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Abstract— Deep reinforcement learning (RL) based con-
trollers for legged robots have demonstrated impressive ro-
bustness for walking in different environments for several
robot platforms. To enable the application of RL policies for
humanoid robots in real-world settings, it is crucial to build
a system that can achieve robust walking in any direction, on
2D and 3D terrains, and be controllable by a user-command.
In this paper, we tackle this problem by learning a policy to
follow a given step sequence. The policy is trained with the help
of a set of procedurally generated step sequences (also called
footstep plans). We show that simply feeding the upcoming
2 steps to the policy is sufficient to achieve omnidirectional
walking, turning in place, standing, and climbing stairs. Our
method employs curriculum learning on the complexity of
terrains, and circumvents the need for reference motions or
pre-trained weights. We demonstrate the application of our
proposed method to learn RL policies for 2 new robot platforms
- HRP5P and JVRC-1 - in the MuJoCo simulation environment.
The code for training and evaluation is available online. †.

I. INTRODUCTION

Learning-based methods such as model-free, deep re-
inforcement learning (RL) for control have shown us a
new direction for controlling legged robots, in the recent
few years. RL policies can be trained for balancing tasks,
locomotion tasks, and a wide range of complex manipulation
skills. While several works have shown impressive results
demonstrating bipedal walking (in simulation and on real
robots), wider adoption of such controllers for practical
applications still lies ahead in the future.

An important aspect of practical robots is the ability of
the underlying controller to track a user-specified command
- which may describe the desired mode of walking. More
concretely, for real-world deployment, it is useful to realize
a controller which is able to execute walking on curved paths,
on flat-terrain and on stairs, forward and backwards walking,
and be able to stand still, in a user-commanded fashion. The
bipedal robot should also be able to easily transition between
these different modes, ideally without switching to a different
controller. Traditionally, frameworks that are based on a
model-based controls achieve this through a footstep plan
consisting of target feet positions and orientations, combined
with a finite-state machine (FSM). Footstep plans also greatly
reduce the uncertainty in the behavior of the controller as
they allow us to know, roughly, in advance when and where
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Fig. 1. Dynamic simulation of HRP-5P (walking on straight path) and
JVRC-1 (walking on curved path). The robot’s walking pattern can be
controlled by easily modulating the upcoming 2 target steps, T1 and T2.

the robot is going to place its feet. This improves the overall
safety of a demonstration.

Is it possible to achieve such a behavior for a legged robot
using Reinforcement Learning?

In this work, we focus precisely on this problem. We
develop a novel technique for the design of RL bipedal
locomotion policies for human-scale humanoid robots (vastly
different from the more popular Humanoid character in RL
literature), capable of omnidirectional walking on a flat floor
and 3D terrain. The user-command to the RL policy is
provided in terms of the desired feet positions and root
heading at the future 2 footsteps, from the robot’s current
state. Using our proposed method, we demonstrate a single
policy that can achieve the following modes by merely
manipulating the 2-steps input signal:

• Forwards or backward walking on a straight path,
• Walking on curved path,
• Lateral walking (sidestepping),
• Ascending and descending stairs,
• Turning in place, and
• Quiet standing.
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Specifically, we make the following contributions through
this research:

1) We show, for the first time, the development of an RL
policy for the locomotion of human-sized humanoid
robots without the use of reference motions or demon-
strations. We show applications on 2 humanoids -
HRP-5P [1] and JVRC-1 [2] within a realistic sim-
ulation environment.

2) We show the use of oriented stepping targets for
achieving omnidirectional locomotion on 2D terrains
and 3D stairs in conjunction with existing footstep
planners, and evaluate the robustness of the developed
policy (in the context of real robot application).

3) We release the training and evaluation code along with
the model files for JVRC-1 publicly to facilitate further
research in this direction.

