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A Probabilistic Approach to Unsupervised Induction of Combinatory
Categorial Grammar in Situated Human-Robot Interaction

Amir Aly' and Tadahiro Taniguchi’> and Daichi Mochihashi?

Abstract— Robots are progressively moving into spaces that
have been primarily shaped by human agency; they collaborate
with human users in different tasks that require them to
understand human language so as to behave appropriately
in space. To this end, a stubborn challenge that we address
in this paper is inferring the syntactic structure of language,
which embraces grounding parts of speech (e.g., nouns, verbs,
and prepositions) through visual perception, and induction of
Combinatory Categorial Grammar (CCG) in situated human-
robot interaction. This could pave the way towards making
a robot able to understand the syntactic relationships between
words (i.e., understand phrases), and consequently the meaning
of human instructions during interaction, which is a future
scope of this current study.

I. INTRODUCTION

Creating interactive social robots able to collaborate with
human users in different tasks requires high-level spatial
intelligence that could make them able to discover and
interact with their surroundings. Developing this spatial
intelligence involves grounding language (action verbs, ob-
ject characteristics (i.e., color and geometry), and spatial
prepositions) and the underlying syntactic structure through
sensory information so as to make a robot able to understand
human instructions in the physical world.

Understanding syntactic structure of language has been
intensively investigated in the literature of cognitive robotics
and computational linguistics. In cognitive robotics, dif-
ferent research studies proposed computational models for
grounding nouns, verbs, adjectives, and prepositions encod-
ing spatial relationships between objects [1, 2, 24, 29, 42].
However, they have not investigated grammar understand-
ing at the phrase level, which constitutes a higher level
than grounding words through perception. Meanwhile, in
computational linguistics, recent studies presented models
for inducing combinatory syntactic structure of language
[5, 16]; however, they used annotated databases for grammar
induction where each word has a corresponding syntactic tag
(as a noun, verb, etc.). This last point illustrates the important
role that cognitive robotics could play in grammar induction
through grounding parts of speech in visual perception so
as to allow for learning the latent syntactic structure of
phrases in a developmentally plausible manner. In this study,
we build on the model of Bisk and Hockenmaier [5] for
grammar induction, and propose an extended probabilistic
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Bayesian framework for grounding parts of speech within
a cross-situational learning context between a human user
and a robot [1, 36]. The overall structure of the system is
coordinated through the following two phases:

1) Unsupervised calculation of Part-of-Speech (POS) tags
for words (Section V), then grounding both words
and tags through visual perception so as to learn their
syntactic categories and meanings (Section VI)!.

2) Unsupervised induction of Combinatory Categorial
Grammar (CCQG) categories based on the grounded
tags in phase (1) (Section VIII).

The results show that the proposed probabilistic frame-
work for grounding parts of speech was able to successfully
provide correct tags to the grammar induction model. This
paves the way towards grounding phrases and their induced
CCG complex categories so as to allow a robot to under-
stand phrases (not only words) composing sentences, which
constitutes a direction of future research.

II. RELATED WORK

Grounding language in perception is an important chal-
lenge in artificial intelligence, cognitive robotics, and natural
language processing. The “Symbol Grounding” problem was
defined by Harnad [19], which discusses assigning a meaning
to a meaningless symbol (e.g., new word) through interaction
with the surroundings. Tanenhaus et al. [40] investigated the
effect of visual cues on language understanding. Roy et al.
[31] introduced an architecture to provide perceptual and
affordance representations of words. Matuszek et al. [25]
introduced a probabilistic framework that employs catego-
rial grammar to develop compositional representations of
language and objects in the environment. Tellex et al. [42]
and Dawson et al. [12] proposed probabilistic frameworks
for grounding verbs and prepositions in utterances that en-
code spatial relationships between referents and landmarks.
Siskind [35] developed a model for grounding semantics of
verbs in short image sequences. Marocco et al. [24] proposed
a framework for grounding action words through sensori-
motor interaction with the environment. These interesting
studies, inter alia, have not discussed inferring grammatical
structure of phrases in a developmentally plausible way,
which constituted our motivation for the proposed study. This
could open the door to make a robot understand phrases,

'For example, the following instruction could be tagged as follows:
(Raise, 1) (the, 5) (Red, 2) (Bottle, 4) (Near, 6) (the, 5) (Box, 4), where
these ungrounded numerical tags represent the syntactic categories of words
(i.e., Verb, Determiner, Adjective, Preposition, and Noun).



through an unsupervised approach, which is a future research
line of this study.

