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Whole-Body Control and Estimation
of Humanoid Robots with Link Flexibility

Giulio Romualdi1, Nahuel A. Villa2, Stefano Dafarra1, Daniele Pucci1,3 and Olivier Stasse2,4

Abstract— This article presents a whole-body controller for
humanoid robots affected by concentrated link flexibility. We
characterize the link flexibility by introducing passive joints at
the concentration of deflections, which separate the flexible links
into two or more rigid bodies. In this way, we extend our robot
model to take link deflections into account as underactuated
extra degrees of freedom, allowing us to design a whole-body
controller capable to anticipate deformations. Since in a real
scenario, the deflection is not directly measurable, we present
an observer aiming at estimating the flexible joint state, namely
position, velocity, and torque, only considering the measured
contact force and the state of actuated joint. We validate the
overall approach in simulations with the humanoid robot TALOS,
whose hip is mechanically flexible due to a localized mechanical
weakness. Furthermore, the paper compares the proposed whole-
body control strategy with state-of-the-art approaches. Finally,
we analyze the performance of the estimator in the case of
different values of hip elasticity.

I. INTRODUCTION

The standard state-of-the-art controllers for bipedal locomo-
tion are designed on several layers [1], [2], [3], with the higher
layers, closer to the user, producing instructions for the lower
layers which work closer to the robot. In the lowest level,
the motor drivers work at high frequency to guarantee either
certain torque or acceleration on the robot joints, according
to the whole-body controller instructions. In turn, the whole-
body controller uses a model of the whole-body dynamics to
compute the needed joint actuation for the robot to follow
higher level instructions while keeping feasible contact forces
on the environment.

The whole-body control layer typically assumes that all
robot links are rigid bodies, which models correctly the
whole-body motion in most cases [4], [5], [6], but becomes
problematic with even small link deflections. This problem
is common in heavy robot with mechanical weakness in
their structure, such as the robot Talos (≈ 100 kg), whose
hips bend while walking. At the modeling level, several
approaches have been proposed to describe multi-link flexible
robots [7]. The lumped-parameter approach separates flexible
links into two or more rigid bodies by defining fictitious
passive elastic joints [8], [9], [10], [11]. Using this approach,
we extend the robot model to incorporate the flexible degrees
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Fig. 1: TALOS walking with the proposed controller.

of freedom as passive joints. Still, it is important to mention
that the identification of the correct passive joint placement
as well as the elastic parameters is not straightforward and
has been the object of several studies [10], [12]. Alternatively,
the finite element method (FEM) can also be used to
model the flexibility of links [13], [14]. However, while
providing enhanced modeling capabilities, FEM methods are
computationally greedy, which generally forbids their use in
time-critical applications.

From the control perspective, link flexibility is often treated
with passive elastic joints [9], [10], [11], [15]. To address the
elasticity of the robot link, the authors of [9], [10], [11], [15]
locally compensate for the effect of deflections by modifying
the measured position and velocity of some actuated joints
considered in the whole-body controller.

This paper contributes to the design of a control architecture
for humanoid robots affected by link elasticity. More precisely,
the main contributions follow. i) A whole-body controller
allowing for the locomotion of humanoid robots with flexible
links. Our controller incorporates a model of flexible links
following an approach similar to [9], but differently from
the state of the art, our design does not perform any local
compensation of deflections. ii) As link deflections are not
directly measurable, we propose an observer that uses only
the measured contact forces and information from actuated
joints to estimate the position, velocity and torques of the
elastic joints. iii) We validate our approach on the simulated
torque-controlled humanoid robot TALOS [16], and we show
how it performs different from the standard rigid-body-based
controller.

The paper is organized as follows: Sec. II introduces our
notation and recalls some concepts of floating base system,
Sec. III details the whole-body controller, Sec. IV discusses
the design of our elastic-joint observer, Section V presents
the simulation results on the TALOS humanoid robot, and
finally, Sec. VI concludes the paper.



