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Abstract— Trajectory optimization (TO) is one of the most
powerful tools for generating feasible motions for humanoid
robots. However, including uncertainties and stochasticity in
the TO problem to generate robust motions can easily lead
to intractable problems. Furthermore, since the models used in
TO have always some level of abstraction, it can be hard to find
a realistic set of uncertainties in the model space. In this paper
we leverage a sample-efficient learning technique (Bayesian
optimization) to robustify TO for humanoid locomotion. The
main idea is to use data from full-body simulations to make
the TO stage robust by tuning the cost weights. To this end,
we split the TO problem into two phases. The first phase
solves a convex optimization problem for generating center of
mass (CoM) trajectories based on simplified linear dynamics.
The second stage employs iterative Linear-Quadratic Gaussian
(iLQG) as a whole-body controller to generate full body control
inputs. Then we use Bayesian optimization to find the cost
weights to use in the first stage that yields robust performance
in the simulation/experiment, in the presence of different
disturbance/uncertainties. The results show that the proposed
approach is able to generate robust motions for different sets
of disturbances and uncertainties.

I. INTRODUCTION

Given the high complexity of humanoid robots (due to
redundancy, underactuation, hybrid dynamics), generating
feasible and optimal motions for them is extremely chal-
lenging. Trajectory optimization (TO) is among the best
tools available to take into account all the physical and
geometrical constraints, while at the same time generating
locally optimal dynamic motions. However, to be able to
solve the TO problem quickly, we often resort to using
simplified models of the robot (e.g. linear inverted pendulum
model or centroidal momentum dynamics). In this case, the
discrepancy between the model and the real robot, as well as
uncertainties in the constraint sets (center of pressure (CoP),
friction cone, etc.), could cause brittle or infeasible motions.
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Fig. 1: A high-level block diagram of the proposed approach

One way to overcome this issue is simply to use conservative
constraint sets (such as shrinking the support polygon for
a CoP constraint), but this limits the capability of TO to
find desired aggresive solutions. The other problem is that
finding realistic values for the margins of the constraints is
challenging and needs trial and error.

One principled way to deal with this problem is to use
stochastic or robust trajectory optimization approaches to
explicitly add model uncertainties to the problem. Although
systematic, this approach suffers from two main issues in
humanoid locomotion. First, identifying different types of
uncertainties and projecting them to a realistic set of con-
straints in the simplified model space is challenging and not
always feasible. Second, adding stochastic uncertainties to
the problem can easily lead to an intractable problem, and
in most cases it can be solved only for simplified worst-case
scenarios, where it tends to be very conservative.

In this paper, we combine the strengths of trajectory opti-
mization and sample-efficient learning (data-driven black box
optimization) to generate robust motions for different kinds
of uncertainties with a low number of experiments. The main
idea is to use data from full-body simulations to increase
the robustness of the TO stage (Fig. 1). We formulate the
TO problem such that changing the cost function weights
trades off robustness against performance. Then, we employ
Bayesian optimization (BO) to find the cost weights of TO
that achieve the task at best in the presence of disturbances
and uncertainties.
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A. Trajectory optimization for humanoid locomotion

Starting from the seminal work of Kajita et al. [1], TO has
become the dominant approach to generate motions for hu-
manoid robots. This work uses the linear inverted pendulum
model (LIPM) [2] and an infinite horizon linear quadratic
program (named preview control) to generate center of mass
(CoM) trajectories given the predefined footstep locations.
This work has been extended in different ways, adding
inequality constraints on the ZMP [3], adaptive footstep
locations [4], and friction cone constraints [5]. However, this
model can only describe the underlying dynamics of walking
on flat terrain with zero angular momentum around the CoM.

For more complex motions such as walking on uneven
terrains and multi-contact scenarios, researchers use the
centroidal momentum dynamics [6]. Although this model
describes the unactuated part of the robot dynamics exactly
[7], it is nonlinear and renders the corresponding optimiza-
tion problem non-convex [8], [9], [10]. At the same time,
in the centroidal dynamics model, constraints on the state
(CoM position, velocity and angular momentum) as well as
the control (centroidal wrench) are a function of full body
motion and joint torque constraints. In fact, this problem is
inherent in the use of any simplified model.

