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Abstract— This paper presents a complete trajectory gener-
ation and control approach for achieving a robust dynamic
walking gait for humanoid robots over compliant and uneven
terrain. The work uses the concept of Divergent Component
of Motion (DCM) for generating the center of mass (CoM)
trajectory, and Cartesian polynomial trajectories for the feet.
These reference trajectories are tracked by a passivity-based
whole-body controller, which computes the joint torques for
commanding our torque-controlled humanoid robot TORO. We
provide the implementation details regarding the trajectory
generation and control that help preventing discontinuities
in the commanded joint torques, which facilitates precise
trajectory tracking and robust locomotion. We present extensive
experimental results of TORO walking over rough terrain,
grass, and, to the best of our knowledge, the first report of
a humanoid robot walking over a soft gym mattress.

I. INTRODUCTION

Locomotion of legged robots is a challenging problem
due to its hybrid dynamics (discrete contact sequencing
and continuous whole-body motion), the constraints on the
contact forces, and the high dimensionality of the system
dynamics. A widely used approach for online gait generation
is to focus on the center of mass (CoM) dynamics, which
covers the most important effects for legged locomotion.
This approach has been shown to be consistent with legged
locomotion of biological systems [1], and was successfully
applied in legged robotics to both walking [2], [3] and
running [4], [5]. One of the most popular models for robotic
walking control is the Linear Inverted Pendulum (LIP) [6].
More recently, the concept of Divergent Component of
Motion (DCM) [7], [8] (also known as instantaneous Capture
Point (iCP) [9]) was introduced with the goal of simplifying
the trajectory generation and control by ignoring the stable
component of the CoM dynamics. In our previous work [10],
[11], we presented an efficient algorithm based on DCM for
creating continuous multi-step CoM trajectories via piece-
wise interpolation over a sequence of waypoints.

Early humanoid robots could only be position-controlled,
which facilitates the precise tracking of the foot trajectory
during walking. At the same time, admittance control using
feedback from force torque sensors in the feet provides
sufficient compliance to enable walking on uneven terrain
[12], [13]. Recently, several torque-controllable robots have
been developed [14]-[16]. These have several advantages
over position-controlled ones: First, torque control provides
a higher bandwidth regarding contact force modulation
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Fig. 1: TORO walking on compliant (left) and on rough
terrain (right).

compared to admittance control, such that more compliant
interaction with the ground can be realized. Second, torque
controlled robots enable the interaction with the environ-
ment at arbitrary contact points [17], which is an important
feature in the context of multi-contact locomotion. Finally,
the compliance of the torque-controlled robots makes them
more suitable for applications in the field of human-robot
interaction, particularly when considering clamping safety.
As torque-controllable robots become available and more
diverse, several controllers have been presented in the lit-
erature. The approach taken by Feng et al. [18] combines
inverse kinematics and inverse dynamics, while Hopkins
et al. [19] use a “leaky integrator” for generating joint
velocity references from accelerations computed by a QP
solver, with the goal of overcoming the imperfections of
the robotic hardware. Stephens et al. [20] present push-
recovery experiments based on joint tracking using a low
gain impedance combined with feed-forward torques. A
passivity-based whole-body torque controller for balancing
in multi-contact scenarios has been proposed by Henze et
al. in [21], and a walking controller based on DCM control
and inverse dynamics has been demonstrated in experiments
with the humanoid robot TORO in our previous work [22].
The main contributions of this work are: (i) we generalize
the passivity-based whole-body controller introduced in [21]
from a purely Cartesian formulation to a generalized tasks



definition, including DCM tracking control, Cartesian end-
effector and joint level subtasks; (ii) within this framework,
we present a gait generation and control method for dynamic
walking with a strong focus on avoiding discontinuities in the
commanded torques, which we found to be an important fac-
tor in achieving robust dynamic walking; (iii) we introduce
a stabilization method for the feet in contact that improves
the overall controller performance when the rigid contact
assumption (zero translational and rotational velocity) does
not hold, such as is often the case when walking over
compliant or uneven terrain.