II. BACKGROUND

A. Notation

• Im×n and 0m×n denote the m × n identity and zero
matrices. When m = n, we use simply In, 0n.

• I = (pI , [I]) denotes the inertial frame. pI is the origin
and [I] its orientation.

• given A = (pA, [A]) and B = (pB, [B]), then B[A] =
(pB, [A]) has its origin in pB and is oriented as A.

• Given ApC ∈ R3 and BpC ∈ R3, representations of pC
in A and B respectively ApC = ARB

BpC + ApB =
AHB [ Bp⊤

C 1 ]
⊤. AHB ∈ SE(3) is the homogeneous

transformation and ARB ∈ SO(3) is the rotation matrix.
• the hat operator is ·∧ : R3 → so(3), where so(3) is the

set of skew-symmetric matrices and x∧y = x× y.
• the vee operator is ·∨ : so(3) → R3.
• given a rotation matrix, log operator returns the associ-

ated element of so(3) log : SO(3) → so(3).
• AvC,B ∈ R3 denotes the relative linear velocity of the

frame B with respect to C, expressed in A.
• AωC,B ∈ R3 denotes the relative angular velocity of the

frame B with respect to C, expressed in A.
• the velocity of a frame B w.r.t. the frame A is uniquely

identified by the twist Av⊤A,B = [Av⊤
A,B

Aω⊤
A,B ].

• ×∗ is the dual spatial cross product on R6 such that
AvA,B×∗ =

[
Aω∧

A,B 03
Av∧

A,B
Aω∧

A,B

]
.

• we drop the suffix I to identify the velocity of a frame
with respect to I, i.e., AvI,B = AvB, AωI,B = AωB.

B. Humanoid Robot Model

A humanoid robot is a floating base multi-body system
made up of n + 1 links joined by n joints each with one
degree of freedom. The robot configuration is fully described
by the triplet q = (IpB,

IRB, s) ∈ R3 × SO(3) × Rn

where B is the base frame and s the joint positions. The
velocity of the floating system is represented by the triplet
ν = (IvB,

IωB, ṡ) ∈ R3 × so(3)× Rn ∼= R3 × R3 × Rn.
The position and orientation of any frame A, attached

to some link, is identified by IHA ∈ SE(3), and its twist
vA = JA(q)ν is linearly related to the triplet ν by the
Jacobian matrix JA(q).

Each link of the robot follows the rigid-body dynamics
described by the Euler-Poincaré Equations [17]

ML
Lv̇L + LvL ×∗ ML

LvL = ML

[
IR⊤

L g
03×1

]
+

nf∑
k=1

Lfk, (1)

where L stands for link frame, ML ∈ R6×6 is the con-
stant inertia tensor, LvL ∈ R6 is the link spatial velocity,∑nf

k=1 Lfk ∈ R6 are the nf wrenches exerted on the link.
The proper sensor acceleration is given as [18, Sec. 2.4.4]

αg
L := LXL[I]

L[I]v̇L −

[
IR⊤

Lg
03×1

]
. (2)

LXL[I] is the adjoint matrix, αg
L is the acceleration obtained

by an inertial measurement unit aligned to the link. Combin-

ing (1) with (2), we obtain [18, Eq. (2.80)]

ϕL =

nf∑
k=1

Lfk, (3a)

ϕL = MLα
g
L +

[
03×1
LωL

]
×∗ ML

[
03×1
LωL

]
. (3b)

The complete robot dynamics can be described as [19]

M(q)ν̇ + η(q, ν) = Bτ +
∑
k

J⊤
Ck
(q)fk. (4)

M(q) ∈ R(n+6)×(n+6) is the mass matrix, η(q, ν) ∈ Rn+6

contains the Coriolis, centrifugal and gravitational effects.
τ ∈ Rn are the joint torques, acting only on joints as indicated
by the selection matrix B ∈ R(n+6)×n. We express each
contact wrench fk ∈ R6 in the frame Ck[I] located at the
contact point and aligned to the inertial frame, JCk

(q) is its
associated Jacobian.