One systematic way to find this constraint set is to learn
the feasible set in the centroidal space from extensive full-
body simulations [11]. However, this approach needs too
many simulations for learning all the constraints and it
does not cover all the uncertainties in a real simulation
or experiment (e.g. uncertainty in contact locations and
timings, or change in the environment). Even if one could
use the full body model of a humanoid to take all the robot
constraints into account exactly in a computationally efficient
manner [12] (which makes the problem high-dimensional
and non-convex), the models will always fail to capture
perfectly reality and uncertainty in the models of robot and
environment can still make the solution brittle.

B. Bayesian optimization for humanoid locomotion

Bayesian optimization is a form of black-box optimization.
Black-box and derivative-free optimization has a long history
in numerical optimization as well as in statistics [13]. In
robotics, BO has been applied to different problems, e.g.
locomotion of a quadruped parameterized by a walk engine
[14], locomotion of a hexapod [15], balancing of an inverted
pendulum [16], finding task priority in inverse dynamics
for controlling dual-arm manipulators [17], and scheduling
contact for a one-leg hopper [18]. For example, [16] applied
BO to tune performance cost of an unconstrained infinite-
horizon LQR for controlling an inverted pendulum on an
experimental setting. Contrary to [16], here we employ BO
to tune the cost of a constrained trajectory optimization for
a humanoid robot where the cost trades off performance
against robustness.

Application of BO to humanoid locomotion is limited
to simplified cases such as planar bipeds [19], [20], [21].
In [19], the authors employed BO to learn a parametrized
walking policy of a small-sized planar biped robot optimizing

eight parameters: four control signals to the knee and hip
joints as well as four parameters of a finite state machine.
[20] applied BO to a more complex model of a planar biped
robot, where they used 16 neuromuscular policy variables to
parameterize walking of a planar biped robot. The parameter-
ization comprises of 10 variables for stance phase feedback
gains and 6 parameters for swing phase. They applied their
approach to a simulation of a 7-link robot walking on uneven
as well as sloped surfaces. They applied a generalized version
of this approach on the simulation and experiment of the
biped robot ATRIAS [21]. Both [19] and [20] mentioned
that only a very low percentage of the parameter space leads
to a feasible gait, which shows the difficulty of generating
feasible motions for humanoid robots using only black-
box optimization. Contrary to these works, we resort to
using constrained gradient-based trajectory optimization to
generate feasible trajectories and use Bayesian optimization
on top of it to make the trajectories robust by automatically
tuning the cost weights. Also, [22], [23] used BO to find the
parameters of a whole-body controller for a humanoid robot,
yielding robust performance for the control. Our work can be
seen as complementary to these work, because we propose
to use BO to find the best cost weights of TO for a given
whole-body controller.

C. Contribution

The main contribution of this paper is to propose a
framework that combines gradient-based and gradient-free
optimization for generating robust humanoid locomotion.
This framework uses a simplified model and deterministic
proxy constraints for the TO problem, where the cost terms
trade off performance against robustness. Writing the prob-
lem in this way, we could have different cost weights that
push solutions away from the boundaries of the constraint
sets. Then we use the full-body simulation of a humanoid
robot (with disturbances and uncertainties) and exploit BO
to efficiently find a set of TO cost weights that achieve the
task at best while satisfying the full robot constraints. Fig. 1
shows a block diagram of the proposed framework.

II. OPTIMAL CONTROL PROBLEM

A. First Stage : Convex Trajectory Optimization for Walking

This section describes the TO approach [5] that we use
for generating CoM trajectories given a desired walking
velocity. Note however that in principle any other algorithm
could be used. In [5] walking is formulated as a trade off
between three cost terms: desired velocity tracking, foot tip-
over avoidance, and slippage avoidance.

min....
Xi,X

f
i

N∑
i=1

α‖Ẋi − Ẋref
i ‖

2 + β‖Zi − Zrefi ‖
2 + γ‖µi‖2

s.t. µi ∈ friction cone , ∀i = 1, ..., N.

Xf
i ∈ reachable area , ∀i = 1, ..., N.

Zi ∈ support polygon , ∀i = 1, ..., N. (1)

where X = [cx, cy]T is the horizontal CoM position.
Z = [zx, zy]T is the zero moment point (ZMP) position



and µ is the required coefficient of friction (RCoF). Ẋref

is the desired walking velocity, Zref is the desired ZMP,
which is taken at the center of the foot to maximize the
feasibility margins. As shown in [5], (1) can be written
as a quadratic program (QP), assuming the linear inverted
pendulum dynamics and polyhedral approximation of friction
cones. This program yields consistent CoM trajectory and
foot locations for a given desired walking velocity. Then,
we use polynomials to generate the swing foot trajectories.