The rest of the paper is organized as follows: Section II
describes the trajectory generation approach designed such
that discontinuities in the commanded torques are avoided.
In Section III, we present the passivity-based whole-body
controller using generalized tasks, followed in Section IV
by implementation details for dynamic walking including
a stance foot stabilization method. Section V describes
the robotic hardware, the software implementation, and the
performed experiments that demonstrate the robustness of
the overall approach. Section VI concludes the paper.

II. REFERENCE TRAJECTORY GENERATION

Our main goal for trajectory generation is to avoid
discontinuities in the reference trajectories, which would
affect the commanded torques through both feed-forward
and feedback terms. Discontinuities in the commanded joint
torques are undesirable for two reasons: First, a real robot
has limited torque bandwidth. This means that the motor
torques cannot follow the commanded joint torques in case
of discontinuities, which leads to discrepancies between
command and action. Second, torque discontinuities tend to
excite unmodeled joint and link elasticities, often leading to
vibrations such as reported in [22].

A. Continuous CoM reference trajectory

The CoM trajectory is generated using the concept of the
three-dimensional Divergent Component of Motion (DCM),
which was defined in [7] as a linear combination of the CoM
position x. and velocity .:
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where b is a time constant defined as b = %. Here, Az
represents the average CoM height above the grbund surface,
and g denotes the gravitational constant. A closely related
concept, the Virtual Repellent Point (VRP), was introduced
in [7] as a linear combination of the CoM position x. and
acceleration @..:

v =z, — b E.. )

The VRP encodes the effects of the total force f. (gravity
and all external forces) acting on the CoM, as the CoM
acceleration is proportional to the total force f. = ma,
(Newton’s 2nd law). From (1) and (2) we find the relation
between DCM and VRP to be

v==¢—bE. 3)

As shown in our previous work [11], a multi-step preview
trajectory for the CoM can be efficiently computed as a
closed-form, C? continuous trajectory by starting with a
piecewise linear interpolation of the VRP trajectory over a
sequence of waypoints, and solving the differential equations
(1) and (3).

For walking, the VRP waypoints are placed over the foot
centers at a height equal to Az. Then, the VRP trajectory
is generated by keeping the VRP stationary over the stance
foot during the single support phase, and using a linear inter-
polation for the transition from one foot to the other during
the double support phase. As a terminal constraint, the final
DCM position 5? is chosen to coincide with the final VRP
waypoint, i.e. the DCM is in equilibrium at the end of the
trajectory (é? = 0, see (3)). To ensure the continuity of the
trajectories during the transition from standing to walking,
an additional VRP waypoint is computed and inserted into
the sequence after the first waypoint (more details are given
in [10] and [11]).

B. Continuous foot reference trajectories

The swing foot trajectories are generated using piecewise
fifth-order polynomials for each Cartesian coordinate (x, y,
z, roll, pitch, yaw). The vertical motion is implemented
using two fifth-order polynomials, one for the upward, the
other for the downward movement.

For walking with edge contacts, the reference foot tra-
jectories are generated as follows: First, while the foot is
in contact with the ground, the center of pressure (CoP) is
gradually shifted towards the front of the foot by suitably
changing the contact constraints for the wrench distribution
solver. Then, when the CoP reaches the edge of the foot,
the foot pivots on its front edge while maintaining an edge
contact with the ground. The foot pitch trajectory is also
implemented as a fifth-order polynomial. The foot is lifted
from the ground at the moment of maximum angular velocity,
which corresponds to the maximum translational velocity of
the foot center, leading to a fluent foot motion. Currently,
our edge contact trajectory does not use a heel contact, as we
found that the kinematic benefit does not compensate for the
reduction in the contact wrench during contact acquisition,
and the overall slower motion of the foot due to the additional
phases (pivoting, CoP transition).

