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Humanoid Whole-Body Movement Optimization from Retargeted
Human Motions

Waldez Gomes', Vishnu Radhakrishnan', Luigi Penco®, Valerio Modugno?,
Jean-Baptiste Mouret!, Serena Ivaldi'

Abstract— Motion retargeting and teleoperation are powerful
tools to demonstrate complex whole-body movements to hu-
manoid robots: in a sense, they are the equivalent of kinesthetic
teaching for manipulators. However, retargeted motions may
not be optimal for the robot: because of different kinematics
and dynamics, there could be other robot trajectories that
perform the same task more efficiently, for example with
less power consumption. We propose to use the retargeted
trajectories to bootstrap a learning process aimed at optimizing
the whole-body trajectories w.r.t. a specified cost function. To
ensure that the optimized motions are safe, i.e., they do not
violate system constraints, we use constrained optimization
algorithms. We compare both global and local optimization
approaches, since the optimized robot solution may not be close
to the demonstrated one. We evaluate our framework with the
humanoid robot iCub on an object lifting scenario, initially
demonstrated by a human operator wearing a motion-tracking
suit. By optimizing the initial retargeted movements, we can
improve robot performance by over 40%.

I. INTRODUCTION

Kinesthetic teaching is widely used to demonstrate the
motion required to perform a task to robotics manipulators.
Motion retargeting [1], [2] implements this idea for humanoid
robots by using human motion tracking data to demonstrate
whole-body movements. While this approach is very powerful,
it presents two main limitations. First, humans generate
movements that may not be optimal for the robot mainly
due to structural differences between them: different number
of joints, or power generation at the joint level for instance.
Second, because of the intrinsic variability of the human
motion, the robot may not learn from the best possible
representation of the task execution. The main insight is
that even if a human demonstration enables the robot to
perform a given task, i.e., lift a box (Fig. |I|), the retargeted
motion will be hardly optimal for the robot from an energetic
point of view: if a more efficient way to perform a task exists,
it needs to be found.

In this paper, we tackle those issues by using the retargeted
motions to bootstrap an optimization process that finds the
best whole-body movement that minimizes a given cost
function related to the energetic consumption.

Additionally, instead of picking one trajectory, we rely on
a parameterized description of the retargeted task trajectories
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Fig. 1: After several human whole-body demonstrations, the
robot learns an initial movement that is further refined by an
optimization algorithm in simulation.

based on Probabilistic Movement Primitives [3], which can
capture motion variability computing a Gaussian trajectory
distribution from a set of demonstrations. Task trajectories
are executed by our multi-task whole-body controller [4]
which solves a quadratic programming problem to generate
the robot controls for executing the desired motion.

As we previously did in [5], we use non-linear constrained
optimization to find the best parameters of the whole-body
trajectories that minimize an effort cost of executing the
desired task, under the constraints related to the robot
motion and actuator capabilities. This optimization phase,
bootstrapped by the initial retargeted trajectories, evaluates
in simulation the execution of the entire trajectory at each
episode (roll-out) until an optimal trajectory is found (Fig. [I)).
We use constrained optimization algorithms to ensure that the
solutions are always safe, not violating any constraints [5], [6].
Since we cannot exclude a priori that the optimized solution
is not close to the initial demonstration, we investigate both
local and global constrained optimization algorithms.

We show the effectiveness of our framework for whole-
body movement optimization on a lifting task, initially
demonstrated by a human operator wearing a motion-tracking
suit: the robot performance, evaluated by the fitness related



to the torque consumption, improves by over 40%.

The main contribution of this paper is twofold: First, we
show a framework that learns optimal whole-body trajectories
that do not violate any of the problem constraints, and at the
same time benefits from ProMPs to bootstrap the learning
with a trajectory that takes into account several human
demonstrations. Second, we show the method’s viability with
different optimization algorithms in a simulated environment,
providing practical intelligence for future research on trajec-
tory optimization for humanoid robots.

