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Abstract— When a big and heavy robot moves, it exerts
large forces on the environment and on its own structure,
its angular momentum can vary substantially, and even the
robot’s structure can deform if there is a mechanical weakness.
Under these conditions, standard locomotion controllers can fail
easily. In this article, we propose a complete control scheme to
work with heavy robots in torque control. The full centroidal
dynamics is used to generate walking gaits online, link deflec-
tions are taken into account to estimate the robot posture and
all postural instructions are designed to avoid conflicting with
each other, improving balance. These choices reduce model and
control errors, allowing our centroidal stabilizer to compensate
for the remaining residual errors. The stabilizer and motion
generator are designed together to ensure feasibility under
the assumption of bounded errors. We deploy this scheme to
control the locomotion of the humanoid robot Talos, whose hip
links flex when walking. It allows us to reach steps of 35 cm,
for an average speed of 25 cm/sec, which is among the best
performances so far for torque-controlled electric robots.

I. INTRODUCTION
Legged robots are normally modeled and controlled as a

chain of rigid bodies with actuated joints connecting them
[1]. This simplification of the structural material properties
is specially accurate to deal with robots that are light or
have multiple legs [2]. Nevertheless, heavy biped robots such
as Talos or Walkman (≈ 100 kg) can present small but
meaningful deflections of their structure. These unmodeled
deflections produce a bad estimation of contact points as
well as a slow transference of forces through the kinematic
chain, resulting, therefore, in wrong contact forces and a bad
tracking of the desired robot motion. Due to the unstable
dynamics of legged robots, the tracking error tends to grow,
ending up with a control failure.

Flexible components are the subject of several studies in
robotics in general [3] and humanoids in particular:

Flexible joints based on Series Elastic Actuators (SEA)
[4], [5] have been used and studied on humanoid robots
such as Walkman [6], Coman [7] or Valkirie [8] which,
thanks to joint sensors, take advantage of the flexibility
for safe environment interaction, disturbance rejection and
dissipation of walking impact energy. In our case, however,
deflections are not directly measurable as they are produced
on the robot links.
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Fig. 1. Snapshots of Talos walking dynamically, in torque-control, with a
calmed velocity of 15 cm/s.

Flexible bodies use to be incorporated to the end effectors
of position-controlled robots to measure interaction forces
from their deflection and to damp walking impacts, such as
in the HRP series [9], [10], [11]. The locomotion of these
robots is normally controlled with approaches derived from
[12], where the deflection is estimated based on the desired
contact forces.

Similar to the later case, in this article, we estimate the
link deflections based on the commanded joint torques to
avoid the noise and delay introduced with the measurement
of torques. Using a rigid-robot model, we incorporate such
deflections in the closest joints to obtain a better posture
estimation. We also reduce typical approximation errors
by previewing all centroidal non-linear behaviors in our
motion planning scheme. We obtain even further reduction
of the control errors by making all references of the inverse
dynamics consistent with the full centroidal motion and with
each other.

The remaining (much smaller) model error, as well as all
internal and external disturbances, produce tracking errors
that grow with the robot dynamics. We use state feedback to
stabilize the behavior of the Center of Mass (CoM) of the
robot and, based on a reachability analysis of the resulting
closed-loop system [13], we deploy a tube-based MPC [14]
scheme that guarantees robust feasibility when disturbances
are bounded.

In particular, we use the robot Talos, shown in Fig. 1, as
an experimental platform for this work. Talos is a commer-
cial humanoid robot equipped with powerful actuators and
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precise sensors in a strong structure [15]. Nevertheless, this
platform has shown high difficulties to develop repeatable
walking gaits in torque control. As an outcome of this work,
we can claim that such difficulties are largely explained by
the unforeseen flexibility that the model Talos exhibit on its
hip links.

We propose a simple method to identify the stiffness on
the robot hips and using the identified values on the proposed
control scheme, we have obtained fast and dynamic walking
gaits on torque control with velocities up to 25 cm/s, the
fastest walking velocity reached on Talos up to date.