II. RELATED WORK

RL for legged locomotion. There exist several works
that show promising results for using reinforcement learning
for legged locomotion tasks on several robot platforms [3],
[4] either on the real physical hardware or on a realistic,
simulated version of them. Hwangbo et. al. [5] demonstrated
a method for training RL policies in simulation and trans-
ferring to the real ANYmal robot - a medium-dog-sized
quadruped platform. Natural-looking and energy-efficient
motion was developed by gradually changing the reward
function during training. This is one way of implementing
curriculum learning, and has been extensively used by later
works to similar effect.

Recent works on the Cassie robot have been presented that
show robust RL policies for the real hardware in outdoor
environments. To achieve a periodic bipedal gait on Cassie,
with swing and stance phases for each foot, reward function
specification based on a clock signal is used in [6]. In [7],
a parameterized gait is achieved with the use of reference
motions based on Hybrid Zero Dynamics (HZD).

Traversing stair-like terrain relying solely on propriocep-
tive measurements has also been demonstrated as a means
of effectively overcoming the problem of accurate terrain
estimation [8]. Achieving robust blind locomotion means
that the robot will recover from missteps if it experiences
an unexpected contact with the environment. In contrast, our
focus in this work is to develop controllers that actively use
the provided terrain data in the form of desired footsteps.

RL for humanoids. Yang et. al. [9] have presented results
on the Valkyrie humanoid robot using a realistic robot model
for learning walking gaits, albeit only within the simulation
environment. They rely on expert demonstrations and a track-
ing reward to achieve a seemingly natural bipedal walk. It is
important to note that deploying RL policies on the physical
hardware for a large humanoid robot such as Valkyrie and
the HRP-series robots is considerably more problematic than
in the case of lighter bipedal robots (say, Cassie). Large
and heavy humanoid robots have strong and heavy legs (to
support a heavy upper-body) and consequently, a high gear-
ratio transmission systems with low backdrivability. Safety

risks are also heightened in the case of a bigger and more
powerful robot.

The method proposed in DeepWalk [10] shows a single
learned policy for a real humanoid robot that can achieve
omnidirectional walking on a flat floor. However, it is not
clear from whether the robot can attain a dynamically
stable walk or not. The robot platform also appears to have
relatively large feet which may help the robot to avoid falls
even under a fragile RL policy.

Results on the Digit robot shown in [11] demonstrate
a hierarchical framework comprising of a high-level RL
policy with low-level model-based regulators and balancing
controllers.

Our work in this paper is more similar to ALLSTEPS [12]
(and a very recent work [13]) which proposed a curriculum-
driven learning of stepping stones skills for the Cassie robot.
In contrast to [12] and [13], our framework introduces the
use of “oriented” stepping targets allowing the RL policy
to consume the planned footsteps from an existing planner,
which typically contains orientation targets in addition to
planned footstep locations.

Unlike Cassie in ALLSTEPS, our reward design ensures
that a reference motion is not required to bootstrap the
RL policy. Additionally, we analyze the performance of
our policy under noisy state measurement - which is of
paramount importance for robotics application. We also
discuss the differences in learned behavior between Cassie
and the humanoids robots in our experiments.

III. BACKGROUND

A. Robot Platforms

HRP-5P is a high-powered, electrically-actuated, 53 de-
grees of freedom (DoF) humanoid robot weighing over
100kg, standing tall at 182cm [1]. We freeze all the joints
corresponding to the upper body, arms, and hands and only
actuate the leg joints - hip yaw, hip roll, hip pitch, knee, ankle
pitch, ankle roll. Thus, a total of 12 joints are controller by
the RL policy.

JVRC-1 is a virtual robot model developed for the Japan
Virtual Robotics Challenge [2] with a total weight of 62kg
and 172cm height. Again, we freeze all joints other than the
following joints - hip pitch, hip roll, hip yaw, knee, ankle
roll, ankle pitch - in each leg.

Description files for both robots were prepared for Mu-
JoCo [14] from the original VRML models (we publicly
release the MJCF model for JVRC-1 with this work).

