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Abstract—1In recent years, robots are used in an increas-
ing variety of tasks, especially by small- and medium sized
enterprises. These tasks are usually fast-changing, they have
a collaborative scenario and happen in unpredictable envi-
ronments with possible ambiguities. It is important to have
methods capable of generating robot programs easily, that are
made as general as possible by handling uncertainties. We
present a system that integrates a method to learn Behavior
Trees (BTs) from demonstration for pick and place tasks,
with a framework that uses verbal interaction to ask follow-
up clarification questions to resolve ambiguities. During the
execution of a task, the system asks for user input when there
is need to disambiguate an object in the scene, when the targets
of the task are objects of a same type that are present in multiple
instances. The integrated system is demonstrated on different
scenarios of a pick and place task, with increasing level of
ambiguities. The code used for this paper is made publicly
availabl

Index Terms— Behavior Trees, Learning from Demonstra-
tion, Manipulation, Collaborative Robotics, Interactive Disam-
biguation

I. INTRODUCTION

Modern industrial robotic applications are becoming more
dynamic and complex. Robots are tasked to solve a broader
range of problems and to operate in frequently changing
environments shared with humans. This high variety of tasks
requires easy and rapid generation of new robot programs,
with the ability to react to changes in the environment. These
requirements can be met by using learning algorithms to
synthesize control policies that are reactive, human-readable,
and modular. Behavior Trees (BTs) have proven to be a good
policy representation for many robotic applications [1] and
numerous works propose methods to automatically synthe-
size them [2].

Additional challenges arise if the robot relies on vision
capabilities. Markers allow to label items in the scene
univocally, but they are not suited for industrial robotic
applications or when it is desired to manipulate common
objects or tools. Common object recognition algorithms can
detect objects in the scene but may not be able to distinguish
between objects belonging to the same category or class.
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Fig. 1: Behavior Tree with the disambiguation subtree, to
solve a manipulation task where a banana has to be placed
in a bowl.

A possible use-case scenario could be one with a robot
tasked to prepare a kit-box to deliver to a human operator
for an assembly operation. The robot might have access to
a shelf where common tools are stored, like screwdrivers
and hammers. Supposing that the object detection algorithm
is able to tell a screwdriver from a hammer, there are still
ambiguities on which type of screwdriver is suitable for the
subsequent assembly task. These ambiguities could be solved
at run-time by letting the robot verbally interact with the
human. The robot could ask efficient follow-up questions by
using the available information and by making reasonable
suggestions to the collaborator while asking for clarification.
To this extent, referring expressions, i.e. phrases that describe
objects with their distinguishing features, can be used.

In this paper, we propose to integrate the interactive dis-
ambiguation framework from [3] with a method for learning
BTs from demonstration [4], to solve ambiguities that might
arise during execution of pick and place tasks. We use
Learning from Demonstration (LfD) methods as they enable
intuitive generation of robot programs, with small effort
required by the user. We make the additional assumption
that the BT is learned in a non-ambiguous environment, but
that ambiguities might occur during the execution of the
task. Therefore, our contribution is an integrated system that
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ambiguities at execution time, through verbal interaction
with a human user. We call a task or a scene ambiguous
if the robot has to interact with objects of a category
that are present in multiple instances. If there is only a
single item of the target object category present, then the
scene is non-ambiguous. The task is disambiguated with
clarifying questions, where one of the objects is pointed at
unequivocally as the target for the task. In the reminder of
this paper we present the background on BTs and LfD and
the related work in Section [[I, a detailed description of the
integrated system and the underlying methods in Section
to conclude with a set of experiments designed to validate
the proposed system in Section

II. BACKGROUND AND RELATED WORK

This section provides a background on Behavior Trees and
Learning from Demonstration and summarizes related work,
highlighting the uniqueness of our systems.