Given a frame Ḡ = (xCoM, [I]) placed at the robot’s center
of mass (CoM) and aligned to the inertial frame, and applying
a given change of coordinates as in [20], the dynamics (4)
can be expressed separating the first 6 rows, referring to the
centroidal momentum of the robot Ḡh [21], from the last n
rows referring to the actuated joints.

The rate of change of the centroidal momentum of the
robot can be expressed by means of the external contact
wrenches acting on the system [17], [18]

Ḡḣ = mḡ +
∑
k

ḠX
Ck[I]fk, (5)

where mḡ⊤ =
[
0 0 -mg 0 0 0

]
∈ R6 is the spatial

robot weight and the adjoint matrix ḠX
Ci[I] ∈ R6×6 changes

the coordinates of a 6D force from Ck[I] to Ḡ.

C. Model of the link flexibility

Let us consider that some robot links are affected by
punctual mechanical weakness allowing the apparition of
concentrated deformations. We model the extra degrees of
freedom introduced by this flexible behavior by splitting
each flexible body into two or more rigid links connected
by passive virtual joints [11], [10]. So, the i-th virtual joint
exerts a torque τi that depends on the deflection si and its
velocity ṡi i.e. γi : R× R → R as

τi = γi(si, ṡi). (6)

By numerically differentiating the position of the elastic joint
si over a sampling period d t, we discretize (6) as

τi[k] = γi(si[k], si[k − 1]), (7)

where k ∈ Z is the discretized time.
Following [10], [11], we assume that γi models the elastic

behavior as
γi(si, ṡi) = -kisi − diṡi, (8)

where ki and di are, respectively, the stiffness and damping
of the i-th elastic joint. Discretizing the joint velocity with



Whole-body
QP Controller

Sec. III

Simulator

Forward dynamics (11)
Joint flexibility (21)

∫ν, ν̇

q, ν

Flexible Joint State Observer
Sec. IV

Gh
ref,G ḣref
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Fig. 2: Controller architecture.

the forward Euler method, we approximate the elastic joint
state, namely its position and velocity, by

si[k] =
disi[k − 1]− τi[k] d t

ki d t+ di
, (9a)

ṡi[k] =
si[k]− si[k − 1]

d t
. (9b)

D. Modeling of a floating base system with elastic joints

Let us redefine the robot configuration as:

q = (IpB,
IRB, s

a, sf ), ν =
(
IvB,

IωB, ṡ
a, ṡf

)
(10)

with na actuated joints sa and nf elastic joints sf , so that
the robot posture has n = na + nf degrees of freedom, and
the robot dynamics (4) becomes:

Mbν̇ + ηb =
∑
k

J⊤
Ckb

fk , (11a)

Msν̇ + ηs =

[
Ina

0nf×na

]
τa +

[
0na×nf

Inf

]
τf +

∑
k

J⊤
Cks

fk.

(11b)

where we have separated the base dynamics (subscript b

corresponding to the 6 first rows) from the postural dynamics
(subscript s corresponding to the n final rows).

III. WHOLE-BODY CONTROLLER

The whole-body controller guarantees the tracking of de-
sired kinematic quantities while ensuring the feasibility of the
contact forces. The proposed controller computes the desired
actuated joint torques τa, considering the robot dynamics (11)
and the elastic joint model (8). The control objective is
met by framing the controller as a constrained optimization
problem in which low-priority tasks are embedded in the cost
function, and high-priority tasks are handled as constraints.
In the following equations, the superscript ref denotes the
quantities provided by a high-level planner that assumes the
robot made of rigid links only. Fig 2 presents the input and
output quantities of the Whole-body controller.

A. Costs and Constraints

This section introduces the list of low and high priority
tasks considered in the optimal control problem.