B. Reinforcement Learning

RL concerns with the task of learning to prescribe an
action a given an input s with the aim of maximizing a
reward r. The world is generally represented as a discrete-
time Markov Decision Process constituted by a continuous
state space S ∈ Rn, an action space A ∈ Rm, a state-
transition function p(s, a, s′) and a reward function r(s, t).
The state-transition function p : S ×A× S →

[
0, 1
]

defines
the dynamics of the world and gives the probability density
over the next state s′ when taking action a in the current



Fig. 2. Proposed hierarchical control structure. The high-level controller is represented by the learned RL policy. The predictions made by RL policy
π are added to the neutral motor-positions, corresponding to the “half-sitting” (HS) posture of HRP-5P, and then sent to the PD control loop. The input to
the policy are the next two planned footsteps (T1 and T2), the clock signal, and the robot state. Footstep planning is performed by conventional methods.

state s. p is assumed to be unknown a priori. The reward
function r : S × A → R provides a time-dependent scalar
signal at each state transition.

The policy π(a|s) is defined as a stochastic mapping
from states to action. The goal in RL is to find a π that
maximizes the agent’s expected T-horizon discounted return
given by J(πθ) = E

[∑T
t=0 γ

tr(st, at)
]
, where γ ∈ (0, 1] is

the discount factor. In the case of large, continuous state
spaces we use a parametric policy πθ with parameters θ
often representing the set of parameters of a multi-layered
perceptron (MLP). The policy is improved iteratively, by
estimating the gradient of J(πθ) and updating the policy
parameters by performing stochastic gradient ascent with
a step size α: θk+1 = θk + α∇J(πθk). ∇J(πθk) can be
estimated with the experience collected from trajectories
sampled by following the policy πθk .

In this paper, we use the Proximal Policy Optimization
(PPO) [19] algorithm which builds upon the vanilla policy
gradient method described above, to increase sample effi-
ciency while avoiding policy collapse.

IV. METHODS

A. Control Structure

The hierarchical control framework adopted by us con-
sists of a higher-level RL policy that makes joint position
predictions at a slow update rate of 40Hz, and a lower-level
PD controller working at 1000Hz responsible for converting
the desired joint positions to desired joint torques. The PD
controller uses relatively very low gains and consequently the
joint position tracking error can be significantly large. The
policy learns to incorporate this behavior of the PD loop into
its predictions, and in fact, actively uses the tracking error
to generate interaction forces [5]. We expect the controller
to work in association with a planner responsible for feeding
desired footsteps and desired root heading to the RL policy.

Such a planner would ideally rely on effective environment
perception, to dynamically plan a path for the robot to follow.
The control structure overview is shown in Fig. 2.

B. Policy Parameterization

Observation Space. The input to our control policy
comprises of the robot state, the external state, and the clock
signal. The robot state consists of the joint positions and
joint velocities of each actuated joint (only in the legs), roll
and pitch orientation and angular velocity of the root (pelvis).
The robot state is invariant to the yaw of the root in the world
frame. This is fine because the policy does not need to know
its global yaw for stepping on the target steps, which are
always expressed relative to the robot. Naturally, it would
be vital for the external footstep planner, responsible for
computing the relative footsteps, to have a full 6D estimate
of the robot in the world frame.

The robot state vector is concatenated with the 8D external
state vector and a 2D clock signal. The external state is
described by the 3D position and 1D heading of the two up-
coming steps T1 = [x1, y1, z1, θ1] and T2 = [x2, y2, z2, θ2],
defined in the frame of the robot’s root as rT1 and rT2,
respectively. The heading θ acts as a reference for the desired
root orientation of the robot. We use an observation of
two steps as observing only the next one step may cause
performance degradation; while more steps may not give
additional value [12], [15].