A. Behavior Trees

Behavior Trees are task switching policy representations,
historically conceived as an alternative architecture to Fi-
nite State Machines (FSM) [1]. They have explicit support
for task hierarchy, action sequencing and reactivity, and
improve on FSMs especially in terms of modularity and
reusability [2]. The internal nodes of a BT are called control
nodes, while leaves are called execution nodes or behaviors
(polygons and ovals, respectively, in Figure [T). At run-
time, the BT is ticked from the root down the tree at a
specified frequency. The most common control nodes are
Sequence and Fallback (or Selector). The former execute
their children in a sequence, returning once all succeed or
one fails. The latter also execute their children in a sequence,
returning when one succeeds or all fail. Execution nodes
execute a behavior when ticked and return one of the status
signals Running, Success or Failure. They are of type Action
nodes or Condition nodes, the latter immediately returning
Success or Failure as they encode status checks and sensory
feedback. BTs can functionally be compared to decision
trees, but the Running state allows BTs to execute actions
for longer than one tick. The Running state is also crucial
for reactivity, allowing other actions to preempt non-finished
ones. As discussed in [4], reactivity is inherently gained
when representing a policy learned from demonstration as
a BT. Further detail on BTs is found in e.g. [1].

B. Learning from Demonstration

Learning from Demonstration (LfD - also known as
Programming by Demonstration or Imitation Learning) de-
fines those methods that allow to generate robot programs
from human demonstrations [5], thus lowering both the
requirements on the programming skills and time needed
to write robot programs. A LfD method defines how tasks
are demonstrated and how the robot policies are represented
and learned. Demonstrations can mainly be of three types:
kinesthetic teaching, where the user physically moves the
robot, teleoperation, where a robot is controlled through an

external device and passive observation, where the robot
or the human are endowed with tracking systems and the
demonstrator’s body motion is recorded. Each demonstration
method has pros and cons, most importantly about correspon-
dence problem, i.e. the mapping between a motion performed
by a human teacher and the one executed by the robot.
In Kinesthetic teaching, used in this paper, the motion is
directly recorded in the robot task (or joint) space, so it does
not suffer form the correspondence problem. This method
is intuitive and only minimal instruction is required for the
user. The main drawback is the limit in the number of robot
degrees of freedom and mass that a human can move to
perform a demonstration.

C. Related Work

Despite the increased interest in BTs in the AI community
in recent years, only a few methods exist that are capable
of automatically generating the structure of a BT solving a
robotic task. Some examples are automatic planners [6]-[8],
genetic programming [9], [10] and learning from demon-
stration [4], [11]. Methods in [11] and [12] learn a mapping
from state space to action space as a Decision Tree (DT),
which is converted into a BT, since BTs generalize DTs [13].
In [14], on the other hand, demonstrations are recorded in the
form of a sequence of actions and directly stored in a BT. In
both [12] and [14] the target application is controlling game
Al, although trees learned in the former are used as guide
to assist game designers. The method applied in [14] aims
to learn a strategy to play StarCraft, but the outcome is a
very large and hard to read BT (> 50.000 nodes) whose
structure limits the reactivity. The BT learned in [11] is
implemented on a mobile manipulator performing a house
cleaning task. At the learning stage, the whole action space
and state space are encoded in the tree, affecting its size.
The reference frames for all actions are hard-coded, thus
requiring additional effort from the programmer and reducing
both reusability and the ability of the method to generalize.
The method proposed in [15] uses human demonstrations to
learn robot skills that are encoded as a BT. In particular, what
is learned is an action combining Probabilistic Movement
Primitives (ProMPs), point-to-point and gripper motions.
ProMPs are low dimensional representation for trajectory
distributions that can exploit the variance in the demonstra-
tions. In contrast to [15] we do not learn trajectories from
the demonstrations, only the end point of the action, and we
let a motion planner compute the optimal trajectory between
start and end points. We learn the whole structure of the BT
for the demonstrated task, while in [15] the structure is fixed.

