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Planning with a Receding Horizon for Manipulation in Clutter

using a Learned Value Function

Wissam Bejjani, Rafael Papallas, Matteo Leonetti and Mehmet R. Dogar

Abstract— Manipulation in clutter requires solving complex
sequential decision making problems in an environment rich
with physical interactions. The transfer of motion planning
solutions from simulation to the real world, in open-loop, suffers
from the inherent uncertainty in modelling real world physics.
We propose interleaving planning and execution in real-time, in
a closed-loop setting, using a Receding Horizon Planner (RHP)
for pushing manipulation in clutter. In this context, we address
the problem of finding a suitable value function based heuristic
for efficient planning, and for estimating the cost-to-go from
the horizon to the goal. We estimate such a value function
first by using plans generated by an existing sampling-based
planner. Then, we further optimize the value function through
reinforcement learning. We evaluate our approach and compare
it to state-of-the-art planning techniques for manipulation in
clutter. We conduct experiments in simulation with artificially
injected uncertainty on the physics parameters, as well as in
real world tasks of manipulation in clutter. We show that this
approach enables the robot to react to the uncertain dynamics
of the real world effectively.

I. INTRODUCTION

We propose planning approach for physics-based manip-

ulation in clutter, for tasks in which an object has to be

pushed to a goal region, with little to no repositioning of

other objects. Such robotic manipulation skills are required

in a variety of applications. In service robotics, for example,

robots have to simultaneously interact with multiple everyday

objects (e.g., objects in drawers or in cabinets) to execute

household activities [1], [2]. In industrial settings, such as in

warehouses, robots have to fulfill orders by picking items off

cluttered shelves, as in the Amazon Picking Challenge [3].

This requires pushing certain items out of the way, without

dropping them off the shelf, while reaching for a target item.

There has been significant recent interest in motion plan-

ning for pushing-based manipulation tasks in clutter, and

impressive planners have been proposed [4], [5], [6]. Real-

world execution of these trajectories, however, still poses

great challenges. The main difficulty is due to the inevitable

inaccuracy in the physics model used by the planners. This

inaccuracy is emphasized particularly when multiple objects

are in contact, which is common in the application domains

mentioned above.

We present an example of the task in Fig. 1, where the

green object has to be pushed to a target region (the green

region) while keeping the red objects close to their original

positions (red regions). The top row of Fig. 1 shows the ex-
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Fig. 1: Top: robot failing to push the green box to the goal

region by following a precomputed plan using kino-dynamic

planning. Bottom: robot successfully executing the task using

closed-loop RHP execution.

ecution of an open-loop trajectory generated by a sampling-

based planner, while the bottom row presents an execution of

our system. The overlaid animated figures (on the top-right

corner of the images) show the planner’s prediction of how

the objects should move during interaction. When planned

trajectories are executed open-loop, the real motion of the

objects can differ significantly from the motion predicted by

the planner. For this reason, in the shown example, the open-

loop controller fails to accomplish the task.

A solution to this problem is to interleave planning and

execution. In this approach, a sequence of actions is planned,

but only the first action in this sequence is executed. Then,

the current state is updated by observing the environment,

after which another sequence of actions is planned, and the

routine is repeated. This idea is commonly used in domains

that involve uncertainty, and underlies many similar methods

with different names, among which: rolling horizon planning,

receding horizon control, and model predictive control. We

show an execution of such a controller in the bottom row of

Fig. 1. Even if objects move differently than predicted, the

controller has the opportunity to correct for it.

One possible approach to generating such a receding

horizon planner (RHP) would be to run one of the aforemen-

tioned planners at every step of the execution, to generate

the new sequence of actions. The computation time these

planners require, however, is prohibitively high, typically

taking from tens of seconds to minutes for one plan [7], [4],

[5], [6], [2], [8], [9]. In contrast, we are interested in real-

time execution, which requires a planner that can quickly

suggest an action for the current state of the world.
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Fig. 2: Overview of the proposed approach.

To generate plans quickly, we propose to run RHP with

a short horizon into the future, and take advantage of an

appropriate cost-to-go function as a proxy for the value of the

states beyond the horizon. This value of a state must estimate

how costly (or rewarding, depending on the formulation) it

would be to reach the goal from that state. In domains where

multiple physics-based object-to-object contact is possible,

defining this function is a challenge on its own.

