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Abstract— This paper presents our newest findings in plan-
ning a dynamically and kinematically feasible center of mass
motion for bipedal walking robots. We use a simplified robot
model to incorporate multi-body dynamics and kinematic limits,
while still being able to meet hard real-time requirements. The
vertical center of mass motion is obtained through interpolation
of a quintic spline whose control points are projected onto
the kinematically feasible region. Subsequently, the horizontal
motion is computed from multi-body dynamics which we
approximate by solving an overdetermined boundary value
problem via spline collocation based on quintic polynomials.
The proposed algorithm is an improvement of our previous
method, which used a parametric torso height optimization for
vertical and cubic spline collocation for horizontal components.
The novel center of mass motion improves stability, especially
for stepping up and down platforms. Moreover, the new method
leads to a less complex overall algorithm since it removes the
necessity of manually tuned parameters and strongly simplifies
the incorporation of boundary values. Lastly, the new approach
is more efficient, which leads to a significantly reduced total
runtime. The proposed method is validated through successfully
conducted simulations and experiments on our humanoid robot
platform, LOLA.

I. INTRODUCTION

In the recent past, the capabilities of bipedal robots, espe-
cially humanoids, have experienced tremendous progress. Al-
though the motion of some prototypes may still look wobbly
when compared to humans as a point of reference, as seen in
the DRC [1], the robustness and versatility of locomotion has
steadily improved. How close today’s systems are to real-life
applications, assuming high-end hardware and appropriate
manpower for fine-tuning, is demonstrated, among others,
by Boston Dynamics and Honda with their recent versions
of ATLAS [2] and ASIMO [3].

A challenge which comes hand in hand with growing skills
is the increasing complexity of the software framework and
its underlying algorithms. In our opinion, this is a severe
issue harming usability and constraining further research.
Thus, from time to time, one should condense the experience
gained through using complex algorithms to identify the
essential behavior, and try to replace them with simpler ones.
In accordance with this idea, the proposed method aims at
improving, simplifying, and generalizing our previous meth-
ods. In particular, we present in Section IV an algorithm for
generating a dynamically and kinematically feasible Center
of Mass (CoM) motion for bipedal robots, given a set of
discrete footsteps. In contrast to the previously used spline
collocation method in [4], which relies on cubic polynomials,
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Joint DoF
Head 2
Shoulder 2 (×2)
Elbow 1 (×2)
Pelvis 2
Hip 3 (×2)
Knee 1 (×2)
Ankle 2 (×2)
Toe 1 (×2)
Total 24
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Fig. 1. The humanoid robot LOLA and its “full” kinematic structure. The
24 DoF system is 180 cm tall and weighs approximately 60 kg.

the presented approach is based on quintic polynomials,
which may seem to increase complexity at first sight. How-
ever, this modification allows a straightforward integration
of boundary values which in turn lowers overall complexity.
Additionally, runtime is reduced, since fewer collocation sites
are necessary to obtain the same approximation quality, cf.
[5]. Furthermore, we avoid manually tuned parameters of the
torso height optimization in [6], by following a simpler, pure
geometric approach to incorporate kinematic limits.

In Section II, we briefly discuss other approaches for
planning feasible CoM (and whole body) motion. Certainly,
the overall walking performance heavily depends on the
hardware and surrounding software framework which varies
for each system. For this reason, in Section III, we give a
brief introduction to our test platform LOLA, which was used
to obtain the results discussed in Section V.

II. BACKGROUND AND RELATED WORK

Just like the majority of walking-pattern generators for
bipeds, the proposed method is based on the Zero-Moment
Point (ZMP) concept [7] to create a dynamically balanced
gait. Within this contribution, we avoid a tilting motion, such
that the ZMP is equivalent to the Center of Pressure (CoP)
and the Fictious Zero-Moment Point (FZMP) [8].