Early attempts on implementing HRI in BTs were made
in [16], [17], where a surgical robot is controlled by BT.
The robot execution halts before performing the tumor ab-
lation and user input is required to decide one of the two
possible ablation paths to proceed. Authors in [18], [19]
modify the formalism of the BT introducing different cost
types for every action performed by a robot. At execution
time the control node selects the action with the lowest
cost. In a collaborative industrial scenario, an operator can



communicate their intentions to the robot, that keeps track
of the actions executed by the human and focuses on the
remaining ones. Finally, [20] proposes OpenRIZE, a GUI
that allows users to program robot interaction behaviors for
HRI applications. The execution layer builds on BTs. In
all these methods, the interaction with the robot is realized
through a GUI. The work by Suddrey et al. [21] is the most
similar to ours. The method maps verbal instructions to BTs
with natural language processing. First, the instruction is
parsed and a register of previously learned BTs is accessed
to find matches. Otherwise, a new BT is learned from
scratch. During a demonstration, the robot can ask questions
to disambiguate the scene by using object properties (e.g.
color). In our work, intrinsic object properties are replaced
with spatial relations, and disambiguation is done during the
execution step. As the system in [21] has no frame inference,
the robot cannot solve more complicated assembly tasks.

For treating ambiguities, previous studies have focused
on asking follow-up questions for various tasks [22], [23],
and interactive clarification has been suggested to enhance
human-robot interaction while disambiguating described ob-
jects [3], [24], [25]. An interactive system has been presented
where the robot proposes the possible target objects and
asks an operator about which one to pick up when the
initial object description is ambiguous [24]. In another study,
Shridhar et al. [25], [26] have suggested a method to decode
the users’ object descriptions using grounding by genera-
tion. This enables their system to generate object-specific
follow-up questions to resolve ambiguities. Further, Amiri
et al. [23] have proposed to augment the robot’s knowledge
base with different entities by asking follow-up questions
such as ‘Where should I deliver the coffee?’. Although there
have been promising attempts to disambiguate described
objects, previous studies mostly assumed that the target
object candidates are given or could be detected or localized
by existing methods. To address these limitations, Dogan et
al. [3] presented an autonomous system to generate follow-
up clarifications using the known objects in the environment,
and the recognized part of the user request without putting
the previous constraints on object categories. They have
shown that when there are uncertainties, the robot can find
the described object more often with fewer conversational
turns when it asks for follow-up clarifications instead of
another description of the same object. To generate the clari-
fications, they have used the spatial relations between objects,
and we employ their approach in our system, as detailed in
Section [[II-B] In their system, they have a component to
identify whether the request is ambiguous, but we adapt this
system by limiting the interaction with the human only to
ambiguous cases, letting the robot resolve the disambiguated
task as previously demonstrated.

To summarize, our proposed system that integrates BTs
learned from human demonstration with a method that uses
follow-up questions to solve disambiguities in the scene is
able to solve some of the shortcomings in the state of the
art. For what concerns BT learning, we learn a tree that is
robust to configuration changes in the environment because

Manipulation Task!

Fig. 2: High-Level BT generated by the system: the manip-
ulation BT that is learned from demonstration is attached in
sequence to a subtree for disambiguating the scene.

Scene Clear?

Fig. 3: The black dots are the grasping points in the image,
found with object-specific heuristics to the depth image.

the method is able to infer the relevant components of a
task, as will be explained in the next section. As per the
disambiguation framework, we limit the interaction with the
user to the necessary situations to solve the task: the human
doesn’t need to query the robot with an object to manipulate,
as the underlying task has already been shown during a
demonstration.

III. PROPOSED INTEGRATED SYSTEM

The proposed system to disambiguate robot manipulation
tasks at execution time builds on an integration of the method
to learn Behavior Trees from Demonstration proposed in [4]
and the method to disambiguate scenes by using verbal inter-
action proposed in [3]. The system combines both methods to
build BTs under the hypothesis that the demonstrated task is
not ambiguous, but that the scene where the task is executed
may be. In this scenario the same task is demonstrated three
times, to allow the system to generalize the task, e.g. infer
in which reference frames the actions are executed.All three
task demonstrations have the same objects in the environment
but their initial position is changed every time. Multiple
demonstrations result in more robust programs. Otherwise,
the robot would just directly copy the human actions, but be
unable to adapt to any changes in the objects’ initial states..
Then, the learned tree is automatically extended to include
the disambiguation subtree (rooted with a Fallback node in
Figure [2)).