In the rest of the paper, we explain how similar studies have
approached the problem of optimizing motion retargeting for
humanoid robots, mainly by optimizing control parameters,
or reference trajectories (Section [[I). Then we follow to
the building blocks of our framework (Fig. [2), precisely,
fundamentals of our robot controller, ProMPs, our motion
retargeting, and the constrained optimization algorithms that
were used. In Section we describe our experimental
scenario for the humanoid, that it is further evaluated by
three different optimization algorithms in a benchmark with
different initial trajectories. Finally, we discuss the results
in Section [V] and conclude in favor of the viability of our
method to optimize retargeted motions to humanoid robots
(Section [VI).

II. RELATED WORK

Humanoid robots are able to execute multiple tasks through
different joint trajectories (motion redundancy). In order to
control a humanoid robot, a well-established approach is to
use quadratic programming (QP) formulations that implement
strict [7], [8] or soft [9], [10] priorities among many tasks
while dealing with low-level constraints (e.g. joint or torque
limits). However, even though those QP controllers have
shown satisfactory results, they still demand good input
trajectories. Otherwise, the high number of degrees of freedom
and constraints in humanoid robots may hinder the generation
of feasible motions that do not violate robot constraints.

One solution for whole-body trajectory generation is
to learn the movements from human demonstrations [11],
[12]. In [1], the authors retarget human motion onto a
humanoid robot using a QP controller and additionally taking
into consideration higher-level constraints such as balance.
Other works have achieved motion retargeting in other
challenging scenarios, with multiple contacts [2], or heavy
object manipulation [13]. Furthermore, demonstrations may
be used to learn useful robot control policies. For instance,
[14] learn movement constraints from demonstrations, and
[15] estimate contact constraints.

The trajectories executed by humans are likely optimal
according to one or more criteria related to human motor
behavior [16]. However, even after motion retargeting, there
is no guarantee that retargeted trajectories are optimal for the
robot. In order to execute robot movements optimally, some
studies set or define multiple reference trajectories for the
robot, and optimize controller parameters. In [17], [18], [19]
for instance, the authors parameterize hard or soft priorities
for multiple trajectories in a QP controller and posteriorly
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Fig. 2: Overview of our framework for learning optimal
weight parameters for whole-body trajectories.

optimize them w.r.t. to different cost functions related to the
humanoid kinematics or dynamics.

In this work, we take the approach of keeping the QP
controller parameters fixed, and optimizing the reference tra-
jectories directly. Furthermore, before trajectory optimization,
those trajectories need to be compactly parameterized so that
the optimization only deals with a small set of parameters,
as it is typically done in motion planning and reinforcement
learning [20], [21].

In [22], the authors used reinforcement learning (RL) to
modify waypoints in a reference trajectory for the robot’s
hand. The waypoints were used as parameters for a Bayesian
Optimization (BO) framework. It included cost function
evaluations directly from robot demonstrations to have only a
few roll-outs in comparison to optimizations in simulations.

In [5], the authors parameterized a reference trajectory for
the robot Center of Mass (CoM). A compact representation of
the entire trajectory is provided through a radial basis function
(RBF) network. Furthermore, the trajectory optimization was
done in 2 steps: Unconstrained optimization; and black-box
constrained optimization, where the solution of the first step
was used as an initial point for the second step. The main issue
of this study was exactly the fact that its main optimization
step required a prior bootstrapping step from a successful
unconstrained optimization to guarantee a trajectory that does
not violate any constraints. In contrast, here we leverage
human demonstrations for bootstrapping the optimization.

In [23], the authors used dynamic movement primitives
(DMPs) to parameterize humanoid joint trajectories, and
posteriorly optimize them in a RL framework. Similarly, [24]
uses DMPs in a hierarchical RL framework that optimizes for
sequences of movement, and [25] extended their method to
learn the trajectory’s end goal and to improve robustness in
pick and place applications. The DMPs in all those approaches
were trained after task demonstrations by humans.

