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Policy Decomposition: Approximate Optimal Control with
Suboptimality Estimates

Ashwin Khadke and Hartmut Geyer

Abstract— Numerically computing global policies to optimal
control problems for complex dynamical systems is mostly in-
tractable. In consequence, a number of approximation methods
have been developed. However, none of the current methods
can quantify by how much the resulting control underperforms
the elusive globally optimal solution. Here we propose policy
decomposition, an approximation method with explicit subopti-
mality estimates. Our method decomposes the optimal control
problem into lower-dimensional subproblems, whose optimal
solutions are recombined to build a control policy for the entire
system. Many such combinations exist, and we introduce the
value error and its LQR and DDP estimates to predict the
suboptimality of possible combinations and prioritize the ones
that minimize it. Using a cart-pole, a 3-link balancing biped and
N-link planar manipulators as example systems, we find that
the estimates correctly identify the best combinations, yielding
control policies in a fraction of the time it takes to compute
the optimal control without a notable sacrifice in closed-loop
performance. While more research will be needed to find ways
of dealing with the combinatorics of policy decomposition, the
results suggest this method could be an effective alternative for
approximating optimal control in intractable systems.

I. INTRODUCTION

Owing to the curse of dimensionality, obtaining global
control policies for complex nonlinear systems common in
robotics requires approximation methods to remain compu-
tationally tractable [1]. Several such methods exist, relying
on either local search or state-space reduction. Local search
methods focus on the behavior of a system close to a
reference motion and iteratively update both, the control and
the reference motion, to achieve a desired behavior. Primary
examples of this category include open-loop trajectory op-
timization [2] as well as closed-loop methods such as DDP
[3] and iLQG [4], and their recent extensions [5]–[7]. The
resulting locally optimal solutions have been combined to
construct global control policies [8]–[10]. But, it remains
open how closely these global policies approximate the true
optimal control of the full system.

Approximation methods that reduce the state space to
simplify the optimal control problem face a similar issue.
These methods express the global control of a dynamical
system as functions of its lower-dimensional features [11].
The features can be hand designed [12], parameterized with
basis functions [13], or derived by minimizing some projec-
tion error [14]. While these features sufficiently capture the
original system dynamics, they are agnostic to the objective
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of the optimal control problem. As a result, the gap in perfor-
mance between the resulting global control and the optimal
control of the system remains difficult to assess. Some recent
extensions try to overcome this issue. For instance, [15] and
[16] identify subspaces within the state space for which the
optimal control of the corresponding lower-dimensional sys-
tem deviates little in closed-loop behavior from the optimal
control of the entire system. However, these extensions only
work for linear systems [15] or linear approximations of
nonlinear systems [16]. Reduction methods that can assess
the suboptimality of their resulting controls when applied to
the original, nonlinear system remain elusive.

We propose policy decomposition, an approximate method
for solving optimal control problems with suboptimality
estimates for the resulting controllers. Policy decomposition
builds on two main ideas. First, it breaks the optimal con-
trol problem for a complex system into lower-dimensional
subproblems, from which it builds a control policy for the
full system in a cascaded fashion. Second, it introduces
the error between the value functions of control policies
obtained with and without decomposition to measure the
closed-loop performance of possible decompositions a priori.
As this error cannot be computed without knowing the true
optimal control, we estimate it based on LQR and DDP
approximations. Choosing one or the other estimate trades
off computational speed (LQR) and prediction accuracy
(DDP). We first overview the main ideas behind policy
decomposition (Sec. II) and then develop them more formally
(Sec. III–V). Using a cart pole, a 3-link balancing biped, and
N-link planar manipulators, we show the proposed method
can find control policies in a fraction of the time it takes to
solve the optimal control while sacrificing little in closed-
loop performance. Finally, we discuss strategies for dealing
with the combinatorics of policy decomposition (Sec. VI).

II. OVERVIEW

Consider designing a control policy to swing-up a pole on
a cart while moving the cart to a goal position (Fig. 1). The
dynamics of this cart-pole system are given by

ẍ =
F− τ

l cosθ +mplθ̇ 2 sinθ +
mpg

2 sin2θ

mc +mp sinθ

θ̈ =

τ

l2 (
mc
mp

+1)− F
l cosθ − mpθ̇ 2

2 sin2θ − g
l (mc +mp)sinθ

mc +mp sinθ

(1)

where x and ẋ are the horizontal position and velocity of the
cart, θ and θ̇ are the angle and angular velocity of the pole,



Fig. 1. Control of cart-pole system using policy decomposition. (a) Cart-pole model. See section II for definitions and appendix B for details. (b) Cascaded
and decoupled examples of policy decomposition. (c) Resulting closed-loop behavior (blue and green traces) in comparison to optimal control of entire
system (red) given model parameters mc = 5kg, mp = 1kg, and l = 0.9m, and bounds on the inputs, |F | ≤ 6N and |τ| ≤ 6Nm.

and the cart force F and pole torque τ are the two control in-
puts driving the system. In addition, the model parameters mp
and mc are the masses of the pole and cart, respectively, l is
the pole length, and g is the gravitational acceleration (Fig. 1-
a). Although with a six-dimensional state-action space the
example is simple and its control optimization tractable,
imagine it were not. To simplify the optimization problem,
one could first optimize an inner control policy πτ(θ , θ̇)
for τ to swing up the pole assuming the cart is locked and
then optimize an outer policy πF