III. WHOLE-BODY TORQUE CONTROLLER

In this work, following the suggestion in [23], we describe
the dynamics of a humanoid robot as a floating base model
using the CoM position! x. € R? and the waist orientation
R. € SO(3). The corresponding linear and angular veloc-
ities, &, and w, € R3, are stacked into a velocity vector
v, = (&7 wl)T. Based on the joint angles g € R™ for the
n actuated joints, the equations of motion can be written as

() e () (5) =) rma w

1Unless mentioned otherwise, all position vectors and orientations are
given with respect to the world frame.
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Fig. 2: Overview of the whole-body torque controller

where M and C' represent the inertia and Coriolis matrices,
respectively, and w, = (mg” 07)T denotes the gravitational
wrench, with m being the total mass of the robot, and g €
R3 the gravitational acceleration vector. Here, 7 € R" is
the vector of actuator torques, while T.,; € R™ denotes the
generalized external forces, with 7 = n 4 6 being the total
number of degrees of freedom (DoF) for the humanoid robot.

In [21], the model is transformed into Cartesian task
space by replacing the joint coordinates with the Cartesian
coordinates of the end-effectors, while in [24], generalized
tasks are combined into a task hierarchy using null space
projections.

A. Generalized controller formulation

Let ; € R™ be the coordinates of k£ operational space
tasks, with m; denoting the dimension of the i-th task. The
corresponding task velocities are described by the Jacobian
matrices J; € R™*"_ In this work, we consider that all DoF
are covered by the task definitions, such that Zle m; = fi.
Stacking all generalized task velocities, we obtain
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As we are working in the context of legged robots, we con-
sider the following tasks to be predefined: a 6-dimensional
tracking task for the robot base (the CoM location and the
waist orientation), and a task of size mg¢ for generating
contact forces subject to the contact constraints.” Note that
Mg 1S NOt a constant value, but depends on the current
contact configuration.> We combine the remaining tasks into
a generalized task of size Mmiy, = n — mgrf.“ This can
contain Cartesian tracking tasks for the free end-effectors,
joint space subtasks, visual servoing tasks, etc. In light of
these considerations, we can rewrite (5) as

Ve Isxs  Ooxn | /,
. c
Lgrf = Jgrf,c Jgrf,q (q> 3 (6)
Limp Jimp,c Jimp,q
k4 J

2grf” stands for ground reaction force. In this paper, we use the term in
a more general sense to include forces created by the hands or elbows in
contact with the environment.

3For example, during walking, in the single support phase mgt = 6,
while in double support Mt = 12, assuming full contacts with the ground.
In case of walking with edge contacts, mgf can take any value in the interval
[6,12].

“here, “imp” stands for impedance.

where Jur = [Jgte Jorq] € R™" is the Jacobian
matrix for the contact task, while Jimp = [Jimp,c Jimp,q] €
R™imp X7 jg the Jacobian matrix for the remaining generalized
tasks. We assume that the matrix J is invertible, leaving
redundancy and singularity considerations for future work.
Then, given a reference task velocity ¢, the corresponding
references for the CoM and joint velocities can be computed
via inverse kinematics:

d
(’;;) =J tq. (7)

Note that in (7), the Jacobian matrix J is the same as in
(6), i.e. the Jacobian is computed at each time instant from
actual values, and not from references.

Similar to the approach taken in [21], we choose a closed-
loop system behavior inspired by the PD+ control for a
robotic manipulator [25]. Using the floating base model (4)
and the generalized tasks described in (6), we write the
desired closed-loop dynamics as

imp
Av, Av)\ o[ e
M<Aq)+C<Aq>—Tewt_J fgrf ) (8)
fimp
where Av, = v, — v? and Aq = ¢ — ¢ represent

the deviations from the reference trajectories. The contact
forces for € R™2" are subject to contact constraints and
will be computed in a subsequent step using a quadratic
programming (QP) approach, while the impedance forces
fimp € R™m are given by the corresponding tasks. In
(8), we'™ denotes the CoM impedance wrench, which is

computed as
imp __ < Kc(wc - Cllf:l) + Dc(:i:c - wf:l)

We 7.(Z., RFR?) + B.(w. — w‘j)) ' ®)

It consists of a linear spring-damper system for controlling
the CoM location, with positive diagonal matrices K. > 0
and D, > 0, and a rotational spring 7. [26] with stiffness
3. > 0 combined with a rotational damper B. > 0 for
controlling the waist orientation. The impedance forces fimp
are computed similarly for Cartesian tasks or via a simple
joint impedance law.