The literature of natural language processing reveals dif-
ferent approaches towards inferring syntactic structure of
language from Part-of-Speech (POS) tagging to grammar
induction. Church [11], Brill [7], and Goldwater and Griffiths
[18], inter alia, discussed different approaches - supervised,
semi-supervised, and unsupervised - for tagging a word
sequence with syntactic attributes. On the way towards
studying a deeper syntactic structure of language, Klein
and Manning [22] proposed a generative model for learning
constituency and dependency in language for unsupervised
grammar induction using induced Part-of-Speech tags. De-
pendency parses are determined through unlabeled edges
between constituents without any defined syntactic cate-
gories, but they can not detect non-local structures efficiently.
Steedman [37] introduced the rich and universal lexicalized
formalism: Combinatory Categorial Grammar (CCG), where
each constituent is associated with a structured syntactic cat-
egory that determines its relationship to adjacent constituents
in a sentence. Besides, the CCG formalism could effectively
interface the syntactic to semantic structures of language [38]
so as to allow a robot to better interpret human instructions.

Different approaches to unsupervised grammar induction
have been investigated in the literature [5, 6, 16]; however,
these approaches disregarded learning lexical information of
words and used annotated corpora. In this paper, we bridge
between artificial intelligence, cognitive robotics, and natural
language processing, and propose a framework for grounding
lexical information of words through visual perception so as
to infer the combinatorial syntactic structure of language -
in an unsupervised manner - within a situated human-robot
interaction context. This could pave the way to investigate
grounding phrases and their induced CCG categories through
visual perception so as to understand the syntactic structure
of phrases composing sentences, which is a future research
line of this current study that was not sufficiently addressed
in the related literature.

The rest of the paper is organized as follows: Section (III)
describes the system architecture, Section (IV) illustrates
the visual perceptual system, Sections (V and VI) describe
the lexical tagging of words and the proposed grounding
model, Section (VII) presents the experimental setup, Section
(VIII) introduces the CCG syntactic formalism of language,
Section (IX) discusses the obtained results, and Section (X)
concludes the paper.

III. SYSTEM ARCHITECTURE

The proposed framework in this study is coordinated
through: (1) System for visual perception: which outputs
position coordinates of the human arm joints while manipu-
lating objects, in addition to position coordinates of objects
on a tabletop and their color and geometrical characteristics
(Section 1V), (2) Systems for syntactic structural repre-
sentation of language: which represents language through
syntactic tags and combinatorial categories (Sections V and
VIII), and (3) Probabilistic generative model: which grounds

words and their syntactic tags through visual perception
(Section VI). The following sections in the paper discuss
the proposed approach in detail.

IV. VISUAL PERCEPTUAL INFORMATION
A. Skeleton Tracking: Representation of Action Verbs

The left-to-right HMM-based gesture model®> uses the
tracked (x,y,z) position coordinates’ of the human right-arm
joints (Figure 1) (converted to the local coordinate system
of the referent) as observations [1]. Five HMM models
are used to represent five action verbs (Section VII). Each
HMM model is trained*, during the cross-situational learning
phase [36], on position coordinates of the arm joints while
performing an action in different ways using the Expectation-
Maximization (EM) algorithm [13]. The probabilities of
evaluation of the test joint coordinates, through the different
trained HMM models, are used to represent actions as
observations in the probabilistic generative model (Section
VD).

Fig. 1: Human body tracking and action characterization for
object manipulation.