Various algorithms implement a tracking controller to
realize a predefined ZMP motion. For example the gradient
descent method is used in [9] to minimize ZMP error by
modifying the horizontal torso motion. The necessity to
evaluate the full multi-body dynamics within each iteration
leads to execution times which are impractical for online
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generation. Real-time planning was achieved in [10], where
the motion of all body parts, except the feet, is modified
in the horizontal plane and the Boundary Value Problem
(BVP) is solved using a finite difference method. In contrast
to our proposed method, the algorithm in [10] requires a
feasible initial solution which is then optimized in an iterative
scheme. In order to maintain real-time performance while
preserving the essential dynamics of the system, various
simplified models have been introduced. In [11], it was
shown that biped robots may be approximated by a simple
Linear Inverted Pendulum Mode (LIPM) [12]. The model
has been extended to the three-dimensional case in [13]
which was then coupled in [14] with the ZMP concept
through the formulation as an inverse dynamics problem. To
consider swing-foot dynamics, the LIPM has been extended
by additional point-masses for the feet, cf. [15]. TAKENAKA
et al. additionally separated the dynamics of the LIPM in the
convergent and the Divergent Component of Motion (DCM).
The ZMP is then modified to generate a cyclic gait for the
DCM. This allowed impressive walking speeds of up to 4
km/h. An extension of the DCM concept to the 3D case is
given in [16] where a prescribed, so-called Virtual Repellent
Point – as coupling point of a linear spring representing the
ground reaction and gravity force – defines the dynamics of
the DCM, which in turn specifies the planned CoM motion.
Although the assumption of instantaneous leg switch was
dropped in [17], various other simplifications, e. g. point-like
feet, were necessary to obtain an analytical solution.

In [4], a more generic three-mass model is used, where
the torso is approximated by a point mass with arbitrary,
but predefined, vertical motion. The BVP describing the
horizontal torso motion is solved using a spline collocation
method which is also the basis of our proposed algorithm.
The main advantage of this method is that there is no
restriction as to the shape of the ZMP or vertical torso
motion, such that it can be used to incorporate kinematic
constraints as shown in [6] and adapted in this paper. For the
sake of brevity, we do not list methods for spline collocation
here, but instead refer to [5], which collects literature related
to our proposed algorithm. Another extension to the LIPM
is made in [18], where an additional flywheel together with
actuation constraints are used to compute a region of so-
called Capture Points (CPs), i. e. predicted footholds which
bring the robot to a complete stop. Although the main
motivation in [18] is push recovery, extensions to use CPs
for walking-pattern generation have been discussed, e. g. in
[19]. Note that, while the CP and DCM are strongly related
to each other in 2D, this does not hold true in 3D [17].

Most of the mentioned walking-pattern generators do not
consider kinematic limits. However, especially for complex
motions, e. g. stepping over obstacles or climbing stairs,
certain constraints have to be respected. Our approach tackles
this problem by varying the torso height accordingly. This
strategy was also investigated (among other works) in [20]
and [21]. In [20], the vertical waist trajectory is built by
third-order polynomials connected by a so-called key config-
uration, which is obtained from the obstacle’s geometry. Sub-

sequently, the preview control from [14] is used to compute
the horizontal components (although the underlying LIPM
implies a constant CoM height). In contrast to [20], our
method is based on a three-mass model, which incorporates
the dynamic effects of a varying torso height by construction.
Similar to [21], we use simplified leg kinematics to compute
limits for vertical torso motion, however, in contrast to [21],
our method also considers the lower bound.

An approach generally unrelated to the ZMP is proposed
in [22] where whole-body motion is planned by formulating a
comprehensive optimization problem. In the context of multi-
contact locomotion, feasibility and balance is achieved by
considering the contact wrench cone together with various
constraints to avoid kinematic limits and collisions. Although
complex tasks have been demonstrated, the large number of
optimization variables and constraints leads to high compu-
tational cost, which makes real-time execution difficult.

III. SYSTEM OVERVIEW

Although real-time walking-pattern generation has been
achieved almost two decades ago, only a small amount of
modern full-size humanoids are capable of robust and fast
locomotion. In our opinion, the interplay of potent hardware
and a robust software framework is crucial.