Following this introduction, Section II describes the robot
dynamics and flexibility. Section III details our approach
to incorporate deflections in the posture estimation. Our
centroidal controller is exposed in Section IV. The stable
centroidal motion is mapped into joint torques by the whole-
body controller, as explained in Section V. We deploy all the
previous control infrastructure on the robot Talos to perform
the experiments discussed in Section VI, and Section VII
summarizes our main conclusions.

II. MODELING
A. Whole-body dynamics

Walking robots are normally represented as a kinematic
chain of n joints connecting n+1 links, in which no link is
attached to the inertial world frame [16]. The robot configu-
ration q = [q>w q>j ]> can be described by the position and
orientation of the base link (robot waist) qw ∈ SE (3), and
the posture given by all joint angles qj ∈ Rn.

Joint motors produce the torques τa ∈ Rn, required for
the robot motion, following the dynamics [1]:

M(q)q̈ + h(q, q̇) = Sjτa +
∑
k

Jk(q)>fk, (1)

where M(q) ∈ R(n+6)×(n+6) is the generalized inertia matrix,
h(q, q̇)∈ Rn+6 stands for Coriolis, centrifugal and gravity
forces, Sj selects all directly actuated joints, and for the k-
th contact, fk ∈ R3 is a force exerted by the environment on
the point associated to the Jacobian matrix J(q)>k∈ Rn+6×3.

Joint angles must lie on collision-free ranges, and joint
torques are limited by the employed motors and materials:

qmin
j ≤ qj ≤ qmax

j , (2)

τmin
a ≤ τa ≤ τmax

a , (3)

where the inequalities with lower and upper limit vectors
hold element-wise.

We assume that feet s do not slide during ground contacts:

ṡ = Jsq̇, (4)

s̈ = Jsq̈ + J̇sq̇ = 0, (5)

and that ground contact forces are unilateral, constrained to
friction cones of the form [1]:

‖fpk‖ ≤ µfnk ∀fk in the ground-feet contact, (6)

where the friction forces fpk parallel to the contact surface are
limited by the normal force fnk with some friction coefficient
µ > 0.

B. Centroidal dynamics

Balance and locomotion dynamics corresponds to the
under actuated part of (1) and can be isolated from the
posture dynamics without additional assumptions [17], [18].
Let us consider a Cartesian coordinate system with the origin
on some ground contact surface, and the axis z aligned with
the gravity. So, in the lateral coordinates xy , this dynamics
relates the motion of the Center of Mass (CoM) c of the
robot to the Center of Pressure (CoP) p of the ground contact
forces [19, Chapter 2] as

pxy = cxy − mcz c̈xy − SL̇xy
m(c̈z + gz)

+

∑
k r

z
kf

xy
k∑

k f
z
k

, (7)

where g is the vertical acceleration due to gravity, m is the
total robot mass, L̇ is the variation of the angular momentum,
rk are the ground contact points and S =

[
0 -1
1 0

]
is a π

2
rotation matrix. Due to unilaterality of ground contact forces
(6), the CoP is bound to the support polygon P [1]:

p ∈ P(s) (8)

that varies depending on the current foot positions s.

C. Hip flexibility

Deflections on Talos’ hips are concentrated on its waist-
leg connection, where the link cross-section narrows. This
introduces extra degrees of freedom that can be represented
with passive virtual joints [20]. As deformations appear on
vertical linkages, we only model pitch and roll deflections,
which produce the main impact on foot placement. We obtain
in this form a model for the robot Talos with 42 degrees of
freedom composed by 32 actuated joints, 4 elastic passive
joints and the global position and orientation of the robot.

We built a simulator for this model using pinocchio
[21] for the computation of rigid body dynamics and the
gepetto-viewer for visualizations, as in the companion
video1, where we have included massless collision-free plates
on the virtual joints to display deflections.

We simulate the elastic deformation of virtual joints as a
spring damper

τf = −kfθ − df θ̇, (9)

with stiffness kf and damping df coefficients that relate
deflections θ to the flexing torque τf . As the identified values
of stiffness (see Section VI-B) are relatively big, simulations
require short integration periods (≈ 0.1 ms) for numerical
convergence.