B. Object Segmentation into Point Cloud: Representation of
Spatial Concepts

The unsupervised object segmentation model in the frame-
work segments objects lying on a tabletop into distinct
3D point clouds with centroids representing their (x,y,z)
coordinates in respect of the robot camera (Figure 2)°. These
coordinates allow the learning model to understand spatial
concepts and relationships between objects. Each point cloud
is characterized using its RGB color histogram and the View-
point Feature Histogram (VFH) descriptor [32] that could
efficiently represent object geometry and viewpoint while
being invariant to scale and pose. Having calculated object
locations and features, the robot employs the probabilistic

’Hidden Markov Models (HMM) have been intensively used in the
literature to model human body motion (a time-series observation sequence)
in order to enable a robot to learn and generate behaviors without temporal
constraints [20, 28, 39].

3The 3D tracking system uses the SDK OpenNI2 and the middleware
NITE2.

4For each action verb in the training and test corpora (Section VII),
position coordinates of the arm joints have been recorded during five
different trials per action: three for training and two for testing.

5The model detects the tabletop plane using the RANSAC algorithm [14,
33], and the orthogonal wall planes in contact with, at least, one image
border. The remaining points in the cloud are voxelized and clustered into
distinct blobs representing object candidates. This model-based approach
does not require prior knowledge about the environment such as neighboring
information and the number of regions to process [21, 23].



generative model (Section VI) in order to ground spatial
concepts and object characteristics (i.e., color and geometry)
through a cross-situational learning context with a human
tutor in space [36].

V. PART-OF-SPEECH TAGGING: UNGROUNDED
LEXICAL TAGS OF WORDS

The unsupervised® Part-of-Speech (POS) tagging (tags
induction) model assigns the numerical syntactic tag T =
(ti,....t,) to the word sequence w = (wy,...,wy). The first-
order Hidden Markov Model (HMM) employs tags as hid-
den states and words as observations [15]. The probability
distribution (transition) of the hidden tag states of the word
sequence w is expressed as follows:

P(ty,...1n) = | [ PCai16i-1) ()

The emission distribution of tags over words is expressed
through the probability P(w;|#;) of word w; conditioned
on tag t;. The emission and transition parameters (6, ¢) are
characterized using multinomial distributions with Dirichlet
priors (ag,ay) (K stands for the number of tag states):

w; | ti=t~ Mult (6;,) , 6 |a'g ~ Dir (ag)
ti|tios =t ~ Mult ($,) , ¢: |y ~ Dir (ay)

Having an unannotated corpus with a set of m sentences
W = {w,,...,wy}, the model assigns the most likely tag
set T ={ry,...,T,y} - inferred using the Gibbs sampling
algorithm [17] - to every sentence in the untagged corpus
so as to maximize the following expression:

2

P(T,W) = (IP(T, Wi, 9)) -
(r,w)e(T,W)

1_[ (ﬁ P(; | ti-1, ¢0)P(w; | t,',Gt))

(r,w)e(T,W) i=1
In addition to the HMM-based Part-of-Speech tagging
model, we examine two other common unsupervised POS
tagging models - using the same corpus - and we compare
between their accuracies:

« BROWN Hierarchical Word Clustering: which as-
signs each word to a single cluster using an n-gram
class conditional model [8].

« BMMM Clustering: which assigns words to clusters
using a Bayesian Multinomial Mixture Model [10]. This
model can incorporate different additional features on
both the type and token levels of words leading to a
precise calculation of POS tags.

Section (IX) provides measures for the accuracies of the

three taggers, and the effect of each tagger on the word
grounding and grammar induction processes.

3)

The literature reports different approaches to tagging parts of speech:
(1) Supervised, which employs annotated training corpora to set up tagging
dictionaries indicating possible tags to words [7], (2) Semi-supervised,
which employs limited annotated corpora to estimate possible tags to new
word sequences [43], (3) Unsupervised, which does not require any training
corpus to assign tags to words [9].