In this paper, we propose to use data-driven techniques to

learn such a value function, so that we can then use it as a

heuristic within a receding horizon planner. In order to do

this, in simulation, we generate many planning instances, and

we solve them using an existing sampling-based planner (a

kino-dynamic RRT planner [4]). We then use the sequences

of states and actions in these plans to train a Deep Neural

Network (DNN), to predict the value of a state-action pair,

that is, the expected reward for reaching the goal starting

from that state and using that action.

The value function learned at this stage leads to an accept-

able controller when used as a heuristic, but as we show in

our results, it can be further improved. Our insight is that the

DNN, trained only by the sampling-based planner, encodes

the value of a state under the planned trajectory, which differs

from what the robot will actually execute when controlled

by RHP. Therefore, we use a reinforcement learning (RL)

algorithm to gradually update the value function to better

estimate the actual optimal value of the manipulation task.

Our key contribution is in showing that such an approach

gives promising results in the domain of physics-based

manipulation in clutter: the robot is able to perform fast

closed-loop re-planning to deal with the inherent uncertainty

in this domain, which challenges existing planners. We show

that a heuristic value function can be learned using sampling-

based planners and deep learning. Furthermore, we show

that it can be improved using reinforcement learning. We

perform simulated and real-world experiments to evaluate

the performance of our planner.

II. RELATED WORK

The planners discussed so far [4], [5], [6], [2] adopt

an approach of motion planning followed by open-loop

execution to solve the problem of manipulation in clutter.

In particular, Haustein et al. [4] adopts sampling-based

planning to solve this problem. They propose reducing the

search space of kinodynamic Rapidly exploring Random

Trees (RRT) by planning over statically stable environment

states while allowing for physical interaction in-between

these states. In this paper, we use a similar kinodynamic RRT

planner to generate plans to different manipulation problem

instances. There are planners which also take uncertainty into

account before the generation of the motion trajectory [2],

[10], [8], [9], but these planners typically rely on uncertainty

reducing actions which generate a conservative sequence of

actions, limiting the robot from using the complete dynamics

of the domain.

In this paper, however, we are mainly interested in real-

time planning which can be used in a closed-loop system to

respond dynamically to changes during execution. Kloss et

al. [11] present a learning approach for planar pushing tasks

in closed-loop form. They train a neural network, which takes

the visual state of the environment as input, and feeds the

appropriate physical properties extracted from the scene to

an analytical model of the task. Hogan and Rodriguez [12]

apply a feedback control scheme that can alternate between

different interaction modes to control a tool pushing a slider

on a planar surface. To avoid learning a behavior that exploits

the idiosyncrasies of the physics model in the simulation en-

vironment, Peng et al. [13] propose randomizing the physics

parameters in the simulation environment during the learning

phase for a pushing task. These approaches have proven

capable in real world manipulation. However, they focus on

manipulating a single object whereas we are interested in

multi-object interaction present in cluttered spaces. Laskey

et al. [14] tackles this problem by relying on a expert human

demonstrator and a DNN to control 2-DOF of a robot arm

to reach a target object on a cluttered surface.

The idea of learning a heuristic for control and planning

has been applied in domain other than manipulation in clut-

ter. Negenborn et al. [15] propose a framework for learning

based model predictive control for general Markov Decision

Process. Similarly, Zhong et al. [16] look at the problem of

value function approximation for automatically shortening

the horizon in model predictive control for dynamic tasks

like inverted pendulum and acrobot. These approaches do

not take into account challenges typical to clutter manip-

ulation tasks, such as inaccuracy of the physics model,

and computation constraints imposed by the physics engine.