Finally, the tree is run to solve the demonstrated task in a
new scenario, that can have none or multiple ambiguities.
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Gripper open? Set gripper open

(a) Initialization. The ‘Scene Clear?’ condition is initialized as True. The BT ticks the manipulation subtree, but the Pick
action and the ‘Object Roughly At?’ condition turn false because both the bowl! and the banana are ambiguous. The next
time the BT is ticked, the ‘Scene Clear?’ will turn to False and the ‘Disambiguate Behavior’ will be executed, first with

query bowl! then with query banana.

¥

Disambiguate Behavior ? In gripper none?
banana roughly at p1 in bowl? -

? ‘ Place banana at p1 in bowl
Y
In gripper banana? -

? Pick banana

Gripper open? Set gripper open

(b) Picking. Now that the objects are disambiguated, the name of the respective reference frame changes accordingly and
the manipulation task can be executed. The robot is picking the target item banana. During the manipulation, the detection
algorithm is timed out and the reference frames are not updated.

Scene Clear?

In gripper banana?

banana_1

Gripper open? Set gripper open

(c) Placing. The robot is placing the target item banana in the reference frame of the bowl. When the detection runs again,
the system is able to update correctly the frames of the disambiguated objects. The next time the BT is ticked, also the
‘Object Roughly At?’ condition will return Success and the task will be concluded.

Fig. 4: Execution pipeline of the system with two ambiguous items. In the Behavior Tree, ‘—’ represents a Sequence node;
“?” represents a Fallback node; green, yellow and red represent the return statuses Success, Running and Failure respectively.
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Fig. 5: Outline of the Learning from Demonstration method.

In the ambiguous situations, every object that is present
with multiple instances is attached to a reference frame with
name object_id: for example, if there are two bananas, one
is attached to a frame with name banana_I while the other
to a frame with name banana_2 (as in Figure [4a). Since the
tree is learned in non-ambiguous environments, the targets
for a manipulation task would be identified by a frame with
the simple name object. The main focus of this paper is
not vision based grasping, so here we computed the frames
using object specific heuristics. To this extent, the Mask-
RCNN detection algorithm [27] is used to obtain objects
bounding boxes and masks, which are then used to compute
grasping points, first in the image space (the black dots in
Figure 3) and then in the world space, using the camera
matrix for projection. A reference frame is attached to the
point obtained in this way (righ-hand sides of Figure [@).

During execution, the condition ‘Scene Clear?’ is ini-
tialized as True, so that the robot attempts to solve the
manipulation task (Figure ). If the task fails, the condition
turns to False and the disambiguation method is run. If the
method completes successfully, the disambiguated object’s
reference frame is assigned the correct name (as in Figure
for the items banana and bowl) and the manipulation task
is attempted again. Note that hard-coding the frame names
in the demonstration would cause a loss in generality and
reactivity. To keep track of the relation between frames and
objects, a dictionary of detected items is updated every time
the detection is run, making it possible to rename the frames
dynamically if new objects appear in the scene or disappear
from it. The detection is halted during the manipulation
action, to discard the noise caused by the robot arm passing
in the field of view of the camera (in Figure |4b|the reference
frames are disappearing as the robot is attempting picking
and then placing). Afterwards information about the detected
objects is updated, with the assumption that only one object
can move in the halted interval. The interaction between
the disambiguation and manipulation subtrees is realized by
accessing variables stored in a blackboard.

A. Learning BTs from Demonstration

The algorithm proposed in [4] learns BTs from demon-
strations in four steps, as shown in Figure [5] The demon-
strations are performed with kinesthetic teaching. During the
demonstration the robot is set to LeadThrough Mode: the
robot arm has the motor brakes switched off and is gravity
balanced, to allow the human to move it around effortlessly.
Once the desired position in Cartesian space is reached, the

TABLE I: Available actions with their description.