Depending on the cost weights α, β, γ, we get different
CoM trajectories. For example, if β = γ = 0 the optimizer
generates a feasible CoM motion, while trying to achieve the
desired walking velocity. However, ZMP and RCoF might
reach their boundaries. As a result, even if the whole-body
controller can track this CoM trajectory, a slight disturbance
could cause a fall (or infeasibility in MPC setting). On the
other hand, with high values of β, γ the optimizer generates
CoM trajectories and foot locations leading to high margins
for ZMP and RCoF, at the expenses of the velocity tracking.
As a result, it is crucial to find the optimal values of these
weights, which generate enough constraint margins while
achieving the task at best.

B. Second Stage: iLQG for generating whole-body torques

In this section, we use an iterative linear quadratic Gaus-
sian (iLQG) controller to map the desired CoM and feet tra-
jectories from the first stage to the whole-body torques, while
penalizing the full-body constraints [24]. iLQG linearizes
the dynamics and computes a second-order approximation of
the cost around a nominal trajectory. In the backward pass,
feedforward and feedback terms are obtained, accounting for
box constraints on the control [25]. Finally, convergence of
the cost is achieved by applying a line search [24]. Note
that we use iLQG as a whole-body controller with a short
horizon of 0.4 s to track the desired trajectories from the
first stage. The humanoid robot has 27 DoFs, it is 1.37 m
tall and weighs 41 kg. Abdomen, shoulder and ankle joints
are 2-DoF, while elbows, knees and pelvis are 1-DoF and
hips are 3-DoF joints.

The cost function in our problem is comprised of the
following terms [26]:

• Quadratic costs of feet and COM velocity tracking
errors.

• Smooth-abs function [24] to track the desired feet and
COM positions.

• Quadratic costs to minimize joint torques, joint veloc-
ities, angular velocity of the pelvis, linear velocity of
torso in vertical direction, and finally angular velocity
of the feet around vertical direction.

• Quadratic costs to penalize the deviations between the
orientation of the pelvis, torso and the two feet.

• Quadratic costs to penalize deviations of the Z axis of
torso and both feet from the global vertical direction.

• Quadratic costs to penalize deviation of the global
height of the torso from the fixed value used for the
LIPM.

Fig. 2: Screenshots of simulation of a 27 DoF humanoid
robot, (top) without disturbance (bottom) with lateral push

III. HYPER-PARAMETER TUNING VIA BAYESIAN
OPTIMIZATION

A. Problem formulation for robust humanoid locomotion

We propose to close the loop in our system, i.e., we
formulate an overall optimization problem based on the
quantities in Fig. 1:

min.
δ

J(δ) :=

N∑
i=1

‖Ẋ real
i (δ)− Ẋdes

i ‖2 + λφ(hδN ),

s.t. Ẋ real
i (δ) is the output of simulation in Fig 1. (2)

δ = (α, β, γ) is the collection of the hyper-parameters used
in optimization problem (1). Ẋ real

i (δ) is the CoM velocity
obtained by solving the QP (1) and applying iLQG tracking
to the simulation of the robot full body with different
(unknown) disturbances. hδN is the CoM height at the final
time step, λ is a user-defined weight, φ(.) is a function used
to penalize falls, e.g. φ = max(|hδN − hdes| − threshold, 0).
In the next subsection, we detail how the optimization
problem (2) is solved using BO.

B. BO algorithm

We apply BO techniques that make use of Gaussian
processes (GP) to model the unknown process – the objective
function J in (2). The distribution of GP naturally contains
information about the uncertainty of J . Intuitively, BO trades
off exploration (high-variance) and exploitation (high-value).
This is achieved by maximizing an acquisition function
that captures this trade-off. An example of the acquisition
function is the upper (or lower)-confidence bound (UCB)
(cf. e.g. [27])

uUCB(x) = µ(x) + κσ(x), (3)

where µ(x) and σ(x), mean and standard deviation, are
computed by the current estimates of the Gaussian process
distribution. Intuitively, in the beginning, the algorithm ex-
plores where σ(x) is high. As we collected more data, σ(x)
decreases and the algorithm exploits good regions of the
objective function with high µ(x). We illustrate this effect
in Fig. 6.

For the BO problem we have used scikit-optimize1. We
used gp − hedge as acquisition function, which is a proba-

1https://github.com/scikit-optimize/
scikit-optimize

https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize


Algorithm 1 Pseudo code for Bayesian optimization

1: Given: A black-box function J for evaluation (without
analytical gradient), an acquisition function u (e.g. uUCB
in (3)).