(
x, ẋ,θ , θ̇ ,πτ(θ , θ̇)

)
for F

to move the cart with the torque control of the pole set
to πτ . An alternative to this cascade, is to treat the cart
and pole as decoupled subsystems and design independent
control policies πτ(x, ẋ) and πF(θ , θ̇) (Fig. 1-b). Both policy
decompositions, and the other 42 possible ones, reduce the
dimensionality of the problem and make it computationally
much more tractable (computational speed gains of one to
three orders of magnitude). But the quality of the resulting
control differs considerably among the decompositions. For
instance, the cascaded policy optimization suggested first
(blue trace, Fig. 1-c) performs about as well as the true
optimal control (red reference trace). On the other hand,
the decoupled policy decomposition example performs much
worse; in fact, it never reaches the goal state (green trace).

Some of the performance outcomes seem intuitive. For
instance, the pole dynamics are independent of the posi-
tion and velocity of the cart (Eq. 1), which suggests the
cascaded control optimization with an inner policy πτ(θ , θ̇)
disregarding the cart should perform well. For more complex
dynamical systems, however, intuition quickly fades, and it
gets difficult to predict the closed-loop performance of any
control decomposition [17] including policy decomposition.

To measure the quality of closed-loop behavior for a de-
composition δ , we introduce the value error, errδ , defined as
the average difference between the value functions V δ and V ∗

of control policies obtained with and without decomposition,

errδ =
1
|S|

∫
S

V δ (xxx)−V ∗(xxx) dxxx (2)

where S is the state space and xxx ∈ S. As defined, errδ

directly quantifies the suboptimality of the resulting control

induced by a decomposition. Because this measure cannot be
computed without knowing the true value function V ∗ of the
original and intractable optimal control problem, we explore
two methods of estimating the value error. In the first method,
we linearize the system dynamics and estimate errδ using the
LQR solutions [18] for the complete linear system and its
equivalent policy decompositions. These estimates errδ

lqr are
very fast to compute but loose accuracy away from the point
of linearization. Alternatively, we compute DDP solutions [3]
for the original and decomposed systems from a few initial
states to estimate Vδ , V ∗, and the value error. This second
method improves the accuracy of the error estimate, errδ

ddp,
but largely increases the computational costs.

The actual and predicted closed-loop performances for
all policy decompositions of the cart pole system are sum-
marized in Fig 2. Both estimates (filled and open circles)
correctly predict the four best performing policy decomposi-
tions, which have virtually the same value error of about 0.01
(triangles). The four decompositions include the cascaded
policy described before (compare Fig. 1, ranked 2nd in
Fig. 2). It has the lowest complexity (lowest-dimensional
state-action space for inner policy, same state-action space
for outer policy) and is fastest to compute among the four,
yielding a solution to the cart-pole control problem 66 times
faster than computing the true optimal control. In summary,
an algorithm using either estimate could have identified this
decomposition a priori and then computed the corresponding
control policy in a fraction of the time it takes to compute
the true optimal control policy without notably sacrificing
closed-loop performance (blue vs. red trace, Fig. 1-c).

III. POLICY DECOMPOSITIONS

To formally develop the idea of policy decomposition, we
consider the general dynamical system

ẋxx = fff (xxx,uuu) (3)

with state xxx and input uuu. The optimal control for this system
is defined as the control policy π∗uuu(xxx) that minimizes

J =
∫

∞

0
e−λ tc(xxx(t),uuu(t))dt. (4)
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Fig. 2. Cart-pole policy decompositions. The computation times (relative
to optimal control) and value errors of all decompositions (triangles) are
shown together with their LQR and DDP estimates (filled and open circles).
LQR estimates include an error bar (solid lines) assessing the effect of
ignored input bounds and are set to infinity for uncontrollable systems after
linearization.

This objective function describes the discounted sum of some
costs c(xxx,uuu) accrued over time with the discount factor λ

characterizing the trade-off between immediate and future
costs. We assume a quadratic structure of c(xxx,uuu),

c(xxx,uuu) = (xxx− xxxd)T QQQ(xxx− xxxd)+(uuu−uuud)T RRR(uuu−uuud) (5)

where xxxd and uuud define the goal state and input. To ap-
proximate the optimal control, policy decomposition reduces
the search for one high-dimensional policy to a search for
a collection of sub-policies that are lower-dimensional and
much faster to compute. In general, the number of possible
decompositions grows in a combinatorial manner with the
dimensions of the state and input vectors. At a fundamental
level, however, these combinations are comprised of only
two building blocks: decoupled and cascaded sub-policies.