Action  Description

Pick Close the grippers around the target object.
Pre-condition: gripper open.

Post-condition: gripper close and object picked.
Parameters: object to pick.

BT action: ‘pick object?.

BT condition: ‘in gripper object?’.

Open the gripper. Intended as a precise place.
Tolerance for the place pose: sphere of radius 3 cm.
Pre-condition: gripper close and item picked.
Post-condition: gripper open.

Parameters: object to place / target pose / target frame.
BT action: ‘place object at pose in frame?’.

BT condition: ‘object at pose in frame?’.

Open the gripper. Intended as a rough place.

Tolerance for the place pose: cylinder of radius 10 cm
Pre-condition: gripper close and item picked.
Post-condition: gripper open.

Parameters: object to place / target pose / target frame.
BT action: ‘place object at pose in frame?’.

BT condition: ‘object roughly at pose in frame?’.

PLACE

DRror

human can select one of the actions described in Table [l A
Pick action will close the robot grippers around the target
object and a ‘Place’ or ‘Drop’ action will open the grippers,
releasing the object. For all actions, the pose of the end-
effector is recorded as the target pose for that action, in all
possible reference frames. All actions are defined together
with their pre- and post-conditions. The difference between
‘Place’ and ‘Drop’ lies in the accuracy with which the object
is placed. In ‘Place’, the tolerance is within a sphere of radius
3 cm centered in the goal position of the action, while in
‘Drop’ a cylinder of radius 10 cm is used. Thus a ‘Drop’
action is chosen when the object goal pose is not relevant,
e.g. when dropping objects in a trash bin. Then, different
demonstrations of the same task are clustered together to
infer the reference frame of each action, the task constraints
and goal conditions.

Frame inference is realized with an unsupervised clus-
tering algorithm. Similar actions that are executed in the
reference frame F' will lie close together and form clusters,
so candidate actions’ target positions are represented in each
of the candidate frames. By default, actions are set to be
executed in the robot base frame. As an example, to teach the
robot how to pick a banana and drop it in a bowl (represented
by the BT in Figure [I), the same demonstration is repeated
(at least) three times (three is the sample threshold for the
clustering algorithm), with different starting configurations
for the objects. For this example, the pose of the end effector
is recorded in the reference frame of the robot, the banana,
and the bowl (Figure [6).

In the final step a planner adapted from [8] builds the BT
using backchaining: starting from the goal, pre-conditions
are iteratively expanded with actions that achieve them -
those actions that have that particular condition as their
post-conditions. Then, those actions’ unmet pre-conditions
are expanded in the same way. For example, for the BT
showed in Figure |1} using as reference Table [l A ‘Drop’
action has the post-condition of the target object to be placed
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(a) Clustering step for the PICK action: the action happens in
the reference frame of the banana.
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(b) Clustering step for the DROP action: the action happens
in the reference frame of the bowl (for obvious reasons, the
banana is disregarded).

Fig. 6: Frame inference. During the learning process, for each
action the pose of the end effector is recorded in all relevant
reference frames. Then, the samples are clustered and the
frame that forms the smallest cluster is taken as reference
frame for the action.

roughly in a position in a specific reference frame, thus
the condition ‘Object Roughly At?’ is inserted automatically
under a Fallback node. If the ‘Drop’ action fails during
planning, it is expanded with its pre-condition, e.g. to place
an object you first have to pick it. Thus, a subtree with
the ‘Pick’ action is added and its pre- and post-conditions
handled in the same way.

It is assumed that the goal is the state at the end of the
demonstration. Demonstrations with the same goal condi-
tions are grouped together and a BT is generated for each
group. Finally, the planner combines these trees under a
fallback node. In this way, if the task represented by one
subtree fails to achieve the goal, another subtree is executed
to attempt achieving the same goal.