A. Hardware

The kinematic structure of LOLA features 24 electrically
actuated Degrees of Freedom (DoFs), cf. Figure 1. All
joints are driven by brushless DC motors, where most of
them incorporate high-ratio harmonic gearing. The knee
and ankle joints feature planetary roller screws and slider
crank mechanisms, respectively, to improve load rating while
minimizing mass and inertia. All joints are back-drivable
and show only minimal backlash. A detailed overview of the
mechanical design of the robot is given in [23]. Each foot
integrates a custom six-axis force-torque sensor and four bi-
nary contact switches to detect early- and late-contact events.
The torso contains a high precision inertial measurement
unit (IMU) and two mainboards, each with an Intel Core
i7-4770S@3.1 GHz (4x) processor and 8GB RAM. On the
first board, the real-time operating system QNX NEUTRINO
6.6 runs all planning and stabilization algorithms together
with the hardware abstraction layer. The second board is
dedicated to the vision system, which is not directly related
to the algorithms investigated in this contribution, thus a
further description is omitted. The communication between
the distributed sensors, commercial servo controllers and the
control algorithms of the first onboard PC is effected via an
ETHERCAT bus. A comprehensive description of the electro-
mechanical components and the communication system of
LOLA is given in [24].

B. Software

The software and control framework of LOLA is depicted
in Figure 2. Through a graphical User Interface, high-
level commands, such as walking direction, step length and
duration, are sent to the Walking-Pattern Generation (WPG)
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module. Based on the perceived environment and simplified
robot models, the WPG creates a motion plan consisting of
ideal task-space trajectories which represent a dynamically
balanced gait and include, among others,
• position [xF (t), yF (t), zF (t)]T , orientation1 ϕF (t) and

toe-joint angles ϕT (t) for both feet,
• torso orientation and CoM position.

A description of how these trajectories are created is given
in Section IV. The ideal task-space trajectories are then
passed to the Stabilization and Inverse Kinematics (SIK)
module, which additionally takes into account direct sensor
input to modify the planned motion and thus stabilizes
the robot in the presence of disturbances. An overview of
the implemented hybrid position/force control is given in
[26]. For this paper, we use the version specified in [27]
where support for partial contacts is disabled. The inverse
kinematics in SIK is based on Automatic Supervisory Control
[28] to avoid collisions and minimize various penalties like
vertical angular momentum. Note that the arm motion is not
part of the task-space definition, i. e., it is optimized in the
null-space instead [29].

User Interface / Vision

Walking-Pattern
Generation

Stabilization and
Inverse Kinematics

Decentral
Joint Control

commands / envir. model

ideal task-space traj. @1 kHz

desired joint motion @1 kHz

joint control

@10 kHz

@1 kHz

Sensor Data

@30 Hz

RGB-D

	 triggered
by events

Fig. 2. Overview of the software/control framework of LOLA. The proposed
algorithm is part of the Walking-Pattern Generation (WPG) module.

IV. PROPOSED ALGORITHM

In the following, we present a workflow to obtain the
ideal task-space trajectories as output of the WPG module.
The process can be subdivided into five stages, which are
depicted in Figure 3. The Reduced Model Torso (RMT) point
represents the torso center of our reduced model, which will
be introduced later (cf. Figure 6). For the moment it should
be considered as an intermediate result for obtaining the final
CoM motion in Stage 5. Note that Stage 3 and 4 are run twice
in order to resolve a circular dependency, which is explained
later.

1In the WPG module, orientations are parameterized using quaternions.
For describing rotational motion we use SLERP interpolation [25] together
with a time-dependent polynomial of maximum degree five, to customize
the interpolation parameter of SLERP. Here, for the sake of brevity, we
discuss only the two-dimensional projection, i. e., simple planar rotation.
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Fig. 3. Overview of the five proposed planning stages as components of the
Walking-Pattern Generation (WPG) module. Core elements of the proposed
algorithm are the generation of vertical and horizontal Reduced Model Torso
(RMT) motion.

Stage 1: Foothold Sequence and Foot Motion

Given only high-level commands such as a target position,
the robot tries to find a feasible path through its environment
first. Subsequently, a sequence of foothold positions follow-
ing this path is planned. Both can be done by path-planning
algorithms with obstacle avoidance as proposed in [30]. Note
that one may choose an arbitrary other algorithm as this does
not constrain the following stages. For the sake of simplicity,
we use predefined foothold sequences in the following.