Conceptually, the work of Anthony et al. [17] is reminiscent

to our work. They use Monte Carlo Tree Search to generate

plans leading to the goal. They suggest making the searches

more efficient by biasing the search process with a DNN-

based value function that is recursively trained on previous

iteration of the generated plans. Likewise, Hottung et al. [18]

integrate neural networks in a heuristic tree search procedure

for accelerating the searches by pruning the tree. Further,

Hussein et al. [19] rely on collected demonstrations to pre-

train a DNN-based policy. Then, they refine the policy in

an active learning fashion where an agent is assumed to

have access to the optimal policy when faced with states

with low action confidence. Although combining traditional

control and theoretic planning such MCTS methods [20],

[21] with machine learning offers promising solutions to

problems with a sparse reward function [22], they are yet to

be proven capable in handling physics based manipulation,

where simulating a large number of roll-outs (a common fea-



Fig. 3: The initial configuration (left) and the final configu-

ration (right) of an example scene.

ture of these approaches) at every time step is prohibitively

expensive. To the best of our knowledge, this line of thought

has not yet been investigated in the context manipulation in

clutter. In this paper we examine the problem from a physics

based perspective for real world applications.

III. PROBLEM FORMULATION

We target applications where a robot has to reach and

manipulate objects in cluttered spaces. For instance, reaching

a ketchup bottle in the back of a cluttered refrigerator shelf,

or pushing a box item on a warehouse shelf. In these settings,

it is also desirable to minimize the disturbance of other

objects while manipulating the target object. The robot has

to use non-prehensile skills to manipulate movable objects

from an initial state to a desired goal state, as illustrated in

Fig. 3.

We model the environment as a Markov Decision Process

(MDP) represented as a tuple M = 〈S,A, T, r, γ〉 where

S and A are the sets of states and actions respectively,

r : S × S → R is the reward function, T : S ×A → S is

the transition function, and γ is the discount factor, such

that 0 ≤ γ ≤ 1. Since we are interested in modeling planning

problems with goal states, our MDP model is episodic, that

is there exists at least a (goal) state sg that can never be left

(T (sg, a) = sg ∀a ∈ A) and gives zero reward (r(sg, sg) =
0). A behavior for the MDP is represented as a (stochastic)

policy π : S × A → [0, 1], where π(s, a) = P (a|s), with

s ∈ S, a ∈ A, that is, the probability of the agent picking

action a in state s. The value of a state-action pair 〈s, a〉
under a given policy π is the cumulative discounted reward

(called the return) achieved from s taking a and following

π thereafter: qπ(s, a) =
∑∞

t=0
γtrt+1|π

1

The state at time t is given by the planar poses of

the robot and the m objects st = {〈xrobot, yrobot, θrobot〉,
〈xobj i, yobj i, θobj i〉

m
i=1}. While the state space is continuous,

we discretize the action space, so that the robot can execute

six actions in A, four to apply a force in each of the cardinal

directions, and two to rotate the end-effector clockwise and

counterclockwise in the task space. The transition function T
models the physics-based interaction between the robot and

the objects, predicting how the objects move in response to

robot actions. We avoid hand-crafted reward functions by

setting r(st, st+1) = rt+1 = −1 where st, st+1 ∈ S. This

1Note that this series converges, at least for some policies, under the
assumption of γ < 1 for non-episodic MDP and γ 6 1 for episodic MDP.

domain-independent reward function encourages the robot to

reach the goal Sgoal ⊆ S as fast as possible.

A task instance 〈sinit, G〉 for our problem is de-

fined by the initial positions of the robot and objects,

sinit, and a set of circular goal regions for all objects

G = 〈xgoal i, ygoal i, radiusgoal i〉
m
i=1, where xgoal i and ygoal i

is the centre of the goal region for object i and the

radiusgoal i is the radius of this region. Example regions are

in Fig. 3. In this paper, for the obstacle objects (red objects

in the figure), we place the goal regions (red regions in the

figure) on the initial positions of these objects at s0. This is

how we discourage the planner from disturbing the scene.

For the target object (green object) the goal region (green

region in the figure) can be anywhere. We also use the same

fixed radius for all goal regions. The goal set Sgoal is the set

of all the states where all the objects are in their goal regions

G.

A plan is a sequence of states and actions

p = 〈s0, a0, . . . , sL−1, aL−1〉, where L is the length

of the plan, st+1 = T (st, at) with st, st+1 ∈ S, and

T (sL−1, aL−1) ∈ Sg , i.e. the final state is a goal state.

An optimal plan is one that maximizes the return from the

initial state.