B. Disambiguation of Requests

In the cases where the task fails and ‘Scene Clear?’
condition turns False, we employ the method from [3]
that asks for follow-up clarifications to resolve ambiguities.
This method obtains the candidate regions that are causing
the ambiguities leveraging explainability [28] and generates
yes/no questions for each of the candidates describing them
uniquely with their spatial relations [29]. Once the system
receives an affirmative answer to a question for any of the
candidates, this candidate is suggested as the one described
by the user — see Figure [7] for an overview.

For a given RGB scene and an expression describing
an object in the scene, an activation heatmap H showing
the areas contributing to the predictions are obtained using
the image captioning module of Grad-CAM [30]. Then, the
generated heatmap H is clustered with K-means clustering.

The number of clusters is initialized with the number of
unconnected regions in H and determined using the 2D
connectivity of the pixels — i.e., if 2 pixels are active and
neighbors of each other in 2D, they are assumed to be con-
nected. After obtaining the clusters, they are sorted according
to their corresponding activations in H, and the sorted
clusters become the set of candidate regions C' (Figure [7h).

To generate the follow-up questions uniquely referring to
each candidate in C, the set of objects O in the scene are
detected using the DETR object detector [31] (if the target
object category is detectable, C' is reassigned with the objects
in O that are closest to candidate regions and belong to the
target object category). Then, the spatial relations between
each candidate in C' and each object in O are determined us-
ing the Relation Presence Network (RPN) [29]. This network
takes a pair of objects and outputs the spatial relationship
between them, such as ‘to the left’, ‘to the right’, ‘in front’,
‘behind’, or ‘close to’. After finding the spatial relations,
we use the Relation Informativeness Network (RIN) [29]
to find the most informative relation that describes each
candidate object. Similar to RPN, this network takes a pair
of objects and the spatial relations between them and outputs
an informativeness value to refer to objects unambiguously.

After finding the most informative spatial relation describ-
ing each candidate in C, a yes/no question is formed by
spatially describing these candidates (Figure [7p). e.g, when
the request is ‘the white plate’, the clarification question is
formed as ‘Is the white plate to the left of the banana?’. If
an affirmative answer is received for any of the candidates,
this candidate is suggested.

IV. EXPERIMENTS AND RESULTS

In the following section we perform experiments to high-
light the benefits of being able to disambiguate a task. All
experiments are performed with the same steps: the BT is
learned by performing the task three times in non-ambiguous
scenarios, then ambiguities can arise during the execution.
We perform tests with increasing levels of ambiguity, where
the task to perform is always the same: to pick a banana and
drop it in a bowl.

The experiments are performed using an ABB YuMi robot
with an Azure Kinect camera mounted on top of it. The
objects used for the experiments are chosen from those
represented in the COCO dataseﬂ We capture the users’
request using the Google speech recognition engine [32], and
converted it to the text, then the disambiguation questions are
output through a Jabra speaker. The detection algorithm and
the disambiguation framework networks run in a computer
with 3 NVidia GTX 1080 GPUs. The computer OS is Linux
Ubuntu 20.04 with ROS2 Foxy. The BT is ticked at a
frequency of 0.4 Hz and the disambiguation framework takes
approximately 30 seconds for a full iteration.

a) BT without disambiguation: In this experiment we
do not include the disambiguation subtree in the BT. If the
scene during execution is unambiguous, i.e. every object type

Zhttps://cocodataset.org
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Fig. 7: The disambiguation process when the robot aims to find the ‘banana’.

is only present once, then the robot is able to perform the
task without external intervention from the user. If the scene
is ambiguous, e.g. there are two bananas, the robot is not
able to complete the task as it is not able to evaluate the
condition ‘Object roughly At?” in Figure a] nor perform the
pick behavior, as there would be frames called banana_l
and banana_2, but not banana. The robot is not able to
recover from this situation, unless a user removes one of the
two ambiguous objects from the scene. Note that, although
possible, making the robot pick one of the objects at random
would not be a satisfactory solution of the task.

b) BT with disambiguation, execution not ambiguous:
This test is logically equivalent to the previous one in the
unambiguous case. The final BT would have just three more
nodes, but since the ‘Scene Clear?’ condition is initialized
as True, the disambiguation behavior is never executed if
the task is not ambiguous.