2: Output: Current best minimizer δ∗ of J(δ)
3: Initialize with a dataset D = {(δi, yi)}i=1,2,..., best

objective value ybest = maxi yi
4: repeat
5: Find next query parameter δt by maximizing the

acquisition function u

δt = arg max
δ
u(δ|D).

This is carried out by a numerical optimization rou-
tine, e.g. L-BFGS.

6: Evaluate the objective function at δt

yt = J(δt).

If yt < ybest, set δbest ← δt, ybest ← yt
7: Add the new data point to the dataset

D ← D ∪ (δt, yt).

Update GP(µ(δ), σ(δ)) and the resulting acquisition
function u(δ|D).

8: until Computation budget reached.

bilistic combination of the UCB (3), expected improvement
and probability of improvement [28].

Algorithm 1 shows how problem (2) is solved in this
setting. It may be helpful to think of BO as using GP as
a surrogate for the unknown objective

y := J(δ) ∼ GP(µ(δ), σ(δ)),

where µ(δ), σ(δ) are respectively the mean and standard
deviation of the GP distribution evaluated at point δ. As we
obtain more data, the GP approximates the objective better.

Given the dataset D = {δi, yi}i=1,2,..., the GP distribution
at a new point δ∗ is computed using the formula:

µ(δ∗) = KT
∗ K

−1y

σ(δ∗) = K∗∗ −KT
∗ K

−1K∗, (4)

where K∗ = k(δ∗, δ), K = k(δ, δ),K∗∗ = k(δ∗, δ∗). The
notation δ denotes the vector of parameters already stored in
the data set, i.e., δ = (δ1, δ2, . . . ). k(x, x′) is a kernel that
measures the similarity between x and x′. For example, it is
computed in one-dimension by

k(x, x′) = a exp
(
− 1

2b
(x− x′)2

)
,

where a, b are kernel parameters.

IV. RESULTS

To show the effectiveness of the proposed framework, we
present three scenarios in this section. In the first scenario,
we present a practical example that shows how the choice of
cost in the TO problem affects robustness and performance.

Then, in the second scenario we apply BO to the TO problem
with two cost weights and analyse how BO converges to the
optimal set of cost weights. Finally in the third scenario we
show how our approach can scale to cost functions with a
larger number of weights.2

A. Scenario 1: Walking with different cost weights

In this scenario, we show how the cost weights of the
TO problem (1) affect the performance of the robot dur-
ing walking in the presence of uncertainties. The desired
behaviour in this scenario is to start stepping with zero
walking velocity, then continue walking forward with the
desired velocity of vdes = 1m/s, and finally resume stepping
in place at the end of motion. In the first case, we set
the cost weights related to the ZMP and RCoF to zero
i.e. β = 0, γ = 0 and α = 1. As a result, the CoM
trajectory and footstep locations are computed using (1)
under ZMP and friction cone hard constraints. Although
there are several discrepancies between the simplified model
and the simulation environment (dynamics model, contact
model, etc.), the robot is able to achieve the task thanks to the
iLQG feedback controller, as shown in Fig. 3(a). However,
Fig. 5(a) shows that the ZMP generated by TO is on the
boundaries of the support polygon, which could lead to a
fall in the presence of external disturbances.

In the second case, we show the brittleness of the motions
obtained with β = 0, γ = 0. In this simulation, we exert a
lateral push Fd = 60N from ts = 4.9s to te = 5.1s to the
robot, which causes a fall with α = 1, β = 0, γ = 0 (Fig.
3(b), top; see also the supplementary video). However, by
setting β = 70, the robot is able to successfully walk (Fig.
3(b), bottom). In this case, adding a high ZMP cost moves
the desired ZMP trajectory from the boundaries (Fig. 5(b),
top) to the middle of the foot (Fig. 5(b), bottom).

In the third case, in order to show the effect of uncertainty
in the friction coefficient, we decrease the friction coefficient
in the simulation to 0.15, while in the TO we considered it
to be 0.4. In this case, with the same weight of the previous
case, the robot loses balance and falls down (Fig. 3(c), top;
see also the supplementary video), because the RCoF is
higher than the real friction coefficient (Fig. 4, top). However,
by increasing γ to 30 the RCoF is decreased (Fig. 4, bottom)
and the robot is able to walk without falling down (Fig.
5(c), bottom). This is achieved at the cost of decreasing the
step length (Fig. 5(c), bottom), which degrades the velocity
tracking (Fig. 3(c), bottom). In fact by increasing γ the step
length and walking velocity are automatically decreased to
decrease the RCoF (Fig. 4, bottom), which enables the robot
to finish the task without falling.