Existing planners [2], [4], [5], [6] can generate solutions

to this problem (which are usually sub-optimal in the sense

of maximizing the return, but can at least find a plan to reach

a goal state). However, open-loop execution of these plans

in the real world can easily fail, as the predicted motion of

the objects differs from the real motion due to uncertainty in

physics-based predictions, especially when there are multiple

contacts between objects.

In order to take the model uncertainty into account, we

propose to interleave planning and execution, where the

robot:

1) Plans a sequence of actions from the current state s0.

2) Executes the first action, a0, in the sequence.

3) Observes the state of the system and update s0.

4) Goes to step 1.

The first step in this procedure is usually the most costly

one. The planners in the literature addressing the problem of

manipulation in clutter are not fast enough (taking anywhere

from tens of seconds to minutes [2], [4], [5], [6]) to run as

step 1. Therefore, in this paper, we propose to plan for only a

short horizon, and not necessarily until the goal. Given such

a horizon h, we are then interested in maximizing the reward

for h steps plus our estimate of how much reward we can

get from the state at the horizon:

〈a0, . . . , ah−1〉 = argmax
〈a0,...,ah−1〉

h−1
∑

k=0

γkrk+1 + γh max
a

q(sh, a)

(1)

where the action-value function q(sh, a) estimates the ex-

pected return for reaching the goal from the horizon state

sh and choosing the action a. In this paper, we call this the

Receding horizon planner (RHP) and we use it as the robot

control policy.



The horizon can mitigate the inaccuracy of the value

function estimate, by ranging from infinity, with the robot

planning all the way to the goal, to zero, with the robot

acting greedily with the respect to the value function. With

an infinite horizon the value function is ignored, while with

h = 0 the behaviour depends entirely on the value function.

In the latter case, if the value function is optimal (that is

q(s, a) ≥ qπ(s, a) ∀s ∈ S, a ∈ A, for any policy π), so is

the resulting policy. In practice, a short but non-zero horizon

takes advantage of both the planner and the value function

without relying on either one entirely, and we experiment

with several values for h.

IV. LEARNING AN ACTION-VALUE FUNCTION FROM

SAMPLING-BASED PLANNERS

We are interested in having an approximation of the

action-value function over the entire continuous state-space

for any goal. In this section, we present a learning approach

to extract an estimate of the action-value function from

a collection of planning instances. The learned function

approximates the return achieved by the planner from a

number of sampled initial states and goal regions.

A. Generating example plans

Sampling-based planners treat every new planning in-

stance independently from previously solved instances. Also,

they must plan until the goal, which means that they do not

offer useful information on the searched areas of the state-

state space from which the goal was not reached. However,

sampling-based planners provide a probabilistically complete

tool to solve complex planning problems in high-dimensional

state spaces without necessarily requiring a hand-crafted

or domain-dependent heuristic. In particular, Kino-dynamic

planners are one family of the sampling-based Rapidly ex-

ploring Random Trees planners, specific for solving planning

problems that involve dynamic interactions. We implement a

state-of-the-art kino-dynamic planner [4] used for solving

physics-based manipulation in clutter planning problems.

We generate P random problem instances 〈spinit, G
p〉Pp=1,

as described in Sec. III. Then, for each planning instance

p, we run the kino-dynamic planner to generate a so-

lution of the form 〈apinit, . . . , a
p
L−1

〉. The state trajectory

〈spinit, . . . , s
p
L−1

〉 induced by the action sequence of a plan p
brings the environment to a goal state T (spL−1

, apL−1
) ∈ Sp

g

where each box is placed in its corresponding target region

Gp.

B. Learning The Action-Value Function From Observed Tra-

jectories

We use example plans to train a DNN to predict the action-

value estimate for a given state-action pair. We represent the

action-value function estimate q̂(s, a; θ), modeled by a DNN

with parameters θ. To train the DNN, we use every state-

action pair encountered along every example plan. For each

example plan, and for every state-action pair in that plan, we

compute the update target:

q(spl , a
p
l ) =

L−l−1
∑

k=0

γkrl+k+1 = r(
1− γL−l

1− γ
) (2)

where p stands for the index of the plan generated by the

kino-dynamic planner and l is the index of the state-action

pair in that plan. The second equality takes advantage of

the fact that in our formulation all the immediate rewards,

denoted as r, are the same2.