¢) BT with disambiguation, ambiguous pick target:
In this experiments, we insert a second banana in the scene
at execution time. As for the ambiguous case in experiment
a), the robot fails in evaluating the condition. In this case
however, the disambiguation behavior is triggered and the
robot can ask the user follow-up questions to disambiguate
the scene. The robot then picks whichever object the user
indicates as the target for the task.

d) BT with disambiguation, ambiguous place pose:
In this case, we have an unambiguous target for the ‘Pick’
action, but we provide two bowls. So the reference frame for
the ‘Drop’ action and the ‘Object Roughly At?’ condition is
ambiguous. The disambiguation framework is triggered and
user intervention is required, and then the robot is able to
successfully complete the task.

e) BT with disambiguation, ambiguous pick and
place: This experiment combines the two previous ones. The
steps in the execution process are reported in Figure 4 The
key for a correct execution is in the ‘Object Roughly At?’
condition. The condition computes all the transformations
for the following manipulation (pick then place) subtree.
First the transformation from the reference frame of the
‘Drop’ action to the robot base frame is computed, which
triggers the disambiguation framework with query ‘bowl’.
Then, the transformation from the target item for the ‘Pick’
action to the robot base frame is computed, triggering the
disambiguation framework with query ‘banana’. If instead
the opposite would happen, we would have a situation where
the robot attempts picking the banana but then it stops

because of the reference frame bowl not being available. This
behavior would create unnecessary noise in the detection
algorithm, jeopardizing the success of the task. The operator
could also exploit the reactivity of the system and remove
a banana from the scene while disambiguating the bowl. In
this case, the frame names update automatically, and since
there is now just one banana, execution continues without
running the disambiguation behavior agairﬂ

For sanity check, to ensure the robot could resolve the
task, we ran the experiment with a single banana and a bowl
without our disambiguation component, and the case was a
success. Also, as a proof of concept with the disambigua-
tion component, we asked four different ABB employees
that were not familiar with the system to test it with the
case scenario from demonstration to execution. The
experiment was successful in 3 out of 4 cases, and the
unsuccessful case happened because of the object detection
failure. Although further experiments can be conducted for
detailed analysis, this case study shows that our system
achieves to learn the task from demonstration and is capable
of disambiguation during execution.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a system that integrates
previous work that learns Behavior Trees from demon-
stration, with a framework to disambiguate objects in the
scene. The system allows an operator to show a task to the
robot in a non ambiguous setting. The task is learned by
the robot in the form of a BT and a subtree to run the
disambiguation framework is automatically attached. With
this system, during the task execution the robot is able to
request human help, by asking follow-up questions with the
goal of finding the target object for the task, disambiguating
it. The system is tested in a manipulation task.

Due to the restrictive measures enforced by ABB to face
the COVID-19 pandemic, limiting the number of people
allowed in the laboratory facilities, it was not possible to
conduct a similar user study as in [3]. Such a study is left as
future work, where we plan on extending the disambiguation
method also to the demonstration and learning part. A more
robust perception system, integrating views from different
poses to reduce the obstruction caused by the robot arms,
would increase the overall robustness of the system. Another
beneficial extension would be to endow the system with the

3 Also showed in the video at https://youtu.be/aClwY352ZNWk


https://youtu.be/aC1wY35ZNWk

possibility of using both arms and different grasping tools
(parallel grippers or suction cups) during the demonstration,
so to record the used arm and grasping tool alongside the
performed actions. In such a case the working range of the
robot would increase and it would be possible to demonstrate
more complicated tasks. Note that there is a limited number
of tasks that are possible to perform with objects from the
COCO dataset that are easy and small enough to grasp. The
system would benefit from a dedicated dataset with industrial
tools, so it would be possible to perform tasks such as kitting
and stacking (similar to what shown in [4]). In such case,
all neural networks would have to be re-trained.
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