B. Scenario 2: Using BO to find optimal cost weights of TO

This subsection shows the application of BO (Section III)
to generate robust gaits in the presence of various distur-
bances. We set in this scenario α = 1 to create an incentive

2A summary of our humanoid simulations on different scenarios is avail-
able at: https://www.youtube.com/watch?v=iek_goPaF9w&
feature=youtu.be

https://www.youtube.com/watch?v=iek_goPaF9w&feature=youtu.be
https://www.youtube.com/watch?v=iek_goPaF9w&feature=youtu.be


(a) Walking without disturbance

(b) Walking with external push

(c) Walking on slippery terrain

Fig. 3: Scenario 1: velocity tracking (a) with the set of
weights α = 1 and β = 0, γ = 0, the robot succeeds to finish
the walking tracking the velocity well. (b) the robot is pushed
during walking (see the supplementary video), with the set
of weights in previous case it falls down (top). However,
increasing β to 70 makes the trajectory robust and the robot
is able to finish the task successfully (bottom). (c) Decreasing
the friction coefficient in the simulation to 0.15 while the
friction cone limit in TO is 0.4, the robot falls down (see
the supplementary video) with the previous weights (top),
increasing γ to 30 enables the robot to finish the task at the
cost of velocity tracking degradation (bottom).

towards viable gaits [7], and optimize for β and γ to trade
off robustness and performance. The range of weight values
that we consider is 0 ≤ β, γ ≤ 1000. In all cases we start
with β = γ = 1000, which leads to high ZMP and RCoF
margins. We investigate four cases: without disturbances,
with external pushes on the upper body, unknown decrease
of the surface friction coefficient, and finally both external

Fig. 4: Scenario 1, case (c): The friction coefficient in the
simulation is 0.15 while its value considered in the TO
problem is 0.4. With the set of weights α = 1 and β =
70, γ = 0 the robot falls down, because the maximum RCoF
is around 0.3 (top). However, increasing γ to 30 enables the
robot to successfully finish the task (bottom).

forces and decrease of friction coefficient.
In the first case, we consider no disturbance in the sim-

ulation. Since increasing β, γ for having more robustness is
achieved at the cost of decrease in performance (which is
velocity tracking), we expect to have β = 0 and γ = 0 as
the optimal values. As it is shown in Fig. 6(a), starting from
β = γ = 1000, the weights converge to zero, which confirms
what we expected. Fig. 7(b) shows that BO converges after
39 iterations, while after 14 iteration it has already found a
set of weights leading to a reasonable tracking error (small
cost value).

In the second case, the robot is pushed at t = 3.1sec
in both forward and sideward directions with Fd = 50N
and Fd = 75N , respectively, during ∆t = 0.2sec. Then at
t = 6.1sec, the robot is pushed again sideward and backward
by Fd = 65N and Fd = 75N during ∆t = 0.2s. Note that
with this set of pushes in different directions, we make sure
that we cover disturbances in all directions. Also, we exert
the pushes in the beginning of steps which makes it harder
for the controller without step location and timing adaptation
to recover from it [29]. We apply BO to find the optimal
weights for this case. The points evaluated by BO are shown
in Fig. 6(b). The optimal point is β = 149.63, γ = 96.94
which is obtained after 21 iterations. The weight on the
ZMP (β) is increased to bring the ZMP closer to the center
during walking, enabling the robot to reject disturbances
while minimizing the performance error (walking with a
desired velocity).

In the third case, we test the robot walking on a surface
with unexpected drop on the friction coefficient. In this case
we decrease the friction coefficient of the surface to 0.1,
while the value set for the TO constraint is 0.4. The optimal
value of the weights obtained from the BO (after 75 calls,
see Fig. 7(b)) is β = 0, γ = 120.05. In this case, the optimal
weights penalize more the RCoF so that the planned motion
requires less friction to be realized. As shown in Fig. 7(b),
after 9 iterations BO has already found weights leading to a



(a) Walking without disturbance

(b) Walking with external push

(c) Walking on slippery terrain

Fig. 5: Scenario 1: Footstep locations (a) with the set of weights α = 1 and β = γ = 0, the robot succeeds to finish the
walking, however the ZMP from the plan is mostly on the boundaries. (b) the robot is pushed during walking, with the set
of weights in previous case it falls down (top). However, increasing β to 70 brings the ZMP closer to the center of the foot
and the robot is able to finish the task successfully (bottom). (c) Decreasing the friction coefficient in the simulation to 0.15
while the maximum RCoF in TO is around 0.4, the robot slips and falls down with the previous weights (top), increasing
γ to 30 decreases automatically the step length (bottom) and enables the robot to successfully complete the task.

decent cost.