A clock signal is needed due to the inclusion of the
periodic reward terms. Even though the clock signal can be
represented by a single scalar for a cyclic phase variable
φ that increments from 0 to 1 at each timestep, we do a
bijective projection of φ to a 2D unit cycle as follows:

Clock =

{
sin

(
2πφ

L

)
, cos

(
2πφ

L

)}
, (1)



where L is the cycle period after which φ resets to 0. This
projection is done to prevent an abrupt jump of the clock
input from 1 to 0 at the end of each cycle. Such an abrupt
change may lead to a non-smooth learning behavior [9].

Our experiments show that this state vector is sufficient
for the task. This is because other seemingly important state
features, such as the root height, are derivable from the
sensor measurements of joint encoders and IMU, and hence,
are implicitly encoded into the robot state vector. Even the
absence of force-torque sensor readings is overcome thanks
to the joint tracking error.

Action Space. The output of the policy is comprised of
the desired joint positions of the actuated joints in the robot’s
legs (12 for each robot). The predictions of the desired joint
positions from the network are added to fixed motor offsets
corresponding to the robot’s half-sitting posture, before being
sent to the lower-level PD controllers.

C. Reward Design

We explain each term of the full reward function in details.
Bipedal Walking. A symmetrical bipedal walking gait is

characterized by a periodic motion of the legs, alternating
between double-support (DS) phases, where both feet are
in contact with the ground, and the single- support (SS)
phases, where one foot is swinging while the other supports
the weight of the robot.

To encode this pattern into the robot’s behavior, we adopt
the idea of periodic reward composition proposed in [6]. Our
main idea is to split one gait cycle into two SS phases (one
for each foot) and two DS phases of fixed durations (refer to
Fig. 3). During a single-support phase, one foot is expected
to make a static contact with the ground while the other
foot is expected to be swinging in the air. In the following
SS phase, the roles of the feet are swapped, and the foot
previously on the ground is now expected to be swinging
and the previously swinging foot is expected to make the
supportive contact with the ground.

We can implement the above behaviour with the help of
“phase indicator” functions Igrfleft(φ), I

grf
right(φ) for regulating

ground reaction forces and Ispdleft(φ), I
spd
right(φ) for regulating

the speeds of the left and right foot, respectively (see Fig.
4). During the SS phase, the functions I*(φ) ∈ [−1, 1]
incentivize higher speeds of the swing foot while penalizing
ground reaction forces (GRF) on the same foot, and simul-
taneously penalize the speed and incentivize ground reaction
forces on the support foot. During the DS phase, speeds of
both feet are penalized while the GRF are incentivized. We
set the SS duration to 0.75s for HRP-5P and 0.80s for JVRC-
1 and the DS duration to 0.35s for HRP-5P and 0.20s for
JVRC-1.

The reward term for regulating the ground reaction forces
at the feet rgrf and the term for the feet body speeds rspd
are computed as follows:

rgrf = Igrfleft(φ) · Fleft + Igrfright(φ) · Fright (2)

rspd = Ispdleft(φ) · Sleft + Ispdright(φ) · Sright (3)

From Eq. (2) and (3), and Fig. 4, it is easy to see how
the quantities (the normalized GRF Fleft and Fright and
the normalized body speeds Sleft and Sright) are rewarded
positively or negatively according to φ. For example, when
φ lies in the first single-support region of the gait cycle,
Igrfleft(φ) if close to -1 while Igrfright(φ) is close to 1, meaning
that larger values of Fleft are rewarded negatively while
larger values of Fright lead to positive reward; that is, the
left foot is swinging and the right foot creates the support.

For quiet standing, the DS phase is expanded to span the
entire gait cycle. The quiet standing mode is triggered when
the observed two steps are zeroed, i.e., T1 = T2 = 0.