III. METHODS

A. Notation and List of Symbols

Throughout the paper, we use the following notation and
list of symbols:
e npy € N: Number of basis functions for a ProMP;



e n; € N: Number of robot joints;

e Ndemo € N: Number of demonstrations by a human;

« n: Number of tasks being controlled by the QP con-
troller;

e K € N: Max. number of iterations/roll-outs for the
optimization algorithm;

o T € N: Max. number of time steps during a roll-out;

e T,: n-th task in a QP problem;

o S: Stack of n tasks T;

o g € R%6: Position of the robot’s joints and floating
base pose w.r.t. the origin;

o y; € R: Position at instant ¢ for a given one dimensional
Cartesian trajectory;

o wj € R™/: Vector of weights for ProMP at roll-out k;

e 1, € R™s: Mean of weights w;

o X, € R™f*7f: Variance of weights w;

« 0, € R: Gaussian noise variance for y;(w)

o ¢, € R™/: Basis function vector at instant ¢;

e 2z € [0,1]: Phase variable used to decouple a ProMP
trajectory from the time signal;

e T € R™: Vector of the torques in every joint of the
robot;

o F(7) € R: objective function used in the optimization
framework;

o w*: Weights that optimize F;

e 7;: 1-th set of human demonstrations where the human
does not bend his/her back;

e s;: i-th set of human demonstrations where the human
bends his/her back;

B. QP Robot Controller and Stack of Tasks

In this work, the execution of the desired tasks of the robot
is performed by a velocity-based QP controller [26] (Fig. [2),
that enables the execution of multiple tasks at the same time.
The control of n tasks 7 is formulated as a QP problem:

§* = argmin || Ang — bnllw (1
d

S.t. C1,nq < bl,n 2)

CZ,nq S b2’n (3)

where ¢* is the desired velocity sent to low-level controllers
(solution for the QP problem), A,, € R(%T6)x(7+6) jg the
Jacobian matrix for the task, b,, € R(ni+6) is a reference
value for the task, W is a positive definite weight matrix,
C., € RMit6)x(n;+6) and ben € R("+6) encode lower,
upper bounds, equalities and inequalities from the c-th
constraint for q.

Conflicts may arise among tasks, so a prioritization scheme
is required in the definition of the QP controller. If 77 has a
hard priority over 75, this means that 75 is solved in the null
space of 71, and the stack is represented as: S = 71 /7s.

If two tasks have a soft priority relationship, we can
represent this as a new task: 73 = 71 + 72, where the new
task 73 is a weighted norm of 77 and 7s.

Using the notation above, our robot is controlled according

to the stack Si:

Sl = (7—LeftFoot + TRightFoot + ﬁlead + ﬁuaist) /

“)
(7-LeftHand + TRightHand + TCUM)

where the tasks above are responsible for the Cartesian
trajectories of the left foot, right foot, waist, left hand, right
hand, and center of mass of the robot. Only the head task is
a joint trajectory task. For more details on the QP controller
implemented by the OpenSoT library please refer to [27].

C. Probabilistic Movement Primitives (ProMPs)

Movement Primitives (MPs) are often used to represent
parameterized trajectories, learned via demonstrations. Proba-
bilistic Movement Primitives (ProMPs) have a probabilistic
formulation that catches the variance of the demonstrations.
Additionally, among other properties, it is possible to modu-
late a ProMP both in time and space without deforming its
shape [28].

A ProMP can compactly represent trajectories with a simple
weight vector. For instance, a one-dimensional trajectory
y; € R can be represented with a weight vector w:

yi(w) = ¢ w+ ¢, (5)

and the probability of observing this trajectory given a certain
vector w is given as a linear basis function model:

pyw) = [N (wld] w, ) ©6)
t

where the variable €, ~ N(0,0,) is a zero-mean i.i.d
Gaussian noise, and ¢, € R™/ is a time dependent basis
function vector for the trajectory positions. The general form
of the ¢-th basis function b; is given by:

_ ~)\2
b= <_ = 2hCZ) ) @

where h defines the basis’ width and ¢; is the basis’
center. The basis’ centers are uniformly distributed in
[—2h, (1 + 2h)]. Then, we normalize the basis functions

0, = be ®)

j=1"Y7

to maintain the same summed activation. In other words, y;
is represented as a weighted sum of n;; normalized basis
functions uniformly distributed in time.