Combining (4) with (8) and rearranging the terms, we
obtain an equation with two unknowns, the contact forces
fart and the joint torques T:

imp
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It is straightforward to observe that the upper 6 rows of
(10) are independent of 7, which allows us to write the
following equality for the contact forces fur:

(1)

T _ imp T 3
Jgrf,c.fgl’f = Wif,e — Wg — W, " — Jimp,cflmpv

. d d
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where
(12)



and we used the structure of J from (6). We can now obtain
fart as a solution of the constrained QP problem

1 1
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with the residuals
. = Jgj;f,cfgrf — Wi, e + Wy + wicmp + Jiz;lp,c.fimp (14)

(sf = fgrf_fgrf

and subject to contact constraints (contact unilaterality, fric-
tion cone constraints, center of pressure constraints, bounded
normal force, and bounded torque on the z-axis). In (14), grf
represents an optional precomputed solution for the contact
forces, which could be provided by a motion planner. If no
such solution is available, we choose by default ;f =0,
leading to ¢ acting as a Lo regularization (i.e. minimizing
the Euclidean norm of f,y weighted by Q). Here, Q.
and @y are positive diagonal matrices, chosen such that
Q. > Qy, thereby giving a higher priority to the CoM task
compared to the contact force minimization task.

We choose to implement (11) using a soft constraint in
(13) instead of a hard constraint. Using a hard constraint
would be equivalent to solving (11) with a weighted pseudo-
inverse of Jgﬂc, similar to the approach taken in [27].
During our walking experiments over uneven terrain, we
found that, depending on the magnitude of the perturbation,
the contact constraints and the CoM task cannot be fulfilled
simultaneously throughout the motion. In this case, it is
preferable to have a partial solution for the CoM task instead
of the QP solver returning no result, especially since these
situations are mostly transient, and the controller can recover
the accumulated drift from the CoM reference trajectory.

Comparing (13) to the QP problem definition in [21], note
that in this work only the contact forces fo are selected
as optimization variables, not the complete vector of forces
(fo Fikp)" as in [21]. When reaching the boundaries of the
contact constraints, the QP solver in [21] tries to generate
additional wrenches in the free end-effectors, overriding the
impedance tasks, in order to solve the CoM task. However, as
these end-effectors are not in contact with the environment,
the additional commanded end-effector wrenches lead to
jerky motions and reduced robustness of the overall loco-
motion task. An additional advantage of our method is that
it reduces the number of QP weights, and therefore, the
parameter tuning effort.

Finally, having obtained the contact forces fos from the
optimization solver, we use the bottom rows of (10) to
compute the commanded joint torques:

T = T — |:Jg1;f,’q Jijx;lpg] (;grf) ) (15)
imp
where
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B. DCM tracking control

In this section, we show that a pure DCM tracking con-
troller can be implemented within the generalized controller
formulation. Let w,. denote the total wrench acting on the
CoM, as computed by the controller in (11). It considers the
effects of the commanded ground reaction and impedance
forces, and includes the gravity wrench:

w, = Jg;ﬁcfgrf + Ji’lr;lp7c.fimp + wy. A7)

Using (17) and the known structure of the inertia and Coriolis
matrices [28], we can rewrite (11) as

.’id
fe\ _|mI O 0 wfi
Te - 0 le Mlq 3
——
We M,
nd
T im
0 0 o0 < imp
+ |:O Clw Clq:| “;2 - (_&mp) . (18)
C
1 imp