Step Reward. In additional to the above periodic reward
terms, we need to incentivize the robot to step and orient the
body according to the desired targets. The step reward is a
combination of two terms: the hit reward and the progress
reward. The hit reward promotes the robot to place any of its
feet on the upcoming target point. It is received only when
either or both of the feet are within a distance target radius of
step T1. The progress reward is responsible for encouraging
the policy to move the floating-base (root body) towards the
next target position from the current position (both projected
on the 2D plane).

If the distance between the step T1 and the nearest foot is
given by dfoot, while the distance between T1 and the root
link is given by droot, the step reward is a weighted sum of
the two terms:

rstep = khit · exp(−dfoot/0.25)+
(1− khit) · exp(−droot/2), (4)

where, coefficient khit = 0.8 is a tunable hyperparameter.
Further, the root orientation term encourages the root

orientation quaternion q to be close to the desired quaternion
q̂, obtained from the desired Euler angles of 0-degree roll and
pitch, and a yaw equal θ1.

rorient = exp(−10 · (1− 〈q, q̂〉2)), (5)

where 〈a, b〉 denotes the inner product between a and b.
We found that with the introduction of the progress reward,

we do not need to explicitly reward the robot to maintain a
desired root velocity. Instead, by experiencing the curriculum
of footsteps during training, the robot learns to self-regulate
its root velocity.

Energy efficiency and other terms. Besides the above,
we also desire several other characteristics of the robot’s gait.
Specifically, we need to maintain the root height hroot at
a desired value ĥroot, equal to the height at the nominal
posture. This term is computed as follows:

rheight = exp(−40 · (hroot − ĥroot)2). (6)

We also introduce a term for encouraging the robot to
maintain an upright posture, by introducing a reward on the
distance between the floor projection of the head positions
x,yphead to the root x,yproot. This prevents the robot from



developing a leaned-back behavior and excessively swaying
the upper body:

rupper = exp(−10 · ‖ x,yphead − x,yproot‖2). (7)

Next, we introduce penalties for applied torque and action
to increase energy efficiency of the robot during locomotion
and to prevent artefacts from developing. rtorque and raction
incentivize the joint torques τ and the predicted actions a at
the current timestep to be closer to their respective values at
the previous timestep, τprev and aprev respectively:

raction = exp(−5 ·
∑
|a− aprev|/12), (8)

rtorque = exp(−0.25 ·
∑
|τ − τprev|/12). (9)

We do not include terms to regulate orientation of the feet.
Finally, the full reward function is given by:

r = w1rgrf + w2rspd + w3rstep + . . .

w4rorient + w5rheight + w6rupper + . . .

w7raction + w8rtorque, (10)

where, the weights w1, w2, w3, w4, w5, w6, w7, w8 are set
to 0.15, 0.15, 0.45, 0.05, 0.05, 0.05, 0.05, 0.05, respectively.
We did not aggressively fine-tune the reward weights, and
use the same set for both robots.

D. Early Termination and Initialization Conditions

Besides the reward function, the initialization and termi-
nation conditions of the rollouts have a strong impact on the
learned behavior, as they can be used to prevent biases in the
data distribution towards unfavourable samples. As expressed
in [16], this is analogous to class imbalance related issues in
supervised learning.

Inspired by previous works, we initialize each robot at its
nominal posture: at which the robot can remain upright and
prevent falling under the absence of external disturbances.
For humanoids, this posture is commonly referred to as the
“half-sitting” posture. We add a small amount of noise to
the joint positions to let the policy experience varying initial
robot states; this will also be helpful for future deployment on
the real hardware. Since the global yaw angle of the robot’s
root is not observed by the policy, it is not important to
randomize the initial heading of the robot. Initial value of
the phase variable φ can be 0 or 0.5.

Early termination conditions are needed to be set care-
fully such that the states where balance is irrecoverable are
avoided. We enforce two commonly used conditions - a fall
conditions, reached when the root height from the lowest
point of foot-floor contact is less than a threshold, and a self-
collision condition. The height threshold is set as 60cm for
both humanoids. An episode ends either after a fixed number
of control timesteps or when a termination condition is met.