A decoupled sub-policy πuuui(xxxi) is the optimal control for
the subsystem

ẋxxi = fff i(xxxi,uuui | x̄xxi = x̄xxd
i , ūuui = 000) (6)

where xxxi and uuui are subsets of xxx and uuu, fff i only contains the
dynamics associated with xxxi (Eq. 3), and the complement
state and input vectors, x̄xxi = xxx\xxxi and ūuui = uuu\uuui, are assumed
to be constant parameters. Specifically, ūuui = 000 decouples
any influence from complement inputs on the subsystem
dynamics. The corresponding cost function reduces to

cdec
i (xxxi,uuui) = (xxxi− xxxd

i )
T QQQi(xxxi− xxxd

i )+(uuui−uuud
i )

T RRRi(uuui−uuud
i )
(7)

where QQQi and RRRi are appropriate sub-matrices of QQQ and RRR.
A cascaded sub-policy πuuui(xxxi,πūuui(xxxi)), on the other hand,

is the optimal control for the subsystem

ẋxxi = fff i(xxxi,uuui | x̄xxi = x̄xxd
i , ūuui = πūuui(xxxi)). (8)

This subsystem differs from the decoupled one in the com-
plement input, which becomes an inner sub-policy with at
least one non-zero element,

πūuui(xxxi) = [0, . . . , 0, πuuu j(xxx j), 0, . . . , 0] (9)

where uuu j ⊆ ūuui and xxx j ⊆ xxxi. Note that (i) πūuui(xxxi) can contain
multiple sub-policies, (ii) these sub-policies can be either
cascaded (not shown in Eq. 9) or decoupled ones, and
(iii) they have to be known before πuuui(xxxi,πūuui(xxxi)) can be
computed. In addition, the cost function changes to

ccas
i (xxxi,uuui) =(xxxi− xxxd

i )
T QQQi(xxxi− xxxd

i )+(uuui−uuud
i )

T RRRi(uuui−uuud
i )

+(uuu j−uuud
j )

T RRR j(uuu j−uuud
j ).

(10)

Purely decoupled policy decompositions are the fastest
to compute whereas cascaded ones tend to offer better
closed-loop performance. For instance, a system with n-
dimensional state and m = n inputs requires jointly com-
puting n-dimensional policies for all the inputs. By contrast,
a purely decoupled decomposition,

π
dec
uuu (xxx) = (πu1(x1), . . . ,πun(xn)) (11)

resolves to n 1-dimensional policies to be computed inde-
pendently. The associated reduction in computation time is
dramatic but may be bought at the cost of a poor closed-loop
performance, precisely because decoupling ignores cross-
influences. Cascaded decompositions partly include these
influences and tend to offer better performance. However,
they generate optimal control problems that quickly become
more complex and computationally costly. A purely cascaded
decomposition for such a system,

π
cas
uuu (xxx) =

(
πu1(x1),πu2((x1,x2),πu1(x1)), . . . ,

πun(xxx,πun−1((x1, . . . , xn−1),πun−2( . . . , . . .)))
)
(12)

results in computing n policies that grow in dimensionality
from 1 to n.

A general policy decomposition can combine decoupled
and cascaded policies in many ways, posing a combinatorial



challenge that requires one to curtail the number of decom-
positions being tested. For instance, counting just purely
decoupled and cascaded decompositions for a system with n
states and m inputs leads to a total of

N(n,m) =
m

∑
r=2

∆(m,r)
[

∆(n,r)
r!

+
(
rn− (r−1)n)] (13)

possible combinations (see appendix A for details), where

∆(a,b) =
b−1

∑
k=0

(−1)k
(

b
k

)
(b− k)a (14)

The cart-pole system with two inputs and four states
(Fig. 1-a), has only 44 possible policy decompositions and
value functions of all decomposed policies and the cart-pole’s
optimal control can be readily computed (implementation
details in appendix B). They are ranked by the value error
in Fig 2 (black triangles). Several of these decompositions
greatly reduce computation time without giving up closed-
loop performance. The four best ones have an error suffi-
ciently small (errδ ≈ 0.01) to virtually match the closed-
loop performance of the optimal control (illustrated for the
second ranked decomposition in Fig 1-c). Yet the time to
compute these control policies reduces by a factor of 16
(decomposition #3) to 66 (#2).

IV. LQR SUBOPTIMALITY ESTIMATE

While the value error errδ provides a measure for the
suboptimality of policy decompositions δ , it cannot be
computed directly in intractable systems, as it requires to
know the system’s optimal control. We thus explore two
methods of estimating the error.

The first method relies on the corresponding linear system,

ẋxx = AAA(xxx− xxxd)+BBB(uuu−uuud) (15)

obtained by linearizing the dynamics (3) about the goal state
and input,

AAA =
∂ fff (xxx,uuu)

∂xxx

∣∣∣∣
(xxxd ,uuud)

, BBB =
∂ fff (xxx,uuu)

∂uuu

∣∣∣∣
(xxxd ,uuud)

. (16)

Because the costs are quadratic (Eq. 5), the optimal control
π∗uuu(xxx) of this system is an LQR, whose value function V ∗lqr(xxx)
can be readily computed by solving the algebraic Riccati
equation [19]. The value error estimate of a decomposition
δ then becomes

errδ
lqr =

1
|S|

∫
S

V δ
lqr(xxx)−V ∗lqr(xxx) dxxx (17)

where V δ
lqr(xxx) is the value function for the equivalent decom-

position of the linear system.
Performing the equivalent policy decomposition amounts

to computing LQR gain matrices for the equivalent sub-
systems. A decoupled sub-policy πuuui(xxxi) is replaced by the
optimal control for the subsystem