We

Note that, similarly to [28], it is always possible to choose
a Coriolis matrix factorization for which the first three rows
and columns of C' are identically zero [29]. The top 3 lines
of (18) represent the closed-loop CoM dynamics

— D (&, — ). (19

mé, = mid — K.(x. — x) d

c c
Introducing a coupling between the gain matrices K. and
D, of the form

D, = %I—s—bKC

and rewriting (19) using the DCM definition (1) (also applied
to the reference quantities, i.e. £% := z¢ + ba?), we obtain
the stable closed-loop DCM error dynamics

(20)
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Therefore, we can conclude that, given the coupling of the

gain matrices K. and D,, a pure DCM controller [7] with

the DCM error gain K, = %K < can be implemented within

the generalized whole-body controller.

IV. DYNAMIC WALKING IMPLEMENTATION

The framework presented in the previous section can be
directly applied to implement a dynamic walking controller.
In this section, we present the controller implementation
details, discussing an additional source of torque disconti-
nuities caused by contact transitions and the approach taken
to minimize them. Additionally, we introduce a stance foot
stabilization method, which is particularly relevant when
walking over compliant or rough terrain.

A. Task formulation for dynamic walking

In this work, for dynamic walking, we focus on the CoM
trajectory and the Cartesian foot trajectories. Let v, and
v; denote the right and left foot Cartesian velocity vectors,
respectively, which are defined in an analogous manner to the
CoM velocity vector v.. The CoM and foot tasks account



for 18 assigned DoF that are formulated as subtasks in the
whole-body task formulation. For the remaining n — 18 DoF,
corresponding to the upper body of the humanoid robot, we
add a joint space task for maintaining a given body posture.
We can now rewrite (5) in a particular form that maps the
generalized velocities to walking-related task velocities:

v, I 0
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——
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where J, = [J,.c Jrq] and J; = [J; . Ji 4] are Jacobian
matrices for the right and left foot, respectively, while
Spose € RI™12X1 i 3 selection matrix for the joint space
posture task. Depending on the contact configuration, ®grf
and Zjy, from (6) can be assigned to the correspond-
ing elements of the walking task velocities v,, v;, and
Gpose: during the double support phase, T = (1] )T
and ETjmp = Gpose; during the single support phase, either
Top = Uy and Tipp = (l/lT qg)se)T, or &y = v and
Eimp = (V] Gjose)”> depending on the contact foot. In all
cases, however, we can rewrite (15) for dynamic walking as

REVRRM (Z’,l) L)

where T,0sc denotes the posture impedance torque, while w,
and w; are the right and left foot wrenches, respectively.

_ T
T =Tt — SposeTpose -

B. Continuous foot wrench transitions

An additional source of torque discontinuities is given
by the discrete contact transitions. Consider the right foot
wrench w, (the left foot wrench wy; is treated similarly):
during the right stance phase it is computed by the QP solver
according to the CoM task and the contact constraints, while
during the corresponding swing phase it is computed as an
impedance wrench by the foot tracking task. A discontinuous
switch from one control scheme to the other may change the
foot wrench drastically, leading to jumps in the commanded
torques (see (23)). To prevent foot wrench discontinuities, we
introduce one transition phase at the beginning and another
one at the end of the stance phase, each with a fixed duration
T, . During the transition phases, the foot wrench is computed
by the QP solver, but the contact constraints are continuously
adjusted to ensure wrench continuity.

In the following, we use the contact normal force f, as
a clarifying example. The corresponding contact constraints
are: maximum normal force (f, < ?Z), and minimum normal
force (f, > iz > 0, designed to ensure contact stability and
guarantee contact unilaterality). Let z and 2 be the vertical
position and velocity of the foot, respectively, expressed
in the contact frame, with 2% and 2% the corresponding
reference values. Then, we can write the impedance force
for the z-axis as

e = k(2 — 2%+ du (2 — 27), (24)

where k, > 0 and d, > 0 denote the stiffness and damping
gains, respectively. Note that, in general, at the end of the
swing phase f2™F # 0 due to tracking errors. When walking
on compliant or uneven terrain, this is often caused by the
terrain irregularities.