1) Centroidal momentum task: To ask for a desired
centroidal momentum trajectory, we introduce the task as

Ψh = Ḡḣ
∗ −Acf −mḡ. (12)

where Ac =
[
ḠX

C1[I] · · · ḠX
Ci[I] · · ·

]
gathers the

adjoint matrix for each contact, and the desired value Ḡḣ
∗

is chosen from a feedback law to guarantee asymptotic
convergence to the desired trajectory

Ḡḣ
∗ =

[
mẍref

CoM

Ḡḣ
ωref

]
+

[
mkpCoM
03

](
xref

CoM − xCoM

)
+

[
mkdCoM 03
03 khω

][
ẋref

CoM − ẋCoM

Ḡh
ref
ω − Ḡhω

]
(13)

with positive definite gains kpCoM, kdCoM and khω
.

2) Cartesian task: While walking, we often require some
link frames to have a specific position and orientation with
respect to the inertial frame IH ref

L = (pref
L , IRref

L ) ∈ R3 ×
SO(3), by specifying the following task

ΨLSE(3)
=

[
v̇∗

⊤

L
I ω̇∗⊤

L

]⊤
− JLν̇ − J̇Lν, (14)

where v̇∗L = v̇ref
L + kdLp

(vref
L − vL) + kpLp

(pref
L − pL) and the

angular acceleration is set to guarantee almost global stability
and convergence of IRL to IRref

L [22]:

I ω̇∗
L = I ω̇ref

L + kdLω
(Iωref

L − IωL)

+ kpLω

[
log

(
IRref

L
IR⊤

L

)]∨
. (15)

kpLω
and kdLω

are positive definite matrices. From (14), we
introduce the rotational tasks for L, denoted as ΨLSO(3)

ΨLSO(3)
=

[
03 I3

]
ΨLSE(3)

. (16)

3) Floating base dynamics task: The whole-body control
considers the base (11a) and joint dynamics (11b) as a set
of high-priority tasks. We define the base dynamics task as

Ψdynb = ηb +Mbν̇ −
∑
k

J⊤
Ckb

(q)fk . (17)

If the robot has under-actuated elastic joints, the joint
dynamics should consider the measured (or estimated) joint
torques acting on the system as

Ψdyns = ηs+Ms(q)ν̇−
[

Ina

0nf×na

]
τa−

[
0na×nf

Inf

]
τf −J⊤

Cs
f.

(18)
Notice that the last nf rows of (18) represent the underactu-
ated flexible behavior of the robot.

4) Joint position regularization task: To prevent the con-
troller from computing solutions that generate a huge variation
in joint acceleration, we introduce a joint regularization task
for both the actuated and elastic joints, as

Ψsa = s̈∗a −
[
0na×6 Ina

0na×nf

]
ν̇ (19a)

Ψsf = s̈∗f −
[
0nf×6 0nf×na

Inf

]
ν̇, (19b)



with s̈∗a equal to

s̈∗a = s̈ref
a + kdsa(ṡ

ref
a − ṡa) + kpsa(s

ref
a − sa). (20)

Where sref
a is the desired joint trajectory. kdsa and kpsa are two

positive-defined diagonal matrices. On the other hand, we
ask for s̈∗f equal to

s̈∗f = -kdsf ṡf − kpsf sf . (21)

kdsf and kpsf are defined positive matrices. Thanks to (21) the
controller tries to stabilize the flexible joint position to zero.

5) Joint torque regularization task: To prevent the con-
troller from providing solutions with large actuated joint
torques, we introduce the following task

Ψτ = τ ref
a − τa. (22)

6) Feasible contact force task: The feasibility of the
contact 6D force Ck[I]fk is guaranteed by the set of inequalities

Φfk = ΓCk[I] Ck[I]fk − b, Φfk ⪯ 0, (23)

where ΓCk[I] depends on the robot state q as in [23], and the
inequalities ⪯ hold elementwise.