ẋxxi = AAAi(xxxi− xxxd
i )+BBBi(uuui−uuud

i ) (18)

with

AAAi =
∂ fff i

∂xxxi

∣∣∣∣
(xxxd ,uuud

i ,ūuui=000)
, BBBi =

∂ fff i

∂uuui

∣∣∣∣
(xxxd ,uuud

i ,ūuui=000)
. (19)

Note that the assumptions about the complement state and
input of a decoupled subsystem (Eq. 6) are embedded by
linearizing about the point (xxx,uuui, ūuui) = (xxxd ,uuud

i ,000). The opti-
mal control resolves to πuuui(xxxi) = uuud

i −KKKi(xxxi−xxxd
i ), where KKKi

is the corresponding LQR gain matrix. Similarly, a cascaded
sub-policy πuuui(xxxi,πūuui(xxxi)) becomes the LQR control for the
subsystem

ẋxxi = (AAAi +ΠΠΠi)(xxxi− xxxd
i )+BBBi(uuui−uuud

i ) (20)

with

AAAi =
∂ fff i

∂xxxi

∣∣∣∣
(xxxd ,uuud

i ,ūuui=πūuui (xxx
d
i ))

,BBBi =
∂ fff i

∂uuui

∣∣∣∣
(xxxd ,uuud

i ,ūuui=πūuui (xxx
d
i ))

. (21)

This subsystem features the term ΠΠΠi(xxxi− xxxd
i ), that embeds

the inner sub-policy, ūuui = πūuui(xxxi) (Eq. 8). Similar to (9), ΠΠΠi
contains at least one non-zero element, for instance,

ΠΠΠi =


0 0 · · · 0

0 −

dim(xxx j)︷ ︸︸ ︷
BBB jKKK j

...
...

. . .
...

0 · · · · · · 0

 (22)

formed by the LQR gain KKK j and the input matrix BBB j of the
inner sub-policy, πuuu j(xxx j)= uuud

j−KKK j(xxx j−xxxd
j ), with xxx j ⊆ xxxi and

uuu j ⊆ ūuui. In effect, the equivalent policy is a linear controller,

π
δ
uuu (xxx) = uuud−KKKδ (xxx− xxxd) (23)

whose gain KKKδ is a block matrix composed of all the
subsystem LQR gains KKKi. More specifically, for the purely
decoupled and cascaded decompositions with r subsystems,
the gain KKKδ takes on the general form

KKKdec =



dim(xxx1)︷︸︸︷
KKK1 0 · · · 0

0

dim(xxx2)︷︸︸︷
KKK2 · · · 0

...
...

. . .
...

0 · · · 0

dim(xxxr)︷︸︸︷
KKKr


(24)

and

KKKcas =



dim(xxx1)︷︸︸︷
KKK1 0 · · · 0

dim(xxx2)︷ ︸︸ ︷
KKK2 · · · 0
...

. . .
...

dim(xxx)︷ ︸︸ ︷
KKKr


(25)



respectively. With the gain KKKδ defined, the value function of
an equivalent linear system decomposition δ resolves to

V δ
lqr(xxx) = (xxx− xxxd)T PPPδ (xxx− xxxd) (26)

where PPPδ is the solution of the Lyapunov equation,(
AAA−BBBKKKδ − λ III

2

)T

PPPδ

(
AAA−BBBKKKδ − λ III

2

)
+QQQ+KKKδ T

RRRKKKδ = 0.

(27)
The LQR suboptimality estimate can be computed within

minimal time, but it has some drawbacks. First, it only
accounts for linearized system dynamics at the goal state.
Second, the estimate is agnostic to bounds on the control
inputs present in the original optimal control problem. Third,
controllers obtained by decomposing the equivalent linear
system may be closed-loop unstable (PPPδ in Eq. (26) has
negative eigenvalues) resulting in errδ

lqr = ∞. For the cart
pole, the LQR suboptimality estimate (filled circles) broadly
predicts the observed closed-loop performance of almost half
of the policy decompositions (triangles) as can be seen in
Fig. 2. However, clear deviations occur. The severity of the
resulting deviations is indicated by the error bars in Fig 2
(red solid lines), which show the difference between the LQR
estimate and the value error obtained after applying the LQR
control policies to the original cart-pole dynamics with the
input bounds enforced.

V. DDP SUBOPTIMALITY ESTIMATE

We explore a second method based on DDP [6] to estimate
the value error (Eq. (2)). In contrast to LQR, DDP can
enforce input bounds and account for system dynamics away
from the goal state. However, these benefits have to be
bought with a costly increase in computation time.

DDP optimizes the closed-loop performance of a system
about an initial reference trajectory XXX0(t) generated from an
input guess UUU0(t). For every point t along this time trajectory,
DDP uses approximate system dynamics to iteratively update
the input, UUU+(t) = UUU−(t)−KKK(t)

(
xxx−XXX−(t)

)
, and resulting

trajectory, XXX+(t), such that the cost (4) is minimized. In
effect, DDP produces a locally optimal solution, XXX(t) and
UUU(t), whose value function,

Vddp(xxx) =
∫ tmax

0
e−λ tc(XXX (t) ,UUU(t))dt (28)

approximates V ∗(xxx) for the system under consideration at
the point xxx = XXX(0) in the state space.