VI. WORD GROUNDING IN PERCEPTION: A
PROBABILISTIC GENERATIVE MODEL

Figure (3) illustrates the multimodal Bayesian generative
model used for grounding words (i.e., action verbs, spatial
prepositions, and object characteristics) through visual per-
ception with six observed states w;, Z?, ap, Cp, Sp, and g,.
The parameters of the generative model are defined in Table
(D). The state w; stands for each word in the sequence w =
(wi,...,w,), and the state Zf stands for syntactic categories
of words (Section V). The state g, stands for the geometrical
characteristics of O observed objects represented through the
VFH descriptor (Section IV-B). The state s, stands for a
spatial layout between a referent and a landmark represented
through their centroid coordinates (Section IV-B). The state
¢, stands for the RGB color characteristics of O observed
objects (Section IV-B). The state a, stands for the arm joints
locations while making actions on objects (Section IV-A).
Having a spatial configuration between a referent and a land-
mark, the potential existing relationships between them could
be expressed as follows: Observed Objects OX (0 —-1) (i.e.,
Referent A & Landmark B). The probabilistic distributions
that characterize the Bayesian generative model are defined
as follows (where GIW stands for a Gaussian Inverse-
Wishart distribution, Dir stands for a Dirichlet distribution,
Cat stands for a categorical distribution, and Gauss stands
for a multivariate Gaussian distribution) [3]:

Omz, ~ Dir) . Li=(...0)
bar, ~ GIW(EB), K =(1,....K)
ber, ~ GIWPB), K=(...,K)
¢‘YK3 ~ GIW (B), K; =(1,...,K,)
¢gk4 ~ GIW (B,), K=(,..., K,)
Tt ~ Dir() Ks = (1,...,Kpos Tag states)
Mg ~  Dir (ay)

e ~  Dir(a;)

s ~  Dir (ay)

g ~  Dir(ag)

Pi ~  Cat () )
m; ~  Cat(nzy)

wj ~  Cat (6nyz)

Z5 ~  Cat(ny)

Z5 ~  Cat (1)

le) ~ Cat (ry)

Zf, ~  Cat ()

ap ~  Gauss (z2)

Cp ~  Gauss ($z¢)

Sp ~  Gauss($z;)

8p ~  Gauss (¢Z[g’)

The latent variables are inferred using the Gibbs sampling
algorithm [17] to allow the model to learn correspondences
between words and their syntactic categories. The resulting
grounded categories of words (illustrated with an example of
a tagged human-to-robot instruction in footnote (1)!, where
those numerical tags are grounded through the generative
model) are: Verb (representing action verbs), Adjective
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Fig. 2: Spatial concepts and relationships between objects represented through 3D point cloud information.
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Fig. 3: Graphical representation of the probabilistic genera-
tive model. The order of words and POS tags is denoted by
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the index “7”.

(representing object color), Preposition (representing spatial
prepositions and relationships), Noun (representing object
geometry: object name), and Determiner (representing an
others category: the), which are used for grammar induction.

VII. EXPERIMENTAL SETUP

A human tutor and the HSR robot’ (Figure 4) are inter-
acting in front of a table on which there are five different
objects: {Cup, BaLL, Bortie, Toy, and Box®} with five
different colors: {GrReeN, YeLLow, BLUE, RED, and WHITE}
as referents and landmarks. In addition, we use five different
prepositions: {ABove, BEsiDE, NEAR, BEHiND, and INSIDE} to
represent spatial relationships between objects. Moreover,
the robot executes five different actions: {Put, Raisg, HoLb,
PuLL, and Pusn} (robot, object)9. The scenario of interaction

7The Human Support Robot (HSR) is developed by Toyota for providing
assistance to people in daily life activities. It has a cylindrical shaped light-
weight body with 11 degrees of freedom. The robot is equipped with one
arm and a gripper to grasp objects, in addition to an array of sensors and
cameras. [Toyota HSR Robot Website].

8The object ‘Box’ is considered only as a landmark.