As a second step, collision-free foot motions, consisting
of trajectories for position, orientation and toe-joint angles,
which connect the discrete footholds, are planned. Again,
one may use an arbitrary algorithm for this, however, the
position trajectories directly influence the CoM motion (cf.
Stage 5), thus they must be C2-smooth in order to obtain
a C2-smooth CoM trajectory. Here, we generate the foot
motion as polynomials of maximum degree five, based on
simple heuristics, cf. Figure 4. In particular, we modify the
choice considered in [31] and use

ϕF,max,i = arcsin(0.1 rad m−1 · Lstep,i) ,

zF,max,i = max{zF,i, zF,i+1}+ ∆zstep + ∆zF,comp,i ,

ϕT,max,i = ∆ϕT,i,↔ + ∆ϕT,i,↑

with the auxiliary variables ∆ϕT,i,↔ and ∆ϕT,i,↑ given by

∆ϕT,i,↔ =

{
π
18 rad · |Lstep,i|−Lfoot

0.8m−Lfoot
for |Lstep,i| ≥ 2Lfoot ,

0 else

∆ϕT,i,↑ = max{3 rad m−1 · (zF,i+1 − zF,i) , 0} .
Here ϕF,max,i, zF,max,i and ϕT,max,i denote the maximum
rotation, vertical position and toe-joint angle of the current
swing foot during the i-th physical step t ∈ [ti, ti+1] with
Tstep = ti+1 − ti, respectively. Furthermore, Lstep,i is the i-
th step length2, Lfoot the geometric length of the flat foot,
∆zstep the desired step height (user-defined) and ∆zF,comp,i

2The i-th step length Lstep,i is defined as the traveled horizontal distance
of the swing foot during single support of the i-th step.
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a compensation for the vertical shift due to foot rotation.
Note that we differentiate between foot rotation ϕF , which
is defined as the toe segment inclination relative to the
horizontal plane, and the toe-joint angle ϕT , which is the
angle between the toe and heel segment, cf. Figure 6. In
order to maximize the kinematic capabilities for large steps,
ϕT depends on the step length, see ∆ϕT,i,↔. With ∆ϕT,i,↑
we shift kinematic limits for stepping up. Note that we do,
due to hardware restrictions, currently not use the toe-joint
for stepping down. However, we plan to redesign the feet
in the near future, thus allowing us to exploit the benefits of
active toe-joints for stepping down. Finally, the choice of ϕF
leads to the preferred heel-strike in case of an early contact
event [31].

The horizontal components of the swing foot motion, i. e.,
xF (t) and yF (t), simply connect the discrete footholds. Note
that foot rotation around the vertical axis (i. e., for walking
on a curved path) is planned similarly to xF |yF , thus not
further discussed. The resulting C2-smooth foot motion for
one physical step Tstep, consisting of the Double Support
(DS) phase (0.2 · Tstep) and the Single Support (SS) phase
(0.8 · Tstep), is shown in Figure 4.
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Fig. 4. Normalized swing foot position xF |zF , rotation ϕF and toe-joint
angle ϕT for one physical step Tstep. The stationary control points of the
splines consisting of piecewise quintic polynomials are marked by dots.

Stage 2: Zero-Moment Point (ZMP) Motion

For a dynamically balanced gait, we constrain the ZMP
to remain within the current Support Polygon (SP), i. e., the
convex hull of all contact points with the ground [8] (plus
safety margin), which we compute using Graham’s scan [32,
p.1030]. Although this is strictly speaking not a stability
criterion, it describes the feasibility, assuming sufficient
friction and the robot being able to realize the corresponding
motion. Furthermore, the criterion is only valid if all contact
points lie within a horizontal plane, which means climbing
stairs or stepping on ramps is not covered. However, in this
contribution we consider foot-ground contacts with moderate
step heights and ground inclinations, thus we simply project

the contact points to the horizontal plane and regard this
discrepancy as an additional modeling error.

As in [4], we prefer a slowly moving ZMP to get smoother
CoM trajectories. For this purpose, we use linear connections
between control points at the start/end of each DS and
SS phase. Based on geometric considerations, we use the
following scheme to determine the control point positions,
cf. Figure 5:
• The first and last control points coincide with the

centroids of the corresponding DS-phase SPs.
• The intermediate control points describe the shortest

connection between the SPs of two neighboring SS
phases. If the shortest connection is not unique, i. e.,
if the closest edges are parallel, the mean value of the
infinite set of shortest connections is used.
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i
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Fig. 5. Proposed strategy for control point placement of the ZMP path.

The main advantages of this method over more elaborate
techniques, e. g. the formulation as an optimization problem,
as suggested in [4], are its simplicity and the guarantee of
finding a valid solution in a deterministic time. Note that
the subsequent planning stages are not restricted to linear
ZMP paths. In fact, one may use arbitrary shapes, like cubic
splines in the DS-phase, as in [14]. The only restriction is
C0-continuity in order to obtain a C2-smooth CoM motion.