In the final case, we exert the external push (as in the
second case) and drop the friction coefficient to 0.15. Starting
again from β = γ = 1000, the weights converge to β =
77.23, γ = 426.83 (Fig. 6(d)) after 25 calls of BO (see Fig.
7(b)). In this case, both weights are increased to make the
gait robust to the exerted disturbances, while at the same
time these weights yield the best task achievement (walking
velocity tracking).

Fig. 7(a) shows the evolution of cost values of BO over
iterations for all cases of this scenario. The high jumps on
the value are due to the high penalty given to falls. As
expected, the decrease in the cost is not monotonic, because
we are not using gradient-based optimization. Fig. 7(b) plots
the minimum value of the current cost and all last calls for
evaluating the function. The interesting point is that for all
the cases after a few iterations (less than 20 calls), the cost
has already settled. This suggests that we do not need to
do many experiments, which can be costly (especially for
humanoid robots) and time consuming.

C. Scenario 3: Using BO to tune more cost parameters
In this scenario, we investigate the use of BO for higher

dimensional problems to demonstrate that it can scale to
more complex cost functions. To do so, we use the same TO
problem in (1), but with different cost weights in the lateral
and sagittal directions. In this case, we have six weights to
tune, i.e. (αx,y, βx,y, γx,y). The ranges of weight values that
we consider are 1 ≤ αx,y ≤ 100 and 0 ≤ βx,y, γx,y ≤ 1000.
In all cases we start with αx,y = 1 and βx,y = γx,y = 1000.
As we see in Fig. 8, BO is able to find a good solution after
a few iterations, despite the larger number of parameters to
tune. In this case, BO has more degrees of freedom to take
different TO cost values for sagittal and lateral directions.
The final cost values reveal that in this case, a lower value
of the BO cost was found (apart from the nominal case where
both converged to the same cost). This result suggests that
our approach can scale to larger problems.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach combining
gradient-based trajectory optimization with black-box data-



(a) Walking without disturbance (b) Walking with external push

(c) Walking on slippery terrain (d) Walking on slippery surface with external push

Fig. 6: Scenario 2: History (path) of the exploration by BO starting from β = γ = 1000 in different cases.

(a) Value of BO cost over number of calls (b) Minimum value of cost of current call and all the last calls

Fig. 7: Scenario 2: History (path) of the exploration by BO with two cost weights of TO to tune

driven optimization to achieve robust gaits for humanoid
locomotion. We have used Bayesian optimization to find the
best cost weights of the trajectory optimization problem for
full robot walking with different disturbances. Our simulation
results showed that this approach can find the best cost
weights that trade off robustness against performance with
only a few evaluations.

As we seek robust solutions to an optimization problem,
a natural question arises: what is the connection between
our method and robust optimization (RO)? In particular, the

recent data-driven RO [30] that also identifies uncertainty
sets from data. A typical robust constraint can be formulated
as f0(x,w) ≤ 0,∀w ∈ W , e.g. x + w ≤ 0,∀w ∈ W .
However, it is hard to write down constraints in such an
explicit form for the overall closed-loop system in Fig. 1
with respect to the hyper-parameter δ. Hence we resort
here to a black-box scheme such as BO with the limited
modeling insight we have. We are currently investigating the
connection between our approach and data-driven RO [30]
in this context.



Fig. 8: Scenario 3: The minimum value of cost of current
call and all the last calls for the cases with two and six cost
weights.

An interesting extension of this work, which is of great
value for implementation on real hardware, is the safety of
exploration. Another interesting extension is to use simula-
tion data to modify simultaneously the iLQG and TO cost
weights. Another future direction is to use (1) in an MPC
fashion. There will be a lot of interesting problems to tackle
in this case, such as recursive feasibility [31], terminal cost,
etc. Also, we are interested in using the same approach
for more complex models in trajectory optimization, e.g.
centroidal dynamics [10] or full robot dynamics [32].
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