9We focus in this study on understanding actions on objects, therefore the
action verbs were modeled on the robot that used the calculated distances
to object centroids to control its joins and execute predefined behaviors.
As a future extension of this study, we consider making the robot able to
generate actions autonomously based on it learned experience [20].

TABLE I: Definitions of the model parameters in the differ-
ent modalities.

Parameter Definition

o Hyperparameter of the distribution p;

Di Index of spatial relationship (Object A 5 Object B) of each word
A Hyperparameter of the distribution 7,

m; Index of word modality € {Action, Color, Layout, Geometry, Others}
v Hyperparameter of the distribution 6, ;

L Number of word distribution categories = K, + K. + Ks + K, + 1

O,z Word distribution over modalities

a, Hyperparameter of the distribution 7,

Ba Hyperparameter of the distribution ¢,

K, Number of categories in the action modality

. Hyperparameter of the distribution 7,

Be Hyperparameter of the distribution ¢,

K. Number of categories in the object color modality

g Hyperparameter of the distribution 7

Bs Hyperparameter of the distribution ¢;

Ky Number of categories in the spatial layout modality

ag Hyperparameter of the distribution 7,

Bg Hyperparameter of the distribution ¢,

K Number of categories in the object geometry modality

Z5 Index of action categories

Z5, Index of object color categories

Z;, Index of spatial layout categories

Zf, Index of object geometry categories

between the human tutor and the robot during the cross-
situational learning phase [36] is summarized as follows:

o The tutor teaches the robot different spatial configura-
tions of referents and landmarks lying in a tabletop -
described through 60 sentences - using visual percep-
tual information (Section IV). The unsupervised POS
tagging model calculates numerical tags representing the
syntactic categories of words for every training sentence
(Section V).

o The visual information describing spatial layouts char-
acterizes the dynamics of actions, object characteristics,
and spatial relationships between objects with respect to
the tabletop (Section IV).

« A probabilistic model grounds words through perception
in order to define the necessary atomic categories for
unsupervised CCG categories induction (Sections VI
and VIII).

« The human tutor uses 30 test sentences describing dif-
ferent spatial layouts of objects (characterized through
similar visual perceptual information as in the training
phase and numerical POS tags) in order to validate the
robustness of the word grounding process (Section IX).



(a) In order to achieve the task, the robot needs to define the
verb, the referent and its color, the landmark, and the existing
spatial relationship between both objects through grounding
words with their numerical POS tags in visual perception. The
grounded POS tags are used for CCG categories induction.

™ e i §

(b) The robot successfully raises the red bottle near the box.

Fig. 4: The robot achieves the assigned task through ground-
ing words and POS tags in visual perception.

VIII. COMBINATORY CATEGORIAL GRAMMAR:
INFERRING SYNTACTIC STRUCTURE OF PHRASES

Combinatory Categorial Grammar (CCG) is an expressive
and a lexicalized syntactic formalism [37]. Any two syntactic
categories amongst the atomic (S, N, and NP), functor (e.g.,
NP/N), or modifier (e.g., N/N) categories of neighboring
constituents could be combined through a group of rules so
as to create complex categories corresponding to higher level
constituents. The slash operators: “/” indicates a forward
combination (e.g., an argument follows a functor), and “\”
indicates a backward combination (e.g., an argument pre-
cedes a functor). The standard unary and binary combinatory
rules of the CCG formalism include [4]:

1) Application combinators:
Functor Argument
—_

—
Forward >
Backward <
Forward >
.« X\2))Y Y - X\Z
Backward <
% (X/Z)\Y X/Z
2) Composition combinators:
Forward >B
Backward <B
3) Type-raising unary combinators (argument = functor):
Forward >T
Backward <T

Figure (5) shows an example to illustrate the use of
application combinators to create bottom-up parsing of con-
stituents. The adjective “REp” constitutes a modifier category
in the CCG parsing structure (i.e., it is assigned the category
N/N with both arguments before and after the slash operator

NEAR THE BOX
(NP\NP)/NP NP/N N

RAISE THE RED BOTTLE
S/NP NP/N NJN N

N . NP

> >

NP NP\NP
NP

>

S

Fig. 5: CCG parsing through forward and backward applica-
tion combinators (maximal arity equals 2).

are identical atomic categories). This allows some parts of
speech to have generic categories that modify their head
arguments (e.g., adjectives modify nouns, and adverbs modify
verbs), unlike a functor category (e.g., X/Y — NP/N) that
represents a head category for its dependent argument.