After shaping the path through linear segments, the speed
at which the ZMP should traverse this path remains to be
specified. For the sake of simplicity, we use constant velocity,
which is defined through the segment length and Tstep. In
order to smooth the transition from standing to walking and
vice versa, we replace the constant velocity in the first and
last segment by a cubic interpolation and used the additional
parameters to force zero ZMP velocity and acceleration at
the first and last control point. However, this modification is
not necessary and yields only slight improvements. Lastly,
we point out that the ZMP trajectory is not exclusively used
for planning the CoM motion, but also serves as reference
input to the SIK module, for details see [27].

Simplified Robot Model / Reduced Model Torso (RMT)

Especially for fast locomotion, one has to ensure that
core dynamic effects are reflected by the reduced model
used for planning. For this reason, we propose using a
three-mass model as suggested in [4], cf. Figure 6 (right),
which considers torso and leg dynamics. In contrast to [15],
the torso is not modeled as linear inverted pendulum, but
instead as free mass mt which allows us to consider variable
heights zt of the RMT, i. e., the torso center point. Moreover,
through the moment of inertia tensor Θt, we incorporate the
dynamics of torso rotation. However, in this paper, we stick
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to an upright torso. Note that one could easily incorporate
arm dynamics by adding two corresponding point masses,
however, we assume arm motion to be a result of null-space
optimization in the SIK module, thus arms are not (yet)
considered in the WPG module. We plan this extension for
our future goal of multi-contact locomotion.

ϕF

−ϕA−ϕT

ϕK

−ϕH

zF

zt

mt

mFmF

Θt

RMT
−ϕt

l5

l6

l7l1

l2

l3

l4

xt

xF

Fig. 6. Left: simplified model of leg kinematics (2D). The foot rotation
ϕF and toe-joint angle ϕT are specified in Stage 1, while the torso rotation
ϕt is user-defined (here: ϕt = ϕ̇t = 0). In contrast, ankle flexion ϕA, knee
flexion ϕK , and hip flexion ϕH (blue) are not part of the task-space and
thus unknown within the WPG module. All angles are positive clockwise.
Right: reduced three-mass model of multi-body dynamics (3D) consisting
of point masses for the feet mF , a point mass mt coinciding with the RMT
(center of torso) and moment of inertia tensor Θt of the torso.

Beside the three-mass model which we will use in Stage 4
to compute horizontal RMT motion, we introduce a sim-
plified model of leg kinematics, cf. Figure 6 (left), to
approximate the kinematic limits of vertical RMT motion.
While the three-mass model is described fully in 3D without
linearization, the kinematic model represents a projection
of the leg DoFs (cf. Figure 1) to the sagital plane (2D).
For walking on curved paths we use additional coordinate
systems to deal with three-dimensional rotation of the feet
and a changing sagital plane. Here, for the sake of simplicity,
we only discuss straight walking. Hence, all expressions are
described relative to the inertial reference frame (I-frame),
cf. Figure 1. Note that this also holds for Θt, which has to
be transformed from the torso frame to the I-frame.

Stage 3: Vertical Reduced Model Torso (RMT) Motion

In planning vertical RMT motion, we first specify a
desired trajectory zt,des(t), which can be understood as
“ideal” vertical torso motion, neglecting any kinematic limits.
Similar to horizontal foot motion, cf. Figure 4, we choose
zt,des to be a piecewise quintic polynomial with stationary
control points at the beginning/end of each physical step,
i. e., at ti and ti+1 with żt,des(ti|i+1) = z̈t,des(ti|i+1) = 0. The
control points are chosen such that the CoM (as combination
of RMT and foot point masses) has constant height above
the current stance foot. This way we obtain a reasonable
shape which can deal with varying foothold heights, e. g. for
climbing stairs. This simple heuristic represents the output

of the first run of Stage 3 and an initial estimate of zt(t) ≈
zt,des(t), which we can use in the first run of Stage 4, cf.
Figure 3.