Finally, during the transition from the swing to the stance
phase’, we use the following contact lower and upper bounds

t t .
a_ 7 1— — imp
A Tafz+( Ta>fz
ot t\
= — 1—— imp
fz Tafz+( Ta>fz )

where t € [0,T,] is the local time of the transition phase.
Since the QP solver is constrained to finding a solution for
f- within the interval [f?, 721, our approach guarantees that
at the beginning of the transition phase f, = f;F, and
during the transition phase the constraint interval is gradually
widened to reach the default interval | iz,fz] at the end
of the transition phase. Similar constraints are applied on
the remaining elements of the foot wrench w,. Figure 3
shows the effect of the presented approach while walking
over compliant terrain (the transition phase duration 7T, is
0.1s, f,=50N, and f, =900 N).
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Fig. 3: Force continuity while walking over compliant terrain.
Left: transition from swing to stance phase starts at 3.5 s.
Right: transition from stance to swing phase starts at 6.2 s.

C. Stance foot stabilization

One of the challenges of walking on compliant or uneven
terrain is that a rigid contact with the ground surface can no
longer be guaranteed. This means that the contact foot can
have non-zero linear velocity (e.g. sink into the mattress) or
can rotate, leading to foot oscillations.

In our passivity-based controller described above, the
contact foot is controlled solely through the contact wrench
computed by the QP solver, with no additional task for main-
taining a certain foot position or orientation. For example,
when the right foot is in contact (the left foot is treated
analogously), the corresponding wrench w, is computed
as part of the vector fur. To stabilize the foot, we add a
damping wrench wi®! = —Duv, to w, in (23), with D
as a positive diagonal damping matrix. During the transition
phases introduced in the previous section, the damping gain
D is adjusted in order to prevent torque discontinuities.

5The transition from stance to swing phase is handled analogously.



The stabilization wrench acts only if the stance foot moves,
i.e. if the rigid contact assumption is violated. Otherwise, the
stabilization wrench is zero. If the stance foot moves, the
damping wrenches w®! and w1 act as disturbances to
the CoM task. However, in this case, the CoM task cannot
be fulfilled anyway, as it relies on the assumption of a
rigid contact to produce the required forces. Therefore, the
temporary additional disturbance to the CoM caused by the
damping wrenches leading to the subsequent stabilization of
the stance foot has a reduced net effect on the overall tracking
performance. While walking on a compliant surface (gym
mattress), we found that the proposed stabilization method
significantly reduces the contact foot oscillations without
notably compromising the CoM tracking task (see Fig. 4).
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Fig. 4: Left foot stabilization during the stance phase.
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V. EXPERIMENTAL EVALUATION

We performed extensive experiments with the torque-
controlled humanoid robot TORO [15] walking on various
terrains (flat terrain, grass, gravel, gym mattress). Videos of
the experiments can be found in the multimedia attachment.

A. Robotic system

TORO is a 1.74 m tall humanoid robot, weighing 76.4 kg
[15]. It has 25 torque-controllable joints (six in each limb,
and one for vertical torso rotation), 2 position-controlled
joints in the neck, and is equipped with multiple sensors:
position and torque sensors in each joint, an inertial measure-
ment unit (IMU) in the torso, force-torque sensors (FTS) at
the feet, and stereo and depth perception cameras in the head.
Our controller implementation uses only the joint position
sensors and the IMU for state estimation [21], the FTS data
is not used in the control loop.

The controller and the trajectory generator are imple-
mented in Matlab/Simulink, using Simulink Coder for gen-
erating real-time code, and qpOASES [30] for solving the
constrained QP problem (13). The whole-body controller is
executed at a rate of 1 kHz,® while the low-level joint torque

Sthe total execution time including the computation of the dynamics
matrices M and C'is 700 us.

controller is executed at a rate of 3 kHz [31].