While the DNN trained as above learns to predict the

action-values for the actions executed in a state by the

kino-dynamic planner, the values predicted by the DNN

for actions that have not been used by the planner can

be arbitrary. This is because the available example plans

offer no information on the actions that the planner did not

choose along the traversed states. As a result of function

approximation, however, these actions will nonetheless have

a value. The value can converge to an arbitrary number,

determined by the effect of the target value in the states that

the planner did traverse. A possible undesirable effect is that

the values of the actions not chosen by the planner can be

higher than the chosen one. This can later cause an action

that was not favored by the kino-dynamic planner to look

more favorable to RHP that uses the action-value function

as a heuristic.

In order to avoid this phenomenon, we ground the uncho-

sen actions to a target value that is lower than the target value

of the chosen action. In literature [23], [24], the difference

between the value of a desired action and the other actions

is referred to as the value margin

We propose a definition of the value margin driven by the

observation that, in the domain of pushing tasks, a mistake is

in most cases not irreparable, but can be overcome through a

number of k additional actions. Hence, we use for the action-

value of the unchosen actions the following update target:

q(spl , a
p
u) =

{

r( 1−γL−l+k

1−γ
), if q̂(spl , a

p
u; θ) ≥ q(spl , a

p
l )

q̂(spl , a
p
u; θ), otherwise

(3)

where au ∈ A\{al} is an unchosen action3. This imposes

that the unchosen actions, which would otherwise have a

higher value than the chosen one, have a value equivalent

to being k steps further away from the goal than the chosen

action. If, on the other hand, the value that the approximator

converges to does not favor an unchosen action then we leave

it unchanged (as estimated by the network). Lastly, we add

an L2 regularization term to the target function of Eq. 2

and 3, to avoid over-fitting on the available plans. Once the

training converges, we can use the action-value function to

derive RHP policy for the robot, as described in Sec. III.

We experimented with DNNs of different sizes and expres-

sive power, but none could reliably represent the behavior

of the planner over a large number of task instances. We

2If γ = 1 the equation collapses to q(sp
l
, ap

l
) = (L− l)r

3if γ = 1 the first component of the equation collapses to q(sp
l
, apu) =

(L− l + k)r



demonstrate experimentally that executing a greedy policy

directly on the output of the network leads to a success rate

much lower than using the action-value function as heuristic

for RHP policy, i.e. using the action-value function only after

a few lookahead steps. Nonetheless, we show in the next

section that the information compiled in the action-value

function can be further optimized to play a valuable role

when used as a heuristic to drive RHP.

V. HEURISTIC-GUIDED DEEP REINFORCEMENT

LEARNING

The performance of action-value based RHP is bounded

by the quality of its heuristic. So far, the knowledge encap-

sulated in the action-value function has two shortcomings:

first, the plans generated by the kino-dynamic planner are,

in general, sub-optimal; and second, information is lost in

the approximation by the DNN, with consequent perfor-

mance degradation with respect to the kino-dynamic planner.

Furthermore, the action-value function estimates the return

based on the average behavior of the kino-dynamic planner.

However, the RHP policy, that is actually controlling the

robot, can differ from the behavior of the kino-dynamic

planner. To overcome these problems, we use reinforcement

learning to 1) improve the action-value function to better

estimate the optimal one and to 2) ground the unexperienced

state-space transitions to their actual values.

We implement the Deep Q-Learning (DQN) algorithm

[25]. We initialize the DNN to the trained DNN from the

previous section. Further, We formulate an RL policy, that we

call ǫ-RHP, which selects a random action with probability

ǫ and with probability 1 − ǫ the policy queries RHP for an

action. We found that focusing the search towards the goal by

augmenting the RL policy with RHP, reduces the chances of

the action-value function from diverging which is common

problem in RL when used in conjunction with a DNN as a

function approximator.

Throughout the RL training process, the robot stores the

newly collected transition samples in a finite buffer Dreplay,

initialized with transition samples from the previously solved

task instances, and gradually replacing old samples. At every

action step, the DNN parameters are updated by minimizing

a loss function on a batch of random transition samples from

Dreplay . The loss function is the squared prediction error

over the M samples in a batch B = {〈si, ai, ri, s
′
i〉i} where

s′i is the state following si in sample i:

Lθ(B) =

M
∑

i=1

(ri + γmax
a′

i

q̂(s′i, a
′
i; θ)− q̂(si, ai; θ))

2 (4)

We also add an L2 regularization loss on the network

parameters.