For the second run of Stage 3, we need knowledge of
the horizontal RMT motion (in particular xt) which in turn
depends on zt. We resolve this circular dependency by
running Stage 4 provisionally (with a larger step size, thus
lower resolution) between the first and second run of Stage 3,
cf. Figure 3. Alternatively, one could use the already known
ZMP position as an approximation for xt ≈ xZMP and thus
avoid running Stage 3 and 4 twice. However, for fast walk-
ing, ZMP and horizontal RMT motion display significant
differences, which would lead to a poor approximation.

To incorporate kinematic limits in the second run of Stage
3, we use our simplified model, cf. Figure 6 (left). We do this
by finding an upper and lower limit zt,max and zt,min to which
zt,des is restricted. Note that although the underlying model is
almost identical to [6], we use different approaches for both,
determining the limits and applying them to zt(t). Based
on [21], the method presented in [6] for example assumes
a fully stretched leg, i. e., ϕK = 0, for estimating zt,max,
which is not exact if we consider fixed footholds. In contrast,
we evaluate the kinematic chain of the simplified model to
compute limits for the torso height given xF , zF , ϕF , and
ϕT from Stage 1, the user-defined torso rotation ϕt, and the
provisional xt from Stage 4. For this purpose, we introduce
the abbreviations sx := sin(x) and cx := cos(x). For the
torso position xt, zt we find

xt = xF + l1 sϕF − l2 cϕF − l3 cα+ l4 sα

+ l5 sβ − l6 sγ + l7 sϕt ,
(1)

zt = zF + l1 cϕF + l2 sϕF + l3 sα+ l4 cα

+ l5 cβ + l6 cγ + l7 cϕt ,
(2)

with α := ϕF − ϕT , β := α − ϕA, and γ := ϕK − β. We
choose ϕA as free parameter, thus ϕK is the only unknown
left to compute zt. We find ϕK from (1) since xt is given:

ϕK = β + sin−1
(
xA − xt

l6
+
l5
l6
sβ +

l7
l6
sϕt

)

︸ ︷︷ ︸
=:ξ

. (3)

Note that if |ξ| > 1 for a given ϕA, there exists no ϕK such
that we can reach the desired xt. Using (3) and (2), we can
compute zt = f(ϕA). Moreover, we find ϕH = β−ϕK−ϕt
which we can use to check the kinematic limits of the hip
flexion joint.

Although an analytical solution to the inverse kinematics
exists, cf. [6], we could not obtain an analytic expression for
zt,max and zt,min respecting joint limits for ϕA, ϕK and ϕH .
Instead, we use a custom multi-level sampling approach3 to
find the global optima. Note that ϕH and ϕK are implicitly
given through ϕA, thus we only have to sample ϕA, which is
of moderate cost. We compute zt,max and zt,min for both legs,
which are then combined in order to respect the kinematic
limits of both legs simultaneously.

3We also tried gradient-based optimization; however, due to strong
nonlinearities, these methods became easily stuck in local optima.
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For the final vertical RMT motion zt(t), we define equally
distributed control points tk with ∆tk = 0.1 s. We specify
these control points by restricting zt,des(tk) to the combined
limits zt,max and zt,min, such that zt,min(tk) + zt,safety ≤
zt(tk) ≤ zt,max(tk) − zt,safety holds. Here zt,safety ≥ 0
represents a constant safety margin for both boundaries. For
complex motions these boundaries may overlap, e. g. for
stepping down, cf. Figure 7 at 15.7 s. Although overlapping
boundaries indicate that the planned motion is (theoretically)
not feasible, it may still be possible in practice, since our
simplified model is conservative in neglecting several DoFs
of the robot. In such cases we choose the control point to
be the mean value of the boundaries, which minimizes the
distance to both limits. As a postprocessing step, we limit
the gradient between each control point and its successor in
order to avoid z̈t > g, i. e., jumping. This is necessary for
motions where zt,max and zt,min form a very steep tunnel,
e. g. for stepping up, cf. Figure 7 at 10.7 s.

The control points are then interpolated using a C4-smooth
quintic spline respecting initial and end conditions to connect
trajectories in a C2-smooth manner. For interpolation, we use
an efficient algorithm proposed in [5]. The resulting vertical
RMT motion zt(t) for stepping up and down a platform
of 12.5 cm height is shown in Figure 7. Note that using a
simple projection instead of an optimization as in [6] not only
significantly reduces computational cost, but we also obtain
a smoother trajectory in regions which are “unproblematic”,
e. g. in Figure 7 at t ∈ [11.5 . . . 14.5 s].
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Fig. 7. Planned vertical RMT motion with lower and upper boundaries
obtained from simplified kinematic model for stepping up and down a
platform of 12.5 cm height. White areas are kinematically feasible, while
gray areas denote values above/below the limits. For stepping down, the
limits overlap (orange area).