We use this approximation to estimate the value error.
Specifically, we introduce the suboptimality estimate

errδ
ddp =

1
k

k

∑
s=1

(
V δ

ddp(xxx
s)−V ∗ddp(xxx

s)
)

(29)

which averages the value errors obtained from local DDP
solutions to the original and decomposed optimal control
problems for k initial points centered on the goal state xxxd

(Fig. 3-a). While V ∗ddp(xxx
s) can be computed right away,

obtaining V δ
ddp(xxx

s) requires more interpretation.

Fig. 3. DDP approximation of value function. (a) Local DDP solutions
XXX(t) for k = 2n initial points xxxs located at edges of hyper-cube that defines
boundary of explored state space section. (b) Nearest neighbors XXX i(t

†
i ) on

subsystem solutions XXX i(t) for current state xxx along solution XXX(t).

A policy decomposition δ with r subsystems creates r
optimal control problems, whose individual DDP solutions
need to somehow be combined for computing the approx-
imate value function V δ

ddp(xxx
s). We achieve this with the

following procedure. First, starting from the initial sub-states
{xxxs

i |s ∈ 1, · · · ,k} we use DDP to find for each subsystem
i locally optimal solutions characterized by XXX s

i (t), X̃XX s
i (t),

UUU s
i (t) and KKKs

i (t). XXX s
i (t) are the final DDP trajectories for

the subsystem i originating from state xxxs
i . X̃XX s

i (t), UUU s
i (t) and

KKKs
i (t) are the control reference trajectory, control inputs and

local linear gains respectively that result in the subsystem
following trajectory XXX s

i (t). Next, we define the subsystem
control policy as the nearest neighbor policy [9],

πuuui(xxxi) =UUU s†

i (t†)−KKKs†

i (t†)

(
xxxi− X̃XX s†

i (t†)

)
(30)

where s† and t† respectively mark the trajectory ID and time
at which XXX s

i (t) is closest to the subsystem state (Fig. 3-b),

s†, t† = argmin
s,t
‖XXX s

i (t)− xxxi‖2 . (31)

Lastly, we run the policy πδ
uuu (xxx) = (πuuu1(xxx1), . . . ,πuuur(xxxr)) on

the complete system (Eq. (3)) initialized at xxxs and compute
V δ

ddp(xxx
s) from the resulting trajectory XXX(t),

V δ
ddp(xxx

s) =
∫ tmax

0
e−λ tc

(
XXX (t) ,πδ

uuu (XXX(t))
)

dt. (32)

Note that XXX(t) will differ from the collected trajectories of
the individual DDP solutions, (XXX1(t), . . . ,XXX r(t)), as the latter
ignore at least some of the input couplings that influence the
behavior of the complete system.

DDP uses quadratic approximations of the system dynam-
ics, but to curb computational costs, we consider only linear
ones. The difference between a decoupled and a cascaded
subsystem enters in this procedure through the approximate
dynamics that DDP uses. Echoing the analysis presented in
section IV (Eqs. 18–22), the linearized subsystem dynamics
at time t along the trajectory XXX i(t) resolve to

ẋxxi = AAAt
i
(
xxxi−XXX i(t)

)
+BBBt

i
(
uuui−UUU i(t)

)
(33)



for a decoupled subsystem and

ẋxxi = AAAt
i
(
xxxi−XXX i(t)

)
+ΠΠΠ

t
i
(
xxxi− X̃XX t

i
)
+BBBt

i
(
uuui−UUU i(t)

)
(34)

for a cascaded one, with

AAAt
i =

∂ fff i(xxxi,uuui)

∂xxxi

∣∣∣∣
(XXX i(t),UUU i(t))

, BBBt
i =

∂ fff i(xxxi,uuui)

∂uuui

∣∣∣∣
(XXX i(t),UUU i(t))

(35)
As in Eq. (20), the additional term ΠΠΠ

t
i(xxxi− X̃XX t

i) in the
linearized dynamics of the cascaded subsystem (Eq. (34))
embeds at least one inner sub-policy πuuu j(xxx j), where LQR
gain KKK j and desired state xxxd

i (Eq. (22)) are replaced by

DDP gain KKK
s†

j
j (t

†
j ) and concatenation of reference states

X̃XX t
i = [· · · , X̃XX

s†
j

j (t
†
j ), · · · ] (Eq. 30) respectively. Note that s†

j

and t†
j identify the nearest neighbour to xxxi in trajectories

of subsystem j. To generate the initial input sequence UUU0(t)
when computing a DDP policy for a decoupled subsystem
j, we use the LQR controller gain KKK j (described in section
IV) to roll-out trajectories and generate UUU0(t). In case of a
purely cascaded decomposition, we use KKK j in conjunction
with DDP policies (Eq. 30) of subsystems earlier in the
cascade to compute initial trajectories.

The DDP suboptimality estimate generally improves the
value error prediction in the cart-pole example (Fig. 2).
Unlike the LQR estimate, the DDP estimate (open circles)
does not suffer from the deviations due to uncontrollability
and input bounds that affect the LQR estimate. But, com-
putational costs for this improvement are high. For the cart
pole system, computing the DDP estimate requires 60% of
the time it takes to actually compute the decomposed policy.

