes the execution of
this task more accurate, it is only one (algorithmic) step to
implement stepping in place. This cross-task generalization,
however, remains an open research question. Furthermore,
such generalization can only be applied over similar tasks,
and steps that ensure that the feedforward term does not
worsen the solution need to be taken.

VII. CONCLUSION & FUTURE WORK

In this paper we showed that basic iterative learning can
be applied to task-space accelerations in order to improve
the task execution of a complex, free-floating robot system,
controlled with task-space inverse dynamic controllers and
that generalization to variations of the task is also possible.
Furthermore, it has the potential to improve the behavior of
model-based control methods with the application of gen-
eralized signals for different task parameters, and possibly
even across different task. The latter, however, remains for
future work.
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