III. POSTURE ESTIMATION WITH DEFLECTIONS

Hip configurations, outlined in Fig. 2, are composed by
3 measured joint rotations qhip ∈ R3 and 2 unmeasurable
elastic deflections θ ∈ R2 that can be estimated. We condense

1video available in: https://gepettoweb.laas.fr/
articles/talos_centroidal_mpc_torque_control.html

https://github.com/stack-of-tasks/pinocchio
https://github.com/Gepetto/gepetto-viewer-corba
https://gepettoweb.laas.fr/articles/talos_centroidal_mpc_torque_control.html
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Fig. 2. Talos hips: We estimate the robot posture by condensing the 5
hip rotations observed on the flexible robot into 3 rigid-model joints that
produce the same total rotation.

all this chain into an equivalent hip configuration2 q̂hip ∈ R3

with only 3 actuated joints that satisfy

R(q̂zxyhip ) = R(θyx)R(qzxyhip ), (10)

ˆ̇qhip =
(
Sz +R(q̂zhip)Sx +R(q̂zxhip)Sy

)-1

ω̂hip , (11)

where the selection matrix Si ∈ R3×3 is null except for its
i-th diagonal element that is 1, R(·) ∈ R3×3 is a rotation
matrix, and the equivalent angular velocity is

ω̂hip = Sy θ̇ +R(θy)Sxθ̇ +R(θyx)ωhip . (12)

We estimate hip deflections θ from (9) as

θ =
dfθ0 − τf ∆t

kf ∆t+ df
, θ̇ = LPF

(
θ − θ0

∆t

)
, (13)

where the rate of change of deflections is Low Pass Fil-
tered (LPF) to avoid big jumps coming from the numerical
derivative, θ0 is the previous-estimated deflection, ∆t is the
posture sampling period, and we approximate the flexing
torque τf ∈ R2 with the commanded hip torque τhip and
expected hip force fhip :

τf =
[
R(qzhip)Sxτhip +R(qzxhip)S

yτhip +R(θyx)l × fhip
]xy

,
(14)

considering the distance l between hip joint and concentrated
deflection. In the case of Talos, l = [ 0 0 9 ] cm for both hips.
This simple approximation of torque and deflections can be
improved as we propose in [22].

Notice that the resulting estimated posture has still inaccu-
racies due to the approximated flexing torque and the reduced
degree of freedom of the equivalent rigid posture (video1),
but such uncertainty is small enough for the centroidal
stabilizer (described in the following) to deal with it.

IV. BALANCE AND LOCOMOTION CONTROL

The general organization of our control scheme is given
in Fig. 3. In this section, we focus on the centroidal control
and stabilization.

2Code available on GitHub: Gepetto/flex-joints.

A. Linearized centroidal dynamics

We rewrite the centroidal dynamics with the linear form:

c̈xy = ω2(cxy − vxy), (15)

with some constant value ω2 ≈ gz/cz , by introducing the
compensated CoP [19], also called Virtual Repellent Point
(VRP) [23] v, which requires us to estimate the bias term

nxy , pxy − vxy (16)

=
c̈xy

ω2
− mcz c̈xy − SL̇xy

m(c̈z + gz)
+

∑
k r

z
kf

xy
k∑

k f
z
k

, (17)

based on the previous motion. When the robot is on a flat
and horizontal ground, this bias can be obtained out of the
recursive Newton-Euler algorithm as proposed in [24], or
from the centroidal momentum matrix [25].

As this dynamics is identical and decoupled in x and y

coordinates, we drop the superscript while keeping the fol-
lowing valid for any x or y . Then, from (15), we obtain a
linear time-invariant sampled-time control system

x+ = Ax+Bu, (18)

with the state and system matrices:

x =

cċ
c̈

, A =

1 T T 2

2
0 1 T
0 0 1

, B =

T 3

6
T 2

2
T

, (19)

by commanding piecewise constant jerks u =
...
c over time

intervals T [26, Chapter 5.5]. Here, the VRP is a system
output v = V x with V = [ 1 0 -ω-2 ], and feasible states
(denoted x ∈ X ) must satisfy the unilaterality of forces (8):

V x ∈ P(s)− n. (20)