To capture the variability of the movement, w is also
represented as a Gaussian variable, w ~ N(fty, o).
Therefore, by marginalizing out the weight vector in [6] we
get:

Pyl Tuw) = / N (el b7 0,0, )N (0]t S )

= N (Y|P} paws ) Zwby + )
)

Before using Eq. (9), we need to train the ProMP, that is,
we need to estimate a mean (fi,,) and variance (2,,) for the
variable w based on ngemo trajectory observations. Similarly
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Fig. 3: Process of extracting trajectories from demonstrations:
1) Acquisition of Cartesian position trajectories from a human
wearing an Xsens suit; 2) Scaling the position trajectories
for the iCub robot; 3) Training a ProMP, smoothing the raw
data and associating it with a variance of motion.

.

to [28], we use a maximum likelihood estimation algorithm
alongside a linear ridge regression to achieve the training.

By using ProMPs as trajectory references instead of the
demonstrations directly, we are able to smooth the trajectories
as well as capture their variability (Fig. [3).

D. Motion Retargeting

The human that executed the demonstrations and the iCub
robot have different kinematic structures. Therefore, human
trajectories have to be retargeted into feasible corresponding
values for the robot. This is achieved by either retargeting the
joint trajectories or by carefully choosing links and retargeting
their Cartesian positions. Here, we chose the latter to decrease
the number of trajectories that need to be retargeted to
represent a whole-body task.

A way to retarget one link position is to consider its relative
position w.r.t. a base link, and measure the length of such limb
in both the human and the robot [1]. The relative position of
the robot end effector is then computed as:

—yg) + o

where k,+; € R is the ratio between the robot and the human
limb lengths, = and h are superscripts related to the robot or
human respectively, and 0 is a subscript indicating that this
is the position for an initial instant.

Effectively, Eq. (I0) scales down the trajectory from the
human to the child sized iCub robot (Fig. [3).

yr = kyeg (y (10)

E. Constrained Optimization

In our framework (Fig. [2) we optimize the parameters of
many ProMP trajectories y;(w) w.r.t. an objective function
F(7), that is a function of the torques for each trajectory
execution. In other words, we want to find a set of weights
w* that generates a set of trajectories y; that minimizes F.

For every set of weights, wy, a new cost function is
computed after the robot simulation in a physics engine,
and an optimization algorithm selects a new set of weights
wy41 to explore the space of w. This approach is equivalent
to an episodic learning loop with the maximum number of
K roll-outs (or episodes).

One of the contributions of this work is to use the ProMP
trained from human demonstrations to bootstrap the search for
an optimal trajectory. It is assumed that the demonstrations
from humans for a given activity are already close to minimize
Eq. (13). Additionally, to increase the positive influence on the
search for w*, we add sets of high-level non-linear constraints
such as Robot must be standing up at the end of trajectory
execution; and the robot must reach a set of fixed targets in
space during the trajectory. We also add bound constraints to
w so that the trajectories do not reside outside of the robot
workspace (further explained in the Experiments section).

Due to the derivative-free nature of the problem, non-linear
constraints optimization algorithms are used to solve it. In the
next section, we briefly describe the different optimization
algorithms used on our benchmark for a given task.

F. Optimization Algorithms

Three optimization algorithms were used to evaluate our
proposed method:

1) COBYLA: (Constrained Optimization BY Linear Ap-
proximation) is a deterministic algorithm that constructs linear
approximations of the cost function and then optimizes them
at each roll-out [29].

2) AGS: is a deterministic algorithm proven to converge to
a global optimum if the cost function satisfies the Lipschitz
condition within the bound constraints [30].

3) CCMA-ES: (short for (1+1)-CMA-ES with Constrained
Covariance Adaptation) is a stochastic optimization algorithm.
At every roll-out, it evaluates a set of samples drawn from a
multivariate Gaussian distribution. If the samples violate any
of the previously set constraints, it adapts the covariance
matrix of the distribution and re-samples from the new
co-variance. This design ensures that the constraints are
never violated [31]. Furthermore, its design also necessarily
demands that it has to start with a point that does not violate
any constraints, otherwise the algorithm will get stuck and
fail. This algorithm has already been used in an earlier work
for learning soft task priorities for the iCub robot [17].