Grounding each word and its induced POS tag (Sections
VII and V) through visual perceptual information (Sec-
tion IV) using the probabilistic generative model (Section
VI) produces the categories: Verb, Determiner, Adjective,
Preposition, and Noun. These syntactic categories define the
atomic categories of the CCG formalism!?. Having induced
these atomic categories, the CCG induction model - proposed
by Bisk and Hockenmaier [5] - learns the latent syntactic
structure of sentences in the learning database, and generates
combinatory syntactic categories for sentences in the test
database (Section VII) so as to validate the robustness of the
grammar induction process through comparison to a gold-
standard parse structure (Section IX).

The Bayesian nonparametric HDP-CCG induction model
employs Hierarchical Dirichlet Processes (HDP) [41] to
generate an infinite set of CCG categories based on a
stick-breaking model for each Dirichlet process [34] and
multinomial distributions over arguments and combinators.
The resulting induced CCG categories of constituent words
and phrases could be combined together using the rules
explained earlier that represent the combinatorial structure
of phrases. Section (IX) provides measures for the accuracy
of inducing CCG syntactic categories in different cases of
tagging models.

IX. RESULTS AND DISCUSSION

The framework is evaluated through its ability to induce
correct CCG categories using the grounded POS tags. In
this section, we provide evaluation for the accuracies of the
different sub-models in the framework:

Part-of-Speech Tagging: Table (II) illustrates different
measures for evaluating the robustness of the POS tagging
process: V-Measure'!, VI-Measure'?, and Many-to-One

19Noun Phrase (NP) = Determiner + Noun (N).

Ut measures homogeneity (i.c., optimal case: each cluster (separate
word category) contains fewer classes of tags) and completeness (i.e.,
optimal case: classes of tags referring to the same cluster are equal) of
clusters and classes [30].

121t measures the variation of information of a clustering solution, so
that the more the clustering is complete (i.e., high V-Measure), the lower
the VI-Measure would be [26].



(M-1)-Measure'3. The difference in the V-Measure scores of
the different POS taggers show that the HMM-based model
was lower evaluated than the other two models.

TABLE II: Evaluation of unsupervised POS tagging through
different measures.

M-1 Measure (%) V-Measure (%) VI-Measure
BROWN Clustering 100 94,9 0,24
HMM Clustering 100 88,67 0,57
BMMM Clustering 100 94,9 0,24

Having a referent and a landmark in each sentence in the
corpus, the HMM-based model assigned two different tags
to all referents and landmarks in the corpus (i.e., all referents
had a similar tag and all landmarks had another similar
tag), which could clearly reduce the completeness score of
the model (Table II). Meanwhile, the BMMM and BROWN
models assigned the same tag to referents and landmarks,
except for some sentences in the corpus where the tags of
landmarks were assigned differently, which could reduce the
completeness scores of both models as well. The effect of
these tagging models on the word grounding and grammar
induction processes will be discussed next.

Word Grounding: Grounding words through visual per-
ception has the objective of defining word modality and
spatial relationships between objects'*. Tables (IIT) and (IV)
illustrate the results of word grounding in case of the 3 POS
tagging models, which show a similar performance of the
three models when estimating word modality, and indicate
some differences between them when determining correct
spatial relationships between referents and landmarks.

TABLE III: Estimation of word modality using different
tagging models.

Correct Word Grounding (%)
Verb | Adjective | Preposition | Noun (Referent & Land k)
BROWN Clustering 76,7 100 66,7 60
HMM Clustering 73,3 100 63,3 71,7
BMMM Clustering 76,7 100 66,7 60

TABLE IV: Correct referent-landmark spatial relationships
represented through different prepositions.