B. Quadratic programming formulation

We achieve the control objective by designing a constrained
quadratic programming (QP) problem of the form

minimize
ν̇, τa, f

∥ΨTSO(3)
∥2ΛT

+∥ΨRSO(3)
∥2ΛR

+∥Ψs∥2Λs
+∥Ψτ∥2Λτ

subj. to Ψ◦SE(3)
= 0 ◦ = {L,R}

Ψh = 0

Ψdyn◦ = 0 ◦ = {s, ν}
Φf◦ ⪯ 0 ◦ = {L,R}. (24)

Here, contact forces fj , the base acceleration B[I]v̇B , the
actuated joint acceleration s̈a, and the actuated joint torques
τa are considered as optimization variables.

In (24), the tracking of the left ΨLSE(3)
and right ΨRSE(3)

feet pose is treated as high-priority SE(3) tasks (14). The
Centroidal momentum tracking is considered as a high-
priority task (12). We also consider the base (17) and joints
dynamics (18) as high-priority tasks. To prevent the controller
from asking for a high motion of the upper body, we introduce
two SO(3) tasks, one associated with the chest and the other
with the waist orientations, respectively, denoted ΨTSO(3)

and ΨRSO(3)
. In both cases, we ask the z coordinates of

the link frames to remain parallel to the gravity vector. The
postural conditions of the actuated and elastic joints (19) are
considered as low priority tasks. We regularize the desired
actuated joint torques as a low priority task Ψτ (22). Finally,
to guarantee feasible contact forces for the feet, we add the
task (23), denoted respectively as ΦfL and ΦfR .

IV. ELASTIC JOINT STATE OBSERVER

Solving the optimal control problem (24) requires a prior-
knowledge of the position, velocity and torque of all elastic
joints. These values are fully known in simulation. However,
in the real scenario, they must be estimated. We present an
algorithm that computes the state of elastic joints considering
the contact wrenches acting on the robot feet and the actuated
joint state. Let us assume:

• the link flexibility is located on the robot leg;
• the robot leg is described by a kinematic chain where

the first node represents the robot base;
• all the flexible links are modeled with mf elastic joints

described by (8) and (9);
• each elastic joint is connected to its child joint with a

fake link having zero mass and inertia;
• there exists ma actuated links and joints between the

latest elastic joint and the robot foot.

Let us consider a single leg; we denote the waist of the
robot by L0, all virtual links and elastic joints by Lf

i and
sfi with 1 ≤ i ≤ mf ; and all actual robot links and actuated
joints by La

i and sai with mf+1 ≤ i ≤ ma+mf , respectively.
We also name the frame associated with each link as the
link itself. We assume that each link is subject to only two
wrenches, exerted by the parent and child links. With an
abuse of notation, we consider the environment as the child
of the foot La

ma+mf
. For the dynamics of the links (3), we

denote by ϕi the wrenches exerted on the actual robot links
and on the fictitious flexible links.

A. Forward kinematics

Given the angular velocity and the proper sensor ac-
celeration of the foot La

ma+mf
, we can compute ϕi with

mf + 1 ≤ i < ma +mf , recursively. Given the link La
i , its

body angular velocity writes as

iωi =
iRi+1

i+1ωi+1 +
iωi+1,i, mf + 1 ≤ i < ma +mf

(25)
where i+1ωi+1 is the angular velocity of the child link. iωi+1,i

is the velocity of La
i with respect to La

i+1 written in La
i .

Similarly, we recall that αg
La

i
can be computed recursively by

considering the child joint position sai+1 velocity ṡai+1 and
acceleration s̈ai+1, and αg

La
i+1

as in [18].
We want to underline that if an IMU is mounted on the

robot feet, ϕma+mf
can be derived from the sensor readouts.

Otherwise, we propose two possible solutions: i) In the case
of low swing foot velocity and acceleration, we suggest
considering ma+mfωma+mf

and αg
La

ma
equal to zero. ii)

Assuming that an IMU is mounted on the robot waist. We
suggest setting αg

La
ma

and ma+mfωma+mf
at time t equal to

the one predicted by the forward kinematics at the previous
step t− d t. To guarantee the convergence of the algorithm