We used the NLopt library [32] implementations for
COBYLA and AGS and our C++ version of CCMA-ES.

IV. EXPERIMENTS
A. Task Description and Optimization Parameters

We defined a pick and place experiment where a hu-
man/iCub has to squat, grab a box, and stand up (Fig. F).
As explained in the above section, we recorded a human
executing the target trajectory to define a starting solution
for the robot. In real life, the human grabbed the box 9 times
with variants of movement strategies. In particular, for the
first 4 movements, the subject did not bend its back, while
for the other 5 it does bend its back.

To control the robot with the stack &3, we need the
trajectories for the left hand, right hand, waist, and center
of mass. The other tasks, head, left foot, and right foot are
fixed. The controlled trajectories are:

o ZyWWaist 7_Axis of the waist;

o XyPoM X_Axis of the CoM;



Fig. 4: In our designed task, iCub has to squat, grab a box,
and then stand up with the box.

o XyltH ZyRH X_ and Z-Axis of the right hand;
o thLH, ZytLH, X- and Z-Axis of the left hand;
however, to simplify the optimization using less parameters

we assume the right hand trajectories to be symmetrical to
the left hand

X, RH _ X, LH

Y = Y (11)
Tyt =y (12)

In this manner, we only need to learn a ProMP for the right
hand, and mirror it like in Eq. @), totaling 4 ProMPs to be
learned in order to execute Sj.

Our framework is independent of the choice of a cost
function F, however, the choice of F is how we define what
is a good movement. Here, we define F such as to minimize
efforts at the hips, torso, and shoulders:

Fn =y Ly (an)

?

13)

where T is the number of time steps for each roll-out, 7;"* is
a known maximum value for the torque at the i-th joint, and
v; is a fixed weight for the i-th joint. Eq. (T3) defines a sum
of squared torques at every joint, therefore, as F decreases,
so does the effort applied by the robot actuators. The weights
are defined v; = 1 for every joint, except for the high priority
and low priority joints. The high priority joints with v; = 5
are: left hip, right hip, torso, left shoulder, right shoulder.
Furthermore, the low priority joints with v; = 0.1 are: Left
knee, right knee, left ankle, and right ankle.

As for the optimization parameters, we defined n,; =
5, so for each ProMP there are 5 weight variables to be
optimized. However, in order to further decrease the number
of optimization parameters, we decided to optimize only for
the CoM and waist trajectories (The Cartesian retargeted
motions are still learned as ProMPs). It is important to note
that the reduction of optimization parameters is taken solely
to speed up the optimization computational process. Finally,
the optimization variables are

waistZ)T (
3

w=[(w w

comX)T]T c Rlo (14)

TABLE I: Description of initial sets used on the benchmark.

Initial Set ID | Description
L —17T4 Single Demonstration(s) w/ straight torso
Tall ProMP from ri,r9,73,74
S1 — S5 Single Demonstration(s) w/ bent torso
Sall ProMP from S1, 82,83, 84,85
all ProMP from every demonstration

where w"®*Z is bound between 0 and 1 and w™¥X is
bound between -0.5 and 0.5, effectively, not allowing the Z
component of the CoM trajectory to go below the inertial
reference (ground) and the X component of the waist to go
beyond 0.5 meters of the inertial reference.

Besides the standing-up at all times constraint, iCub’s hands
have to achieve a specific set of targets at a particular order
for the task to be considered executed. First, they have to
reach the grasping box position):

XyRH XyLH 5 .15

ZyRH ZyLH .30

15)
(16)

and then they have to return to an initial position:

Z, RH Z LH>0.40

Yi s Yy )

If the robot’s hands do not reach those goals, then the entire
execution is said unsuccessful, and a black-box constraint
is violated. Furthermore, inside the simulation environment,
whenever Eq. (I3), (I6) are satisfied for the first time, a
virtual box of 1 Kg is added to the robot, emulating a grasp.
Note that the above inequalities are constant. This is done
in order to fix the same kinematic task for different ProMP
sets, allowing us to compare their performance.