The walking timing parameters (single and double support
times) were chosen for each experiment by taking into
account the stepping parameters (step length and height) and
the walking surface. Initially, the CoM damping gain D,
was chosen according to (20), however, the first experiments
showed that friction within the robotic system requires a
reduction of this gain. For the presented experiments, the
damping gain was reduced by a factor of 2.

B. Experiments

The reference and actual trajectories on the x and y axes
for the feet, the DCM, and the CoM, are shown in Figure 5,
for three different experiments.

The first set of experiments we performed with the pre-
sented trajectory generation and whole-body controller was
dynamic walking on flat terrain, where we iteratively reduced
the step time (i.e. increased the step frequency) and increased
the step length. The maximum step frequency we achieve
with 15 cm steps is 1 step per second (single/double support
time: 0.7/0.3 s), corresponding to a walking speed of 0.15
m/s. Using edge contacts, we are able to increase the step
length significantly, and achieve a speed of 0.37 m/s while
walking with 55 cm steps and 1.5 s step time (single/double
support time: 1.1/0.4 s), see Figure 5a. Note the foot tracking
performance of the controller: for a stride length of 110
cm and a swing phase duration of 1.1 seconds, the foot
placement error at touchdown is less that 3 cm, while the
maximum error during the motion is less that 6 cm.

The second set of experiments evaluates the performance
of our approach in tracking the CoM trajectory while walking
over uneven terrain (grass). For this, the robot was taken out-
doors and commanded to walk over a grassy field; throughout
the experiment, the robot has no knowledge of the terrain and
assumes a level ground. Figure 5b shows the CoM tracking
performance while walking with 15 cm steps and 1.2 s
step time (single/double support time: 0.9/0.3 s): the mean
tracking error of the DCM is 13 mm on the z-axis and 7
mm on the y-axis (the mean tracking error of the CoM is
13 mm on the x-axis and 4 mm on the y-axis). With our
presented approach, TORO is also capable of walking on
grass with edge contacts, taking 25 cm steps with 1.7 s step
time (single/double support time: 1.2/0.5 s).

The third set of experiments tests the robustness of our
approach against a soft, compliant ground surface. For this
purpose, a gym mattress of size 1 m x 2 m x 8 cm made of
a compound foam with a density of 20 kg/m3 was placed on
the ground in front of the robot. This represents, to the best of
our knowledge, the first report of a humanoid robot walking
over a soft gym mattress. As the robot has no knowledge
of the ground, to avoid stumbling when stepping onto the
mattress and prevent dragging the feet while walking, the
step height is set to 15 cm (from the default value of 5 cm).
We performed the first trial with stance foot stabilization: the
robot is commanded to walk forward with 10 cm steps and
2 s step time (single/double support time: 1.2/0.8 s). Figure
5c shows the last 18 seconds of the experiment. Note the
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Fig. 5: Torque-based dynamic walking experiments with the humanoid robot TORO.

CoM tracking performance: the mean tracking error of the the second trial without stance foot stabilization, using the
CoM is 6 mm on the x-axis (maximum error: 17 mm) and 4  same walking parameters. A comparative video of the two
mm on the y-axis (maximum error: 10 mm). We performed  experiments can be found in the multimedia attachment.



VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a robust and effective method
for dynamic walking with torque-controlled humanoid robots
on compliant and uneven terrain. Our approach is based
on the concepts of DCM and passivity-based whole-body
control, which were discussed in detail in the correspond-
ing sections. We introduced a generalized task formulation
for the passivity-based controller, and implemented the dy-
namic walking controller in this framework. Additionally,
we proposed a stabilization method for the stance foot while
walking on compliant or rough terrain. Our proposed method
achieves precise trajectory tracking and robust locomotion
on various terrains, which we demonstrated with several
experiments.

In our future research, we will compare the presented
approach with the inverse dynamics based walking controller
reported in [22] with respect to robustness, performance, and
ease of use (parameter tuning, etc.). Additionally, we intend
to integrate our DCM-based step adjustment [10] and an
angular momentum task into the current framework.
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