The benefit of Dreplay is twofold. It is using the collected

experience more effectively to counteract the high correlation

in the on-line incoming samples, which is also known as

experience replay. Second, it leads to a smooth change in

the action-value function, and consequently in the robot

behavior, as it shifts from estimating the cost of following the

Fig. 4: Performance of the greedy policy induced by the

action-value function trained over a different number plans.

kino-dynamic planner to estimating the optimal action-value

function.

VI. SEARCHING THE ACTION-SPACE UP TO THE HORIZON

We use the learned action-value function q̂(s, a; θ) as

heuristic to RHP, i.e. we use it as an approximation in Eq. 1

in-place of the unknown optimal action-value function at sh.

The only remaining problem is searching the action-space

up to the horizon, i.e. the maximization over the h actions

in Eq. 1. One naı̈ve way to do this is to explore all possible

action sequences up to the horizon h. However, an exhaustive

search would scale badly with the horizon depth h and the

size of the action set A, O(|A|h).

Instead, we bias the search towards promising actions. We

implement RHP, such that it simulates n trajectories, which

we call roll-outs, of horizon h each. Each of the n roll-outs

is started from the current state s0. At every step t in a

roll-out, RHP samples an action using the soft-max of the

action-value function:

P (a|st) =
exp(q̂(st, a; θ)/τ)

Σai∈Aexp(q̂(st, ai; θ)/τ)
(5)

where τ is the temperature parameter. This would favor

exploring actions whose value learned in the previous section

is the highest. The return of a roll-out is computed as an h-

step return, where the first h rewards are generated by the

model, and the action-value function acts as a proxy for the

rewards beyond the horizon:

R0:h = r1 + γr2 + . . .+ γh−1rh + γhq̂(sh, ah; θ).

RHP then executes the first action in the roll-out that obtains

the highest return. This procedure reduces the number of

simulated actions per RHP query to n × h. The action-

value function, therefore, plays two roles: to inform the

search through the soft-max sampling, and as a proxy for

the rewards that are not sampled from the model.
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Fig. 5: Evaluation at execution time with shape uncertainty.

VII. EVALUATION

The manipulation scenario follows the same model in-

troduced in Sec. III. As shown in Fig. 3, the environment

consists of the end-effector of the robot arm shown in blue

and 3 movable square boxes of side 6 cm on a planar surface

shown in red and green. The robot has to push one of the

boxes into a desired target region of radius 6 cm, while

having the rest of the objects placed by the end of the task

as close as possible to their initial pose. The target regions

are depicted by light colored circles corresponding to their

designated boxes.

We evaluate the proposed approach in three experiment

sets:

• First, we measure the effect of the number of plans (that

is, plans generated by the kino-dynamic planner) on

the quality of the action-value function. We show that

after a certain number of plans from the planner, the

performance of the induced policy hits a plateau.

• Second, we compare the performance of our trained

planner to different base line approaches.

• Lastly, we demonstrate some example plans on a real

world implementation.

In our simulation experiments, we modeled the world

in the Box2D physics simulator [26]. The robot motion is

generated by applying momentary forces to its end-effector,

and waiting until the robot and objects came to a stop due to

frictional damping forces. With this force, we observed that

each translational action moved the hand for a distance of

around 5 cm, and each rotational action moved the hand for

about 30o. The kino-dynamic planner typically needed 20-30

actions to reach the goal in our experiments in a wide variety

of task instances. Therefore, we set 40 actions as the limit

before we stopped our policy. At the end of a run, if any the

boxes was out of its corresponding target region, then we

considered that run a failure. Otherwise, we considered it a

success.

A. The effect of the dataset size on performance

We generated multiple task instances by randomly sam-

pling non-colliding initial object poses and also randomly

sampling a target region for the green box. We then run

the kino-dynamic planner to generate a plan for each the

task instances. We used the TensorFlow [27] library to build
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Fig. 6: Top: robot failing to keep the red box close to its

initial position by following a precomputed plan using kino-

dynamic planning. Bottom: robot successfully executing the

task goal using RHP-66.

and train a feed-forward DNN model consisting of 5 fully

connected layers. The first 4 layers have 330, 180, 80, and

64 neurons, respectively, with ReLU activation function. The

output layer consists of 6 neurons, one per action, with

linear activation functions. The DNN is trained following

the procedure described in Sec. IV-B with the value margin

parametrized by k = 4.