B. Reference motion

The robot is controlled to follow some feasible trajectory
of states that can be predefined off-line [27], [28], or online,
typically with an MPC approach [29], [30], [31]. In this
article, we simply deploy the MPC scheme proposed in [30],
constrained to satisfy the system dynamics (18)

x+
ref = Axref +Buref , (21)

with feasible states

xref ∈ X 	 Ω, (22)

where 	 is a Pontriagyn difference3, used to introduce the
safety margin Ω ⊂ X (see Sec. IV-C). The step placements
are kinematically constrained by the leg lengths in some
stepping area

sref ∈ S, (23)

with limited swinging foot velocity ṡref ≤ ṡmax. Moreover,
in order to maintain stability and recursive feasibility of the
planned motion, we restrict the terminal state xtermref to satisfy
the capturability condition [32]:

ξtermref ∈ P(stermref )	 V Ω− nterm , (24)

3Given sets A and B, A	B , {x | x+B ⊆ A}.

 https://gepettoweb.laas.fr/articles/talos_centroidal_mpc_torque_control.html
 https://github.com/Gepetto/flex-joints


Fig. 3. Control Diagram: It is separated in two abstraction levels, the centroidal controller, on the left, generates and stabilizes the CoM trajectory.
The whole-body controller, on the right, generates accordingly all joint torques required for the desired locomotion.

where V Ω is the CoP safety margin4, and ξ = c + ω-1ċ is
called divergent component of the motion [1].

Within these restrictions, the planned motion is optimized
to track some aimed CoM velocity ċref → ċaim with
minimum jerk

...
cref → 0 and ankle torque vref → -n.

C. Centroidal Stabilizer

We track the reference motion xref , uref (21) by com-
manding the desired next state x̂+ (see Fig. 3) computed
as:

x̂+ = Ax̂+Buref +B sat
(
K(x̂− xref )

)
, (25)

with a saturated linear feedback sat
(
K(x̂ − xref )

)
to com-

pensate for errors and disturbances while keeping the con-
troller feasible. The saturation limits are detailed in Sec-
tion IV-D, let’s focus now on the linear regime:

The real robot motion

x+ = Ax+Buref +BK(x− xref ) +Beu −BKex (26)

deviates away from the reference trajectory because of mod-
elling and estimation errors

ex = x− x̂, ex+ = x+− x̂+, Beu = ex+ −Aex, (27)

resulting on tracking errors x̃ = x− xref as

x̃+ = (A+BK)x̃+B(eu −Kex). (28)

We choose K such that A + BK is strictly stable, so if
the errors are bounded to some interval D

eu −Kex ∈ D ⊂ R, (29)

the tracking error is also bounded to be in the minimal Robust
Positively Invariant (mRPI) set of the disturbed system Ω
[33]

x̃ ∈ Ω, (30)

which is convex, compact and contains the set BD. Thanks
to this bound, we can guarantee that any reference state
satisfying (22) will result on a feasible real state provided
that the set X 	 Ω is non-empty.

4Given the vector a ∈ Rn and set B ⊂ Rn, aB , {ax | x ∈ B}.

The price to pay for this guarantee is some extra restric-
tiveness on the reference VRP vref due to the safety margin

ṽmax = max
x̃∈Ω

V x̃, (31)

that corresponds to the maximum VRP tracking error. We can
reduce this restrictiveness by minimizing the tracking error
bound ṽmax with an appropriate choice of the feedback gain
K [19, Chapter 4.5]:

Kopt = argmin
K

ṽmax, (32)

which can be obtained, for example, with a derivative free
solver such as Neilder-Mead [34].

D. Saturation limits

We saturate the feedback signal to make sure that the
resulting next state is feasible. Considering that the reference
motion is feasible by design, we can obtain from (20) that
the tracking error must satisfy:

V x̃+ ∈ P(s)− V x+
ref − n+. (33)

Introducing the dynamics (28), this implies a saturation
function for each component xy as

sat
(
K ˆ̃x
)

=


(Kx̃)min if K ˆ̃x ≤ (Kx̃)min

K ˆ̃x if (Kx̃)min ≤ K ˆ̃x ≤ (Kx̃)max

(Kx̃)max if (Kx̃)max ≤ K ˆ̃x
(34)

with the limits:

(Kx̃)min =
pmin − n+ − V(Ax̃+ x+

ref )

VB
− eu,min, (35)

(Kx̃)max =
pmax − n+ − V(Ax̃+ x+

ref )

VB
− eu,max, (36)

where ˆ̃x stands for the measured tracking error x̂−xref and
VB is a scalar value.