VI. DISCUSSION

We introduced policy decomposition, an approximate
method for solving optimal control problems that reduces
search for one high-dimensional control policy to a search
for a collection of lower-dimensional sub-policies that are
faster to compute yet preserve closed-loop performance when
combined. We showed benefits of this idea with the cart-pole
system (Figs. 1 and 2). Next, we introduced the value error
(Eq. (2)), a measure of a decomposition’s suboptimality, and
derived two estimates of it using LQR or DDP. The first
estimate computes in minimal time while the second one im-
proves the error prediction at the cost of added computation
time. The estimates enable us to assess a decomposition’s
closed-loop performance without computing the policy.

A measure that predicts the closed-loop performance of
control decompositions is a useful tool. Several measures
have been proposed to help select simplified control config-
urations in complex systems. Measures using transfer func-
tions [17] and Gramians [20] build on open-loop dynamics,
which may not correlate well with closed-loop behavior. The
ν-gap measure [21] overcomes this limitation but ignores
the objective of the underlying optimal control problem.
Measures that account for the objective have been proposed
for linear systems, including sum of output covariances of
the resulting LQG control [22] and value function bounds for
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Fig. 4. Balancing control for 3-link biped model. (a) Biped model. See
section VI and appendix C for definitions. (b) Behavior of optimal control
(red traces) and best and worst policy decomposition (blue and green)
(compare Tab. I).
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Fig. 5. Swing up control for 2, 3 link manipulators. See section VI and
appendix D for details. Behavior of optimal control (red traces) and least and
most suboptimal policy decompositions (blue and green) (compare Tabs. II
and III).

LQR controllers obtained through nested−ε decompositions
[23]. In contrast, the value error (Eq. (2)) is a general
measure for any decomposition’s suboptimality in nonlinear
systems. The LQR (Eq. (17)) and DDP (Eq. (29)) estimates
we derived for policy decomposition may be adaptable to
other control decompositions.

The 3-link model of a balancing biped shown in Fig. 4 has
four inputs (leg forces Fl/r and hip torques τl/r) and six states
(position defined by leg length lr, leg angle αr, and torso
angle θ ; velocities, ẋ, ż, and θ̇ ). This system has 110864
pure decompositions (Eq. 13). But symmetry between the
two legs suggests to group leg forces and hip torques into
two pseudo-inputs, FFF = (Fl ,Fr) and τττ = (τl ,τr), resulting in
just 188 pure decompositions. Additionally, grouping states
into pseudo-states for the torso (θ , θ̇ ) and the center of mass
(lr, αr, ẋ, ż) further reduces this number to 8. Such a grouping
lessens the chance for surprise discoveries of controllers but
the best among these 8 decompositions yields a policy that
has a small value error (errδ = 0.017, also compare Fig. 4)
and is computed about five times as fast as the optimal
controller. From Tab. I, we see the LQR and DDP estimates
correctly identify this best performing policy (appendix C



TABLE I
ACTUAL AND PREDICTED CLOSED-LOOP PERFORMANCE OF EIGHT

BIPED MODEL POLICY DECOMPOSITIONS. INPUT CONSTRAINTS:
0≤ Fl/r ≤ 3mg, |τl/r| ≤ 0.25mg/l0 .

decomposition time
(%) errδδδ r errδδδ

lqr rlqr errδδδ
ddp rddp

0: entire system 100 0 0 0

1: πτττ (xxx,πF(lr,αr, ẋ, ż)) 19 0.017 1 7.8e−3 1 0.38 1
2: πF

(
xxx,πτττ (θ , θ̇)

)
29 0.22 2 7.9e−3 2 440 2

3: πF (lr,αr, ẋ, ż), πτττ

(
θ , θ̇

)
0.16 0.3 3 0.016 3 1.26e3 3

4: πF (xxx,πτττ (xxx)) 47 0.48 4 0.027 4 2e3 4
5: πτττ (xxx,πF(xxx)) 43 0.74 5 0.34 6 1.02e4 6
6: πτττ

(
xxx,πF(θ , θ̇)

)
21 3.17 6 0.33 5 4.19e3 5

7: πF (xxx,πτττ (lr,αr, ẋ, ż)) 37 7.7 7 4.9 7 1.87e4 7
8: πτττ (lr,αr, ẋ, ż), πF

(
θ , θ̇

)
0.15 50 8 ∞ 8 1.85e5 8

TABLE II
ACTUAL AND PREDICTED CLOSED-LOOP PERFORMANCE OF EIGHT

2-LINK MANIPULATOR POLICY DECOMPOSITIONS. INPUT CONSTRAINTS:
|τ1| ≤ 5NM, |τ2| ≤ 0.5NM.

decomposition time
(%) errδδδ r errδδδ

lqr rlqr errδδδ
ddp rddp

0: entire system 100 0 0 0

1: πτττ2

(
xxx,πτττ1 (Θ1)

)
3.5 8e−4 1 2e−4 1 2e−4 1

2: πτττ1

(
xxx,πτττ2 (Θ2)

)
15 2e−3 2 1e−3 2 1.5e−3 2

3: πτττ1 (Θ1), πτττ2 (Θ2) 0.04 3e−3 3 1.3e−3 3 1.7e−3 3
4: πτττ2

(
xxx,πτττ1 (Θ2)