E. Footstep Generation

Under our framework, a footstep is comprised of a 3D
point with a heading vector attached to it (represented by a
scalar θ), denoting the target position of the foot placement
and the target yaw orientation of the robot’s torso, respec-
tively. By attaching the “heading vector” to the footstep, our
method enables robot behaviours such as lateral walking and
turning in place, which would be complicated to achieve
otherwise [12]. An ordered sequence of such steps is called
a footstep plan.

The footstep plans for forward walking are generated
manually, simply, by placing points alternatively to the left
and right of a line segment, starting from the projection of
the robot’s root on the floor and extending forward. The
step length (defined by the distance between the left and
right heel in double support phase) for a sequence is specific
to each robot and must be set carefully as unrealistically
small or big step length values will impede the robot from
developing a stable walking gait. The foot spread (defined by
the lateral distance between the left and right foot centers)
is set to a fixed value, also specific to each robot. We
draw experience from existing classical controllers developed
for the humanoids for setting these values: 0.15m foot
spread and 0.35m step length for HRP-5P and 0.12m foot
spread and 0.25m step length for JVRC-1. For the manually-
generated straight paths, the orientation vector of each step
is equal to the “forward” direction, i.e., the yaw orientation
of the robot at which it is initialized.

Similarly, for backwards walking, the plans can be gener-
ated by placing the points to the left and right of a line
segment extending in the backwards direction, while the
orientation vector attached to the steps remains in the forward
direction. For standing in place, the trajectory consists of
only 1 step at the origin (that is T1 = T2 = 0). The steps
are generated manually by placing forward facing steps on
the line segment at the intersection of the frontal plane and
the floor, for lateral walking plans.

Stairs are built by setting the z-position of the steps
according to a fixed per-step height parameter (i.e. the stair
rise), decided according to a curriculum depending on the
training iteration, as explained in the next section. The stair
run is fixed to be equal to the step length, ensuring that
observed target step lies exactly in the middle of the stair
run.

Footstep plans for walking on a curved path are generated
using existing footstep planners. We use the footstep planner
from the Humanoid Navigation ROS package [17] which
implements a search-based planner for 2D bipedal walking.
The input to the planner is a map in the form of a 2D
occupancy grid and the initial and goal poses (x, y, θ). A
total of 1000 plans are generated by placing the start pose
at the origin and randomly sampling the goal position from
(0,−1,−π/2) to (0, 1, π/2) on an empty map. More com-
plicated plans can be generated consisting of sharper turns
by placing randomly generated obstacles on the occupancy
grid map and by sampling the goal pose from a wider range.



Fig. 3. Trained RL policy exhibits symmetric walking gait. Screengrabs from left to right are taken at 0%, 15%, 32%, 50%, 62.5%, 78% and 100% of
the gait cycle respectively. LDS is the double-support duration, and LSS is the single-support duration. L = 2× (LDS +LSS) is the total cycle length.

Fig. 4. Plots of Igrfleft, Igrfright, Ispdleft and Ispdright with respect to the
phase variable φ. The transitions at the phase boundaries are smoothened
to encourage more stable learning [6].

As stated previously, the desired footstep position and
desired root heading are observed by the policy relative to
the robot’s root frame. When the robot successfully scores a
target step at index k of a planned sequence, the observation
window slides forward by one step. So, the step at index k is
replaced by k+1, and the policy now observes the steps k+1
and k+2 of the sequence. A step is flagged as scored, if any
foot is within the target radius for more than target delay
seconds. We found that a 20cm target radius works for both
robots, while target delay is set to be equal to the duration of
the single-support phase to promote synchronicity between
the periodic gait and the stepping behavior. The delay is
required to allow the contacting foot to settle on the target.

F. Curriculum Learning

Curriculum Learning (CL) has been used successfully in
multiple previous works to overcome the problem of local
minima [18], [5], [12], where, an RL agent being trained
for locomotion may learn to stand in place and not make
any motion to avoid falling, if presented with extremely
challenging tasks in the initial stages of training.