Stage 4: Horizontal Reduced Model Torso (RMT) Motion

Until this point, we have only considered the robot’s
kinematics. In order to also incorporate dynamic effects, we
use our three-mass model, cf. Figure 6 (right). We obtain the
(3D) nonlinear rotational Equations of Motion (EoM) as

mt (rt × (g − r̈t)) = ωt × (Θt ωt) + Θt ω̇t − T cont

+mF rF,right × (r̈F,right − g)

+mF rF,left × (r̈F,left − g)

(4)

where g = [0, 0, −g]T denotes the gravity vector and rt,
rF,right, rF,left the position of the torso (RMT), right and left
foot, respectively. Moreover, ωt and ω̇t denote the angular
velocity and acceleration of the torso (user-defined; here:
ωt = ω̇t = 0), which together with Θt account for torso
rotation. Lastly, T cont is the contact moment, where the first
two components are given by the ZMP (Stage 2) with

Tcont,1 = yZMP m (z̈CoM+g), Tcont,2 = −xZMP m (z̈CoM+g) .

Here m = mt+2mF is the total mass and z̈CoM is given by

z̈CoM =
1

m
(mt z̈t +mF z̈F,right +mF z̈F,left) .

Note that z̈t is available from Stage 3, thus the first two
rows of the Right-Hand Side (RHS) of (4) are known. If we
expand the left-hand side, we obtain for the first two rows

mt zt ÿt −mt (z̈t + g) yt = RHS1 (known) ,

−mt zt ẍt +mt (z̈t + g)xt = RHS2 (known)
(5)

which represent two decoupled linear ordinary differential
equations for xt(t) and yt(t). Within the WPG module, we
typically plan the motion from a given initial pose to a given
end pose. These poses represent boundary conditions

rt(t0) = rt,0, ṙt(t0) = ṙt,0, r̈t(t0) = r̈t,0 ,

rt(tend) = rt,end, ṙt(tend) = ṙt,end, r̈t(tend) = r̈t,end
(6)

which together with (5) represent two independent second-
order linear BVPs. Note that the BVPs are overdetermined;
thus, in general, the solution does not exist. In [4], a
collocation method using cubic splines has been proposed
to obtain a reasonable approximation of xt(t) and yt(t),
even if the “real” solution does not exist. This is done by
generating a C2-smooth cubic spline such that (4) is fulfilled
at equally distributed collocation sites, while simultaneously
satisfying the boundary conditions (6). In order to fulfill
all components of (6), T cont had to be modified by man-
ually tuned trapezoidal shape functions and virtual control
points. In contrast to [4], we propose collocation based on
quintic splines, which can by construction include boundary
conditions up to the second-order derivative, thus removing
the need for modifying the EoMs or adding virtual control
points. This algorithm is a combination and extension of
[4], [31], [33] and is derived in detail in [5], where we
also show that, for sufficiently smooth ODEs, using quintic
splines is in general more efficient than the cubic counterpart.
In particular, a lower count of (expensive) collocation sites
leads to similar results.

As explained in [5], it is difficult to quantify the ap-
proximation quality. This is due to the fact that we try to
approximate a solution which actually does not exist. Thus,
it is not possible to formulate an error. However, as shown
in [5], the root mean square of the residual of (4) can
be used to detect divergence. For both cubic and quintic
spline collocation, we find ∆tcoll = 0.2 s for the first run
and ∆tcoll = 0.1 s for the second run of Stage 4 to be an
appropriate distance between collocation sites. We would like
to highlight that the algorithms used for cubic/quintic spline
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interpolation/collocation are available as part of our free and
open-source C++ library BROCCOLI [34].

Stage 5: Center of Mass Motion

After planning trajectories for the feet and torso, it is
straightforward to obtain the CoM motion from our three-
mass model with

rCoM(t) =
1

m
(mt rt(t) +mF rF,right(t) +mF rF,left(t)) .