)
3.8 6.4e−3 4 3e−3 4 0.029 4

5: πτττ2

(
xxx,πτττ1 (xxx)

)
4.8 0.018 5 0.145 5 4 7

6: πτττ1

(
xxx,πτττ2 (xxx)

)
15 0.024 6 1.2 7 0.33 5

7: πτττ1

(
xxx,πτττ2 (Θ1)

)
19 0.046 7 0.17 6 2.04 6

8: πτττ1 (Θ2), πτττ2 (Θ1) 0.03 2 8 ∞ 8 66 8

TABLE III
ACTUAL AND PREDICTED CLOSED-LOOP PERFORMANCE OF FIVE 3-LINK

MANIPULATOR POLICY DECOMPOSITIONS. INPUT CONSTRAINTS:
|τ1| ≤ 16NM, |τ2| ≤ 7.5NM, |τ3| ≤ 1NM.

decomposition time
(%) errδδδ r errδδδ

lqr rlqr errδδδ
ddp rddp

0: entire system 100 0 0 0

1: πτττ3

(
xxx,π[τττ1 ,τττ2 ]

(Θ1,Θ2)
)

4.6 6.6e−3 1 4e−4 1 5.6e−3 1
2: π[τττ1 ,τττ2 ]

(Θ1,Θ2), πτττ333 (Θ3) 0.25 0.051 2 9e−4 2 7.6e−3 2
3: πτττ1

(
xxx,πτττ2

(
Θ2,Θ3,πτττ3 (Θ3)

))
15 0.094 3 5e−3 3 0.053 4

4: πτττ1 (Θ1), π[τττ2,τττ3 ]
(Θ2,Θ3) 0.08 0.1 4 5.5e−3 4 0.082 5

5: πτττ1 (Θ1), πτττ2 (Θ2), πτττ3 (Θ3) 8e−4 0.11 5 6e−3 5 0.044 3

for implementation details). However, decompositions #2 to
#5 have large errδ

ddp values despite low true value errors.
This is because our strategy to generate initial trajectories
for DDP (described in section V) results in some diverging
trajectories for these decompositions. But, the initialization
strategy works well for decompositions of all other systems
we experimented with.

For the 2 and 3 link manipulators in Fig. 5 we group
angular positions and velocities of each joint Θi = (θi, θ̇i),
resulting in 8 (enumerated in Tab. II) and 180 pure decom-
positions respectively. To further reduce the possibilities for
the 3 link one, we estimate the ratio of policy computation
time with and without decomposing. We use grid-based
policy iteration for computing policies [1] and estimates for

computation times can be derived using size of the resulting
policy grids, maximum iterations for policy evaluation and
update, and number of actions sampled in every iteration for
each input. We use these estimates, coupled with the LQR
estimate to compute a pareto optimal set of decompositions
(Tab. III). Even the most suboptimal of these decompositions
generates a working policy (Fig. 5(b); appendix D)

The combinatorics of policy decomposition challenges its
practical utility. We only considered pure decompositions in
this work, and the problem becomes harder when we con-
sider decompositions that have a combination of decoupling
and cascading. Screening decompositions with the LQR esti-
mate and then refining the performance predictions using the
DDP estimate may work for moderately complex systems.
Using domain knowledge further alleviates this problem but
the real test is in identifying promising decompositions for
complex and truly unknown systems. Using search methods
like GA to prune the possibilities, while accounting for
estimates of suboptimality and compute time, is a reasonable
future step to achieving this goal.

APPENDIX

A. Pure Decompositions Count

Any decomposition splits the m inputs of a system into r
groups, where r can range from 2 to m. There are ∆(m,r)/r!
ways to distribute the m inputs into r non-empty groups [24],
with ∆(m,r) defined in Eq. (14). Thus, the total number of
decompositions becomes N(n,m) = ∑

m
r=2 ∆(m,r)/r! Nxxx(n,r),

where Nxxx(n,r) accounts for the number of ways the n
states of the system feature in the r input groups. For
purely decoupled decompositions, Ndec

xxx (n,r) = ∆(n,r), as a
particular non-empty r-grouping of the state xxx defines exactly
one purely decoupled decomposition. In case of purely
cascaded decompositions, sub-policies for an r-grouping of
inputs can be computed in r! different orders. For each of
these orderings a valid r-grouping of the state xxx defines a
unique cascaded decomposition. A state grouping is valid
if the subset of state assigned to the first input group in
the cascade is non-empty. There are (rn− (r−1)n) valid r-
groupings of the state. Thus Ncas

xxx (n,r) = r!(rn− (r− 1)n).
Adding Ndec

xxx (n,r) and Ncas
xxx (n,r) leads to the total number

N(n,m) of pure decompositions reported in Eq. (13).