V. WHOLE-BODY CONTROL

We formulate an Inverse Dynamics (ID) problem to com-
pute optimally all motor torques τa, contact wrenches φk,
and accelerations ˆ̈q subject to the rigid robot model (1) and
non-sliding condition (5) with the estimated posture q̂. As
standard, this optimization problem is composed by tasks
that define the control goals and constraints [35], [36].

A. Task descriptions

In the Interface block, we translate the desired centroidal
motion s+

ref , x̂+ into task references, seeking to avoid con-
flicts between them in order to reduce the incidence of weight
tuning and to obtain contact forces as close as possible to
the stabilizer solution:
Center of Mass: The desired values cdes , ċdes , c̈des ∈ R3

are obtained from the centroidal state x̂+.
Feet Motion: Right and left positions sdesR , sdesL ∈ SE (3) as

well as their time derivatives, are obtained from splines
connecting the feet placements sref [37].

Waist Orientation: The desired orientation Rdes
w ∈ R3,

composed by three Euler angles, maintains zero roll
and pitch rotations, with the yaw angle as the bisector
between right and left feet.

Posture: All joint angles in the robot legs are analytically
computed as proposed in [38, Chapter 2.5] to agree with
the desired CoM and feet positions. The full desired
posture qdesj , q̇desj , q̈desj ∈ R32 is completed with fixed
torso and arm references.

Angular Momentum: The desired Angular momentum
Ldes , L̇des ∈ R3 is obtained according to the desired
configuration q̇des , q̈des ∈ R38

Ldes = GAM q̇
des , (37)

L̇des = GAM q̈
des + ĠAM q̇

des , (38)

using the angular part of the centroidal momentum
matrix GAM.

Force Distribution: We obtain ground contact wrenches
φdesR , φdesL ∈ R6 from Newton and Euler equations
considering the desired values cdes , c̈des , L̇des . During
single support stages the desired centroidal motion de-
termine one unique wrench φdes , but during double sup-
port stages, we manage the redundancy with quadratic
programming by minimizing each wrench magnitude.

B. Policy in task spaces

Joint motion related tasks use forward-kinematic functions
γ(q) and their time derivatives

γ̇ =
dγ

dq̂
ˆ̇q = Jtask ˆ̇q, (39)

γ̈ = Jtask ˆ̈q + J̇task ˆ̇q, (40)

with task-specific Jacobians Jtask , to approach desired values
γdes , γ̇des , γ̈des . Each task can be set as a cost function, for
the ID to minimize the square norm

Vtask = ‖γ̈ − πtask‖2, (41)

or as a constraint, for the ID to impose the value

γ̈ = πtask , (42)

both using a feedback law πtask , with gains Ktask
P , Ktask

D ,
normally used to produce task consistent accelerations [39]

πtask = Ktask
P (γ − γdes) +Ktask

D (γ̇ − γ̇des) + γ̈des . (43)

We formulate similarly an angular momentum task as a
cost function:

VAM = ‖GAM
ˆ̈q + ĠAM

ˆ̇q − πAM‖2, (44)

πAM = L̇des +KAM
P (GAM

ˆ̇q − Ldes), (45)

using the angular part GAM of the centroidal momentum
matrix [25].

Contact force related tasks are formulated to minimize
square norms of the form

Vtask = ‖Dtaskφk −Dtaskφ
des
k ‖2 (46)

for the wrench φk on the k-th contact, with an appropriately
chosen matrix Dtask .

VI. EXPERIMENTS

A. Experimental Setup

Our experiments are performed with the torque controlled
robot Talos, using its internal computer that has an Intel(R)
Core(TM) i7-3612QE (4 cores, 2.10GHz) and 16Gb of
RAM. The robot also includes 6D force/torque sensors at
the ankles and wrists.