B. Benchmark for Learning w* in Simulation

To demonstrate that our framework (Fig. [2) does not require
a very specific ProMP as a starting point, different sets of
demonstrations are used at the ProMP learning stage (Table
). Where the r; sets correspond to demonstrations where the
human did not bend his/her back to pick up the box, while
the s; sets correspond to the ones where the human did bend
his/her back.

For AGS, the number of roll-outs was set to K = 2000.
On the other hand, CCMA-ES and COBYLA would always
converge to a solution much earlier (Fig. [5). Therefore, the
number of roll-outs for them was reduced to K = 500. The
hyperparameters for the CCMA-ES algorithm were set to
o = 0.1, A = 1 (default values from the benchmarks in
the original paper [31]). The hyperparameters for AGS and
COBYLA were default values in the NLOPT library [32].

To evaluate the performance of the algorithms in our
optimization framework we measured the cost function value
at the starting point (straight from the motion retargeting)
and after a w* was found. This gives rise to 2 measurements:
the cost function F, and the improvement function

f*
Finitial

IT=1- (18)



TABLE II: Final F scores after optimization, and Z compared with the initial score for each optimization algorithm. The
initial sets s1-s4;; are not able to complete the task of picking up the box, therefore, it is not possible to compute an initial
score for the initial F and for the improvement Z (marked with a /). Furthermore, CCMA-ES will also fail for them because

the initial points violate the task constraints (marked with a //).

AGS, K = 2000 COBYLA, K = 500 CCMA-ES, 30 iterations with K = 500
Initial Set  Initial 7 F* T F* A JF* Median and IQR 7 Median and IQR
1 188.55 188.55 00.00% 121.32 35.65% 116.12 (110.55 - 125.84)  38.41 (33.26 - 41.37)
To 229.72 215.21 6.32 % 125.01 45.58% 134.16 (127.97 - 143.32)  41.60 (37.61 - 44.29)
T3 249.63 198.89 20.32% 202.90 18.71% 116.10 (105.10 - 145.40)  53.49 (41.76 - 57.90)
T4 209.60 209.60  00.00 % 116.80 44.27 % 120.41 (109.50 - 134.24)  42.55 (35.96 - 47.76)
Tall 203.11 203.11 00.00% 102.68 49.44 % 114.94 (97.93 - 128.18) 43.41 (35.89 - 51.78)
S1 / 213.15 / 412.61 / 1/ /
S9 / 202.47 / 350.33 / 1/ /
S3 / 213.68 / 409.34 / /! /
S4 / 213.55 / 279.12 / 1/ /
S5 / 186.55 / 206.68 / 1/ /
Sall / 223.28 / 383.62 / Vi /
all 223.52 223.52  00.00 % 120.71 45.99 % 111.80 (96.79 - 128.21) 49.98 (42.64 - 56.70)
%200 200 % °
S ]
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Fig. 5: In our problem, COBYLA and CCMA-ES converge E—
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&§250 Fig. 7: Optimal cost function, and improvement from feasible
T 1 starting sets (r1, 72,73, 74, q1,all).
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Fig. 6: Optimal cost function from unfeasible starting sets
(81,52, 83, S4, S5, Sall)-

C. Results

The results for all optimization algorithms are displayed in
Table @ AGS and COBYLA are deterministic algorithms, so
they were executed only once for every initial set. Whereas
CCMA-ES is a stochastic algorithm, thus, in order to better
evaluate the performance of the algorithm, it was executed
30 times. Additionally, we also show the torque values at the
high priority joints (hips, torso, and shoulder) (Fig. [9).

During the execution of the benchmark, we found out
that the sets s; — sqy; did not pick up the box successfully
according to Equations (T3),(T6),(T7). Therefore, the initial
cost function and improvements for those measures are

inexistent. Moreover, those sets violated the task constraints
from the start, so CCMA-ES cannot find a solution for them.
However, contrarily to CCMA-ES, both AGS and COBYLA
were able to find optimal values even when starting with
unfeasible starting points. This different behavior within
the sets of initial trajectories demands for a more careful
comparison between the algorithms. For this reason, the
analysis is first done concerning the unfeasible starting
trajectories (Fig. [6) and posteriorly concerning the feasible
starting trajectories (Fig. [7).