B. Swing Up control for Cart-Pole

We represent the value functions V ∗(xxx) and V δ (xxx) over
the state-space, Sfull = {(x, ẋ,θ , θ̇) | x ∈ [−1.5,1.5], ẋ ∈
[−3,3],θ ∈ [0,2π], θ̇ ∈ [−3,3]}, with grids of size 314 and
use policy iteration [1] to compute them. The action-space
is Afull = {(F,τ) | |F | ≤ 6N, |τ| ≤ 6Nm}. The cost function
(Eqs. 4 and 5) parameters are QQQ = diag([25,0.02,25,0.02]),
RRR = 10−3diag([1,1]), and λ = 3. We compute errδ

over a smaller subset S = {(x, ẋ,θ , θ̇)|x ∈ [−0.5,0.5], ẋ ∈
[−1,1],θ ∈ [2π/3,4π/3], θ̇ ∈ [−1,1]} to avoid distortions
due to state bounds common in grid-based representations.
For errδ

ddp (Eq. 29), DDP trajectories starting from the 16
states at corners of set S are computed with time horizon
T = 5s and time steps dt = 1ms.



C. Balancing control for 3-Link Biped

Biped (Fig. 4) has a mass m = 72kg, rotational iner-
tia I = 3kgm2, and hip-to-COM distance d = 0.2m. Legs
are massless and contact the ground at fixed locations
d f = 0.5m apart. A leg breaks contact if its length ex-
ceeds l0 = 1.15m. In contact, legs can exert forces (0 ≤
Fl/r ≤ 3mg) and hip torques (|τl/r| ≤ 0.25mg/l0) leading
to dynamics mẍ = Fr cosαr +

τr
lr

sinαr +Fl cosαl +
τl
ll

sinαl ,
mz̈=Fr sinαr− τr

lr
cosαr+Fl sinαl− τl

ll
cosαl−mg, and Iθ̈ =

τr(1 + d
lr

sin(αr − θ)) + Frd cos(αr − θ) + τl(1 + d
ll

sin(αl −
θ))+Fld cos(αl−θ), where ll =

√
l2
r +d2

f +2lrd f cosαr and

αl = arcsin lr sinαr
ll

.
The control objective is to balance the standing

biped midway between the footholds. Value functions
over state-space Sfull = {(lr,αr, ẋ, ż,θ , θ̇) | lr ∈
[0.85,1.25],(αr − π/2) ∈ [0,0.6], ẋ ∈ [−0.3,0.5], ż ∈
[−0.5,1],θ ∈ [−π/8,π/8], θ̇ ∈ [−2,2]} are represented
with a 6D grid of size 132 × 14 × 19 × 14 × 21
and computed using policy iteration. The cost
function parameters QQQ = diag([350,700,1.5,1.5,500,5]),
RRR = 10−6diag([1,1,10,10]), and λ = 1. We compute errδ ,
errδ

lqr and errδ
ddp over a smaller set S = {(lr,αr, ẋ, ż,θ , θ̇)|lr ∈

[0.95,1],(αr − π/2) ∈ [0.3,0.4], ẋ ∈ [−0.1,0.1], ż ∈
[−0.3,0.3],θ ∈ [−0.2,0.2], θ̇ ∈ [−0.2,0.2]}. For errδ

ddp,
we compute 64 trajectories starting from the corners of set
S, over a horizon of T = 4s with dt = 1ms.

D. Swing Up control for Planar Manipulators

errδ
ddp over set S is computed similar to the other systems.

Time horizon of T = 4s and time step of dt = 1ms is used.
2 DOF: System dynamics are characterized by [m1,m2] =

[1.25,0.25]kg and [l1, l2] = [0.25,0.125]m. State-space for
policy iteration is Sfull = {(θ1,θ2, θ̇1, θ̇2) | θ1 ∈ [0,2π],θ2 ∈
[−π,π], θ̇1, θ̇2 ∈ [−3,3]} and value functions are rep-
resented using 4D grids of size 314. The action-
space is Afull = {(τ1,τ2) | |τ1| ≤ 5Nm, |τ2| ≤ 0.5Nm}.
Cost parameters are QQQ = diag([1.6,1.6,0.12,0.12]), RRR =
diag([0.003,0.3]) and λ = 3. errδ , errδ

lqr and errδ
ddp are

computed over S = {(θ1,θ2, θ̇1, θ̇2) | θ1 ∈ [2π/3,4π/3],θ2 ∈
[−π/3,π/3], θ̇1, θ̇2 ∈ [−0.5,0.5]}

3 DOF: Masses of the links are [m1,m2,m3] =
[2.75,0.55,0.11]kg and their lengths are [l1, l2, l3] =
[0.5,0.25,0.125]m. State-space for policy iteration is
Sfull = {(θ1,θ2,θ3, θ̇1, θ̇2, θ̇3) | θ1 ∈ [0,2π],θ2,θ3 ∈
[−π,π], θ̇1, θ̇2, θ̇3 ∈ [−3,3]} and value functions are
represented using 6D grids of size 173× 133. Action-space
is Afull = {(τ1,τ2,τ3) | |τ1| ≤ 16Nm, |τ2| ≤ 7.5Nm, |τ3| ≤
1Nm}. The cost parameters are RRR = diag([0.004,0.04,0.4]),
QQQ = diag([1.6,1.6,1.6,0.12,0.12,0.12]) and λ = 3. The
set S = {(θ1,θ2,θ3, θ̇1, θ̇2, θ̇3) | θ1 ∈ [2π/3,4π/3],θ2,θ3 ∈
[−π/3,π/3], θ̇1, θ̇2, θ̇3 ∈ [−0.5,0.5]}
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