In all the experiments described below, we use the full
control diagram displayed in Fig. 3. Though, we may disable
the MPC (using a precomputed reference motion) or the
bending estimator when explicitly said. In our implemen-
tation, the MPC runs at 5 Hz while the rest (centroidal
stabilizer, estimators, interface and inverse dynamics) runs
at the higher frequency of 500 Hz.

We have chosen the feedback gains

K =
[
-9894 -4189 -496

]
, (47)

obtained from (32), according to the robot disturbances.
We set the MPC with the safety margins vxmax = 2.5 cm

and vymax = 1.5 cm in the support polygon, which guarantees
feasibility with disturbances up to exu + Kexx = 5370 m/s3

and eyu +Keyx = 3222 m/s3 following [19, Chapter 4].

B. Stiffness Identification

We set up the robot to keep balance statically on one foot
over a horizontal ground. In such conditions, the acceleration
(15) and bias (17) vanishes c̈ = 0, n = 0, so that

pxy = vxy = cxy (48)

follows from (15) and (16).
We estimate the CoM cfk(q̂) and supporting foot position

sfk(q̂) by forward kinematics [40] using the corrected pos-
ture q̂ (see Sec. III).
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Fig. 4. Stiffness Identification: Error contour curves obtained from the
right support experiment. The zero error level is highlighted on black, and
the light green curve shows the zero error level obtained from the left
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corresponding to zero error on both experiments, within two standard
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In both estimations, we correct the expected rigid model
errors ∆i = R(θyxi )li − li, produced by the lever arm li on
each leg i ∈ {left , right}, as

si = sfk
i (q̂) + ∆i, c = cfk(q̂) +

∑
i ∆imi

m
, (49)

with mi and m standing for the leg and whole robot masses
respectively.

We also measure the sole torque τxysole and ground normal
force fzsole using the 6D force/torque sensor on the robot
ankle to obtain the CoP as:

pxy = sxyi + S
τxysole

fzsole

, (50)

where S =
[

0 -1
1 0

]
. With the robot supported on one foot,

we vary the assumed stiffness of both hips (and therefore
the estimated posture q̂) on a grid corresponding to the axes
of the Fig. 4. The measured error cy-py is reported by the
level curves throughout the grid of tested stiffness.

We carry out this experiment twice, standing first on the
left support and then on the right support. The correct stiff-
ness values must satisfy the condition (48) (cxy − pxy = 0)
on both experiments.

We have identified a stiffness of kf = 4900±200 Nm/rad
on the right hip and kf = 2180 ± 70 Nm/rad on the left
hip, marked with a red cross. We approximate the values of
damping to be conservatively small as df = 2

√
kf .

C. Quasi-Static Walking

In a quasi-static walk, the robot adopt a sequence of
statically stable postures in which the CoM is always main-
tained over the support polygon and the CoM acceleration is
assumed to be zero. This kind of motion has been achieved
on the robot without estimation of deflections by just setting
the reference CoP trajectories with an offset towards the
interior bound of feet, this can be observed on Fig. 5.

We compare the robot behavior when tracking a pre-
computed quasi-static reference trajectory with and without
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robot support is shown with gray dashed lines.
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Fig. 6. Quasi-static / Deflections: Roll (up) and pitch (down) deflections,
estimated during the experiment with the bending estimator activated. Left
hip deflections are shown in orange and right hip deflections are shown in
blue.

bending estimator on Fig. 5. In both experiments the robot
walks forward making steps of 10 cm. As some CoM
acceleration is needed to switch between supporting feet, we
can see growing CoP tracking errors p̃ = p-pref at switching
times for both experiments. We can also see that, during
single support periods (when the hip torque is maximal), hip
deflections produce and maintain a big CoP tracking error
(≈ 3 cm) which we have nearly removed thanks to a more
precise posture estimation.

The estimated pitch and roll deflections during the exper-
iment with bending estimator are illustrated on the Fig. 6.
Left and right deflections have different magnitudes due to
their different values of stiffness. As Talos legs lengths are
of 90 cm, if not identified, such deflections may produce feet
misplacements of approximately 3 cm which correspond to
the CoP tracking error observed without the estimator.