We employ a curriculum on the sample distribution in
order to learn stair climbing in a smooth manner. Initially,

the policy is only exposed to flat floor sequences - manually-
generated sequences and planner-generated curved paths.
Then, after a certain number of iterations have passed, we
start to linearly increase the height of the steps from 0m
to ±0.10m with each iteration, in effect building stairs (by
placing “box” type geoms at the appropriate 3D position
in MuJoCo). The iteration indices for starting and ending
this linear increase in step height is determined empirically.
In our experiments, we start training on stairs after 3000
iterations and keep linearly increasing the step height over
the next 8000 iterations. We note that there is a lot of
flexibility in setting up the curriculum; the key idea is to
gradually increase the difficult of the target step sequences
that the robot is made to traverse. Mathematically, the step
height at the training iteration itr is given by:

pz =

{
0 itr < 3000

kc · 0.1 · (itr − 3000/8000) itr ≥ 3000
m, (11)

where kc = {−1, 1} is a random variable that determines if
the step heights are positive (for ascending) or negative (for
descending).

For simplicity, the policy is not trained for modes such as
curved 3D walking, although, we believe that it should be
possible to achieve this too through an appropriate curricu-
lum.

V. RESULTS

A. RL Policy

Training Details. We used the MLP architecture to rep-
resent both the actor and critic policies, which parameterize
the policy and the value function in PPO [19]. Both the MLP
networks have 2 hidden layers of size 256 each and use ReLU
activations. To limit the range of the actor’s predictions,
the output of the actor policy is passed through a TanH
layer. Each PPO rollout is of length 400 timesteps, and each
training batch holds 64 of such rollouts. The learning rate
was set to 0.0001. The hyperparameters are mostly similar
to [6], however, we expect that the training will be stable for
other choices of batch size and maximum trajectory length.



Fig. 5. Robustness Test For HRP-5P with noise in height estimation. The
noise is drawn from a uniform distribution {−l, l} (l shown in x-axis).

We also adopt the LOSS method proposed in [20], [21],
which adds an auxiliary loss term (in addition to the original
PPO loss term) to enforce symmetry by formally defining
functions for obtaining mirrored states and mirrored actions.
Training the policy takes around 12 hours to collect a total
of 50 million samples for learning all modes, on a Intel Core
i7-10750H CPU @ 2.60GHz with 12 cores. Simulations and
optimizations are done entirely on CPU.

Our experiments show that the periodic reward composi-
tion combined with the symmetric loss term, is effective in
generating a bipedal gait for realistic gait cycle durations.
However, backwards walking is generally more difficult to
learn when combined with other modes in a curriculum. This
has been studied previously and can be overcome by methods
such as DASS [22].

Robustness. We evaluate the robustness of the learned
policy in two scenarios: (a) what happens when the terrain
estimation is poor? And, (b) what happens when there is
noise in the robot state observation?

To answer the first question, we build a test terrain of stairs
of rise 10cm and run 30cm. Then, we perform 100 rollouts of
maximum episode length of 10s of a trained policy for HRP-
5P, while adding uniformly sampled noise in the z-position
of the steps.

The success rate and the average length of episodes in the
tests are noted in Fig. 5 along with the range of distribution
from which the noise is uniformly sampled. A fall is detected
when the root height goes below 60cm or when there is
a self-collision between the links. The data shows that the
performance of the policy falls considerably as the noise
goes beyond ±3cm. There is a higher chance of failure if
the actual stair rise is higher than the target footstep than
in the case when the stair rise is lower - as the robot trips
and fall due to unexpected contacts with the stair riser in the
former case.