Note that rt(t) is C4-smooth due to quintic spline colloca-
tion; however, we constrained rF (t) only to be C2-smooth.
Thus, rCoM(t) is C4-smooth in most parts, but only C2-
smooth at the control points of foot motion. However, we still
obtain a significant reduction of motor jerk over the previous
implementation with cubic splines, cf. Figure 8 (right). We
see this improvement as main argument for using quintic
splines, thus bypassing our previous dilemma of not being
able to quantify approximation quality.
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Fig. 8. Left: planned paths for ZMP, RMT and CoM obtained from
proposed method. Right: comparison of lateral CoM acceleration for cubic
(C2-smooth) and quintic (C4-smooth) spline collocation.

V. RESULTS

For evaluation, we chose a scenario where the robot is
commanded to step up and down a platform of 12.5 cm
height, cf. Figure 9. We used a predefined sequence of
footholds (step-count: 20, duration of motion: 17.6 s) and
triggered Stages 1-5 from Section IV for which we measure
the following runtimes:

Stage 1 2 3.1 3.2 4.1 4.2 5
Runtime [ms] 0.251 0.203 0.027 1.309 1.245 5.221 0.214

So as to react dynamically to changes of the environment and
user-input, our goal is to trigger the WPG module at least
every Tstep,min = 0.6 s. With a total runtime of 8.5 ms we
easily satisfy this requirement, even for a planning horizon of
more than 17 s. We highlight that, in contrast to the previous
method from [4] and [6], where two steps are planned ahead
continuously, our new implementation plans the complete
sequence consisting of 20 steps at the same time. By doing
so, we avoid planning a periodic reference as boundary
condition as in [4]. Since we avoid expensive optimization,
planning the complete sequence with our new approach is
approximately 10 times faster than the previous method.

Fig. 9. Chosen scenario for evaluation. Left: planned motion over platform
in simulation environment. Right: snapshots of stepping up and down during
experiment.

We successfully conducted simulations4 and experiments,
which are best presented as a video (available online under
https://youtu.be/piQm_oTYXIc). Note that the chosen test
case is the same setup as in [6], however, with a different
foothold sequence. As a qualitative measure for stability, we
observe reduced arm motion in simulations and experiments,
which indicates that it is “easier” for the SIK module to
follow the planned CoM trajectory (less action in null-space
required). To quantify stability in experiments, we compare
the error of torso rotation ∆ϕt, which could be significantly
reduced, cf. Figure 10.
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Fig. 10. Experimental data for error of torso rotation ∆ϕt (measured by
IMU) as indicator for stability. Comparison of previous (“old”) and proposed
(“new”) method for stepping up (left) and stepping down (right). Achieved
reduction of max |∆ϕt|: 44 % (step up) and 42 % (step down).

Moreover, using the proposed method, we were able to
increase the distance to kinematic limits of the “critical” knee
flexion and ankle flexion joints, cf. Figure 11.

For the sake of completeness, we give a list of relevant
parameters which we used to obtain the results: Lfoot =
0.276 m, Lstep,i = 0...0.7 m, ∆zstep = 0.03 m, Tstep,i =
0.8...1 s, mt = 54 kg, mF = 3 kg, g = 9.81 m/s2.

VI. CONCLUSIONS AND FUTURE WORK

The proposed method allows us to 1) reduce algorithmic
complexity, 2) significantly reduce execution time (−90 %),
3) increase stability (+40 %), and 4) increase distance to
kinematic limits (+50 %) during challenging maneuvers.
Moreover, the presented algorithm is very general, which
makes it easy to develop modifications or extensions.

4For simulation, we use a custom environment, cf. [31].

https://youtu.be/piQm_oTYXIc
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Fig. 11. Experimental data for left knee flexion ϕK,left (left) and right
ankle flexion ϕA,right (right) as kinematically “critical” joints for stepping
up. Comparison of previous (“old”) and proposed (“new”) method. Gray
areas represent kinematic limits. Achieved increase of kinematic “reserves”:
min

∣∣ϕK − ϕK,limit
∣∣→ +54 % and min

∣∣ϕA − ϕA,limit
∣∣→ +222 %.

For our future goal of multi-contact locomotion, we plan
to consider different formulations of balance, like pure static
criteria as in [35], extensions of the ZMP to non co-planar
contacts as in [36] or interpreting additional contact forces
as modification of the support polygon as in [37]. Staying
faithful to our strategy so far, we plan to maintain robustness
and real-time performance also in future.
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