The Fig. 7 indicates the fraction of time during which the
tracking error is maintained below each size. It makes clear
that the bending estimator reduces the tracking error along
the entire experiment, maintaining it below 1 cm during 55%



Fig. 7. Tracking errors: The CoP tracking error is maintained in the
shadowed area (below the curve) during the fraction of experiment time
indicated on the horizontal axis. The cases of quasi-static walks with and
without bending estimator are respectively shown in green and orange. The
dynamic walk case with bending estimator is shown in blue.

of the time, while the experiment without the estimator has
tracking errors above 3 cm during 50% of the time. The
tracking error peak of 10 cm happens in both cases when
the robot start walking.

We can conclude from these experiments that, by taking
hip deflections into account, we make a better estimation of
the contact points improving, therefore, the control of forces.

D. Dynamic Walking

In a dynamic walk, the robot is allowed to move its
CoM outside the support polygon between steps by adopting
dynamically-stable postures. We have only achieved this kind
of motion by taking hip deflections into account.

In order to show the behavior of hip deflections with dif-
ferent forward velocities, we perform a walking experiment
where the robot starts walking in place, and then, it makes 8
growing steps forward of up to 35 cm taking 1.4 s per step
(1.2 s in single support and 0.2 s in double support). This
experiment is recorded in video1 and its centroidal data is
shown in Fig. 8.

At each step, big CoPy oscillations appear and are quickly
stabilized. We think these oscillations may be produced by
our bad estimation of the hip damping coefficients or a too
high cutting frequency in the filter (13). Nevertheless, the
whole robot motion is smooth and fluid as illustrated in the
video1.

Fig. 7 shows that the tracking error during this experiment
is even smaller than in the quasi-static case, staying with
errors below 1 cm during 65% of the experiment.

Hip deflections, shown in Fig. 9, are similar to those of
quasi-static walk when walking in place, but when walking
forward, the pitch torque required to move the legs grows
with the step length and swinging velocity producing each
time bigger and faster deflections, which result in also
growing CoPx tracking errors.

The locomotion obtained in this and other experiments,
shown in the video1, is smooth, stable and reaches velocities

Fig. 8. Dynamic walk: Reference (green) and real (red) CoP obtained in
both coordinates x (up) and y (down) when the forward motion starts. The
robot support is shown with gray dashed lines.

Fig. 9. Dynamic / Deflections: Roll (up) and pitch (down) deflections,
recorded during the dynamic walking when the forward motion starts. Left
hip deflections are shown in orange and right hip deflections are shown in
blue.

up to 25 cm/s, faster than the outstanding results obtained in
[41] for the robot Toro (15 cm/s) with similar settings. We
have yet to explore the use of edge contacts for even faster
walks, as done in [41] to reach 37 cm/s.

VII. CONCLUSIONS

In this work, we have proposed a full control scheme to
produce fast and dynamic locomotion in torque control with
heavy robots that present link flexibility.

We have paid special care to reduce all model and control
errors within a robust approach by taking link deflections
into account to estimate the robot posture, taking the full
centroidal dynamics into account to generate reference tra-
jectories, and making all whole-body references internally
consistent. Then, we compensate for all residual errors
using state feedback, with feasibility guaranteed for bounded
errors.

The most evident outcome of all this modelling and
control effort is the level of locomotion it enabled in Talos
(video1), with walking velocities of up to 25 cm/s, among
the best performances reached so far with electric robots in

https://gepettoweb.laas.fr/articles/talos_centroidal_mpc_torque_control.html
https://gepettoweb.laas.fr/articles/talos_centroidal_mpc_torque_control.html
https://gepettoweb.laas.fr/articles/talos_centroidal_mpc_torque_control.html
 https://gepettoweb.laas.fr/articles/talos_centroidal_mpc_torque_control.html


torque control. But, moreover, we have demonstrated that
link flexibility has important effects on heavy robots such as
Talos, motivating more specific control approaches [22].

Finally, we also provide a simple experimental method
to identify stiffness in Talos’ hips that does not require
additional equipment.
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