Correct Spatial Relationships Between Objects (%)
Above | Beside | Near | Behind Inside
BROWN Clustering 0 83,3 100 333 100
HMM Clustering 100 66,7 57,1 83,3 50
BMMM Clustering 0 66,7 85,7 333 50

The HMM-based tagging model achieved higher scores, in
average, than the other two models in the grounding process
(more specifically in Table IV with the preposition ABOVE),
despite that it had a lower V-Measure score than the other
models (Table II). This could be related to that the HMM-
based model was able to better provide a unified tag to
all landmarks, unlike the other models as explained earlier.

3 Mapping between clusters and tags.

4Despite the rich literature in language grounding, we could not find a
similar study in the approach, experimental setup, or corpus to the current
one, which makes comparing these results to those of the other studies
difficult to achieve.

However, these differences do not finally affect the accuracy
of the grounding process in a global scope.

CCG Categories Induction: For the CCG induction pro-
cess, we use the grounded parts of speech expressed through
the standard tag set of the Penn Treebank Project!3: Verb:
VB, Determiner: DT, Adjective: JJ, Preposition: IN, and
Noun: NN as input to the CCG induction model, which learns
the latent syntactic structure of sentences in the learning
corpus so as to generate parse trees for sentences in the
test corpus. These syntactic parses are highly dependent
on the grounded tags, so that wrong tags could generate
imprecise parse trees. To evaluate the robustness of the CCG
induction process, we use a gold-standard parse file of all
sentences in the test corpus to compare against. This file
contains correct POS tags and dependency relations between
words in each sentence that indicate edges of standard parse
trees'®. We compare these edges to those resulting from the
CCG model’s predicted parses by calculating the number of
matching edges.

TABLE V: Accuracy of CCG categories induction using
different tagging models.

CCG Categories Induction / Matching Edges (%)
BROWN Clustering 55,2
HMM Clustering 59.4
BMMM Clustering 60,6
Gold-POS (Without Grounding Model) 68,2

Table (V) illustrate the accuracy of CCG categories induc-
tion in case of the 3 POS tagging models in comparison to
the case where the grounding model was not employed so
that grammar induction was based only on gold-POS tags.
This indicates that the BMMM and HMM-based tagging
models showed, approximately, a similar good performance
in grammar induction. These findings illustrate the ability
of the framework to associate correct word grounding to
grammar induction so as to investigate the combinatorial
syntactic structure of language in an unsupervised manner.
Similarly, they open the door to extend this framework to
ground the generated CCG categories through perception in
order to allow a robot to understand complex phrases during
interaction. This includes understanding those phrases that
encode spatial relationships expressed through prepositions
composed of more than one word (e.g., in front of the Box),
which would constitute a big step towards making robots
able to collaborate effectively with human users in space.

X. CONCLUSION AND FUTURE WORK

This study presents a probabilistic framework for un-
supervised induction of combinatory syntactic structure of
language within a human-robot interaction context. The
framework calculates numerical tags representing words in
an unsupervised manner, and grounds them through visual
perception so as to understand the syntactic categories and

5Penn Treebank Part-of-Speech Tag Set.
16These syntactic dependencies between words are calculated using
Stanford Parser for evaluation only.



meaning of words. These grounded words are used for induc-
ing CCG categories, which builds on the current state-of-the-
art where a fully annotated corpus is used for grammar induc-
tion [5]. We discuss the effect of three POS tagging models
on the word grounding and grammar induction processes,
where the HMM-based tagging model showed a slightly
better performance, in overall, than the other models. The
evaluation scores of the generated CCG parses are promising
and could be further improved through ameliorating the
inference process of the HDP-CCG model, which we are
considering to implement.

In our future work, we will consider representing the
induced CCG categories of phrases in a compositional vector
space - inspired by the research study of Nickel et al. [27]
on holographic embeddings - with the objective of grounding
phrases in perception, which would be a crucial step towards
making robots able to understand language appropriately
during interaction with human users.
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