To test the action-value function encoded by the network,

we generated 500 random task instances, and run a greedy

policy on them, that is executing the action with the highest

value estimate. The horizontal axis in Fig. 4 shows the

number of plans P generated by the kino-dynamic planner,

and the vertical axis shows the success rate of the policy

trained with that many plans. We split the 500 task instances

into 25 batches of 20, and the figure plots the average success

rate and the confidence interval over these batches.

As expected, the graph shows an increasing trend w. r. t. the

number of available plans. After reaching a P of 9000 plans,

we see that it starts to plateau before it hits 50% success rate.

This demonstrates that the DNN alone could not encode,

across all instances, a behavior as good as the planner which

achieves a success rate of 98% as shown in the first cell of

Table I.

B. Performance evaluation

Next, the network that encoded the best action-value

function as measured by the performance in the first round

of experiments is further trained with RHP-guided RL where

each RHP query runs n = 6 roll-outs of h = 6 horizon

depth each. To evaluate the effectiveness of every step in

our approach, we compare two groups of RHP policies:

• In the first group, the action-value function (that is, the

DNN) is learned solely from the plans over the kino-

dynamic planner. We call this kino-dynamic RHP in

Table I.

• In the second group, the action-value function is further

updated with the RHP-guided RL. We call this kino-

dynamic RHP + RHP-guided RL in Table I.

We evaluated each of these groups by using the trained

action-value function in three different ways: greedy policy



TABLE I: The performance results of the different policies and the planner

Planner Kino-dynamic RHP Kino-dynamic RHP + RHP-guided RL

KDP GP RHP-33 RHP-66 GP RHP-33 RHP-66

No uncert.
suc. rate [%] 98.0 ± 2.0 48.0 ± 0.0 78.0 ± 1.9 88.0 ± 1.9 51.5 ± 5.6 88.8 ± 1.3 94.4 ± 1.6
Avg. exec. time [s] 49.4 ± 14.9 0.7 ± 0.0 5.8 ± 0.2 17.7 ± 2.0 0.6 ± 0.1 7.9 ± 0.2 21.2 ± 1.6

Low uncert.
suc. rate [%] 24.5 ± 17.3 48.2 ± 7.7 77.2 ± 4.4 86.2 ± 3.5 48.6 ± 6.7 88.2 ± 2.8 94.0 ± 2.5
Avg. exec. time [s] 41.1 ± 11.7 0.7 ± 0.1 6.4 ± 0.5 18.6 ± 1.6 0.6 ± 0.0 8.0 ± 1.3 22.7 ± 5.6

Med. uncert.
suc. rate[%] 28.5 ± 25.3 42.2 ± 12.4 73.4 ± 4.9 85.8 ± 8.7 47.3 ± 9.1 88.0 ± 2.4 91.2 ± 4.6
Avg. exec. time [s] 42.5 ± 9.0 0.6 ± 0.1 7.3 ± 0.1 19.7 ± 3.5 0.6 ± 0.1 8.1 ± 0.6 18.4 ± 5.2

High uncert.
suc. rate[%] 15.7 ± 15.1 44.7 ± 29.9 71.5 ± 7.2 82.8 ± 8.1 45.6 ± 10.4 87.3 ± 5.1 90.1 ± 2.8
Avg. exec. time [s] 37.6 ± 8.9 0.7 ± 0.1 7.1 ± 0.8 14.5 ± 2.3 0.7 ± 0.2 8.5 ± 2.7 17.3 ± 1.6
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Fig. 7: Top: robot successfully executing the task goal by

following precomputed plan using kino-dynamic planning.

Bottom: robot successfully executing the task goal using

RHP-66.

(GP), RHP with n = 3, h = 3 (RHP-33), and RHP with

n = 6, h = 6 (RHP-66). We also include the open-loop

execution based on the kino-dynamic planner (KDP) as a

base-line.

When we evaluated a certain policy, we injected different

levels of uncertainty in the physics model as a way of gaging

how a policy copes with dynamics that are different then the

one it was trained on. The performance under such artificial

uncertainty is a way of estimating the robustness of each

policy, and approximating how a policy would perform under

real world uncertainty. The rows in Table I correspond to

these uncertainty levels.

To inject uncertainty into the execution, we considered

physics parameters: shape, friction, and density of the boxes.

During evaluation, the uncertainty is sampled from a Gaus-

sian distribution centered around the value of the parameters

used in the training (and planning in the kino-dynamic

planner case)4.

In each cell, Table I shows the success rate and the

average computation time per successful execution. The

latter includes planning time, whether kino-dynamic planning

or RHP, and the time required to compute the physical

4Mean values of the boxes’ physics parameters: shape:0.06x0.06m,
density: 1 kg/m2, friction coefficient: 0.3.
Standard deviation on the boxes’ physics parameters with corresponding
uncertainty: Low = 0.1×mean, medium = 0.2×mean, high = 0.3×mean.

interaction using Box2D. Also, a computation time limit of

2 minutes is imposed on all trials. The results presented are

averaged over 10 trials on the 500 random task instances. We

note that the experiments are conducted on an Intel Xeon E5-

2665 computer equipped with NVIDIA Quadro K4000 GPU

card.

The kino-dynamic planner case with no uncertainty shows

a high success rate. The few cases where it failed are due to

the imposed time limit. Nevertheless, the decreasing perfor-

mance with uncertainty and the relatively high computation

time confirms the limitation of using open-loop planning in

execution. The left image in Fig. 5 shows how a plan can fail

during execution when the environment is slightly different

than expected. The green box was expected to slide inside

the robot hand, however because of mismatched dimension,

that is, the box has a rectangular shape instead of the square

shape used for planning, the box slides outside of the arm

trajectory. In general, this indicates that this type of planning

is favorable when a high-fidelity model and high-processing

power are available.

We also notice that when RHP is engaged there is a

notable increase in performance. The longer the horizon

and number of roll-outs the higher is the success rate and

the more robust it is against uncertainty. The performance

increase comes at a cost of an increased computation time.

However, it is still within reasonable limits for near real-

time manipulation. In contrast to using an open-loop control

scheme, the right image in Fig. 5 illustrates how the robot

can adapt to unexpected behaviors.

Looking at the overall performance between the two

groups of policies, we see that further optimizing the action-

value function with RHP-guided RL contributed to a higher

success rate and robustness to uncertainty. Particularly, RHP-

66 outperformed all of the others w. r. t. the success rate. We

used this policy successfully to command a robot in the real

world.

C. Real robot execution

We performed experiments on a UR5 robot5. We created

the three task instances shown in Figures 1, 6, and 7. In

each task, we tested the trained RHP-66 policy (bottom row

5https://www.universal-robots.com/products/ur5-robot/



in figures) and compared it to the open-loop execution of

the kino-dynamic planner (top row). During the execution

of RHP, closed-loop feedback on object poses was supplied

using an OptiTrack system for RHP to run the roll-outs on

the model. As expected, the reactive capability of RHP made

its reaction robust to the dynamics of the real world, and

succeed in these three tasks. In two out of three tasks, the

open-loop execution failed. A video of these experiments is

available on https://youtu.be/xwa0fTTuQ1g.

VIII. CONCLUSIONS

This paper described a receding horizon planning (RHP)

approach for closed-loop planning to solve physics-based

manipulation in clutter problems in near real-time. We

demonstrated how a suitable action-value function for RHP

can be learned from a sampling-based planner, and how fur-

ther improving the action-value function with RL contributes

to the system being both faster, and more robust, than the

open-loop planner it builds on. Our approach does not require

engineering domain-dependent heuristics or manual reward

shaping.

These findings motivate us to further develop our re-

search on real-time dynamic manipulation. We are currently

extending this work to admit visual input for the state

representation. This will allow the robot to seamlessly adapt

to a changing number of objects in the scene. We are also

committed to augmenting the robot manipulation skills with

other manipulation primitives such as grasping, leveraging,

and rolling.

REFERENCES

[1] D. Leidner, W. Bejjani, A. Albu-Schäffer, and M. Beetz, “Robotic
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