We also simulate noise in the input signal to the policy
by adding uniformly sampled noise to the measured joint
positions and joint velocities. Trials of maximum episode
length of 10s are run in the stair climbing environment. The
policy is remarkably robust here, being able to withstand
noise of up to ±3 degrees before significant performance

Fig. 6. Measured ground reaction forces (in simulation) on the left foot
and right foot for (a) LIPM Walking (top) and (b) RL controller (bottom).
In both cases the peak vertical force is around 1000N (robot mass = 103kg).

deterioration. Note that the accuracy of the motor encoders
on the real hardware is much higher than this.

Realism of Locomotion. As the models of the robots
used for training includes limits and properties that are well-
defined and approximately the same as the real robots, we
expect that the motion generated in the simulation environ-
ment will respect the limits of the physical hardware too.
Table I shows that the torque and velocity peaks for the
actuated joints are well below the upper limits for a 10s
walk (for HRP-5P). Figure 6 also shows the GRF measured
by the feet force sensors in the vertical direction, for flat-
terrain forward walking using, (a) the developed RL policy
and (b) the conventional approach based on the model-based
LIPM (Linear Inverted Pendulum Mode)-Walking controller
[23]. The peak values in both the cases are within the safe
ranges of the force sensors installed on the real robot’s feet.

Yet, we believe that applicability to the real system may
still be a challenging task due to several non-linear effects
in the actuator dynamics (such as dry friction) that are
exceptionally difficult to model [24].

Differences to Cassie. Using the available model files
[25], we also trained Cassie for locomotion using our
framework. We found that, compared to Cassie, it is more
difficult to obtain reasonable learned motion for HRP-5P
or JVRC-1, without the periodic reward terms (Eq. (2), (3)
and the auxiliary LOSS term for symmetry. Further, for the
humanoids, it is very important to offset the predictions from
the RL policy with fixed joint positions (corresponding to the
half-sitting posture). Without this, the knee joints become
stretched and easily hit the joint limits. We also believe
that bent knees are helpful for stability by providing added
compliance in the vertical direction (also the case of Cassie).
The upper body reward (Eq. 7) is helpful in maintaining a
upright posture.

Due to a longer gait cycle period, heavier limbs and large
armature values, the motion learned by the humanoids also
appears to be “slower” than Cassie.

While Cassie has previously been trained for stair traversal
without a curriculum [8], we found that CL is essential for
learning a policy in our case to achieve the desired behavior.



TABLE I
PEAK TORQUES AND VELOCITIES FOR LEG JOINTS DURING A 10S WALK.

Peak joint torques [N] Peak joint velocity [rad/s]
Hip Hip Hip Knee Ankle Ankle Hip Hip Hip Knee Ankle Ankle
yaw roll pitch pitch pitch roll yaw roll pitch pitch pitch roll

Upper limit 250 600 600 1420 300 250 10.29 7.85 8.58 4.66 8.49 10.19
Right Leg 24.1 60.6 97.9 39.8 9.45 10.2 1.18 0.72 1.50 1.51 1.14 0.62
Left Leg 17.1 55.0 84.4 76.3 23.9 11.3 0.37 0.39 1.57 2.00 1.25 0.57

VI. CONCLUSION

We introduced a framework for learning an RL policy
capable of following arbitrary footstep plans along straight
and curved paths. The same policy is also able to traverse
stairs, walk backwards, turn in place, and stand still. Transi-
tion between the different modes can be achieved simply by
modulating the observed target footsteps. We demonstrate
that our technique can be applied to 2 different simulated
robots - HRP-5P and JVRC-1.

It is important to note that our proposed approach is dis-
tinct from blind locomotion. On the real robot, we expect the
RL policy to be used in conjunction with an external footstep
planner which in turn relies on exteroceptive measurements
to plan a step sequence. The footstep planner is expected
to draw out steps while considering the terrain, obstacles,
start and goal positions and the steps are fed into the closed-
loop controller responsible for balancing and walking. We
believe that the methods presented in this work form a crucial
milestone for real robot deployment in the future.
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