In Fig. 8] we show the optimized reference trajectories
sent to the controller, for the different algorithms, compared
with the initial solution with the ProMP that combined every
demonstration, all. We do not show the result for AGS, as it
behaved poorly when compared to the other ones (Table [II).
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were bootstrapped from a ProMP that combined every
demonstration, all. The 30 reference trajectories for CCMA-
ES are represented with their median and IQR.

V. DISCUSSION

The AGS algorithm was only able to improve 2 feasible
initial sets, with very little improvement (Table . However,
AGS was remarkably able to find feasible solutions when
starting from unfeasible points. These can be explained by
AGS thoroughly and rapidly exploring the space, therefore,
it is able to find a solution but it is not able to refine it.

COBYLA provided low-cost functions when starting from
feasible solutions (Table |H|), and like AGS, it also managed
to find solutions even when starting from trajectories that
violated constraints. It is noticeable, though, that COBYLA
performs worse than AGS in the latter condition (Fig. [6).
This is likely caused by COBYLA being a local optimization
algorithm, that works well at refining good solutions, but it
does not perform well at exploring the search space.

Over 30 iterations, CCMA-ES was able to locate very
good solutions in some of the initial sets (noticeably 7,;;, and
all). Additionally, all results from within the Interquartile
Range (IQR) are better than the initial starting sets (Table |H[)
Interestingly, some of the solutions from CCMA-ES output
a behavior that is known to be non-ergonomic for humans,
e.g., bending the back while lifting, as shown in the video
attachment. While this behavior is not desirable for humans,
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Fig. 9: Torque values at the most critical joints in F.

it is coherent with the fitness for which it is optimized on the
robot. This is further indication that our framework indeed is
a step towards efficient motion optimization after retargeting
from humans to humanoid robots.

When comparing the results from all three algorithms (Fig.
[) it is possible to verify that COBYLA and CCMA-ES have
a very similar median behavior with improvements around
the range of 40%. However, often, only the best trajectory
is needed, and for this matter, CCMA-ES is more suitable,
as their best results are better than the ones from COBYLA.
AGS did not seem to produce good results even for 4 times
more roll-outs than the other algorithms. Lastly, we can also
verify that the cost function F was able to minimize the
torques at all of the high priority joints (Fig. [9).

In this work, we used a cost function that prioritized
minimizing torques at selected joints. However, it is possible
to define different weights (v;) at Eq. (]EI) and obtain different
kinds of movements. Additionally, other cost functions like in
Charbonneau et al. [6] can favor different movement aspects.

VI. CONCLUSIONS

Retargeting the motion captured from a human onto a
humanoid robot provides solutions that may not be efficient
for the robot. Our framework optimized retargeted trajectories
of whole-body motions with constrained optimization algo-
rithms. And further tested this framework in a benchmark with
three distinct black-box optimizers: AGS (deterministic and



global), COBYLA (deterministic), and CCMA-ES (Stochas-
tic). Among the tested algorithms, CCMA-ES seems to be
the best option, as it combines local and global exploration,
even though it also requires starting points that do not violate
any constraints, as we had already observed in [5].

Our approach can be extended with different cost functions,
other than effort, to harness different movement behaviors
from the robot. In addition, a possible future application of
this work could include optimizing the design of a robot to
accomplish tasks that were initially demonstrated by humans.
This is possible mainly due to using Cartesian reference
trajectories and representing them using mean trajectories of
ProMPs in a compact form so that they can be optimized.

Additionally, the ProMP representation of trajectories is
able to do more than representing a mean trajectory and
modulating its duration without deforming its shape. For
instance, it is possible to combine ProMPs to tackle more
than one task at the same time. In order to approach these
scenarios, future work will have to also include learning
variance of motion, and not only learning the trajectory.

Our framework is inherently based on physical simulations,
and therefore, it may fail on tests with real robots, especially
if the simulation environment and the real world have large
discrepancies. A possible solution would be to input our
optimized trajectories as priors for a reinforcement learning
approach that deals with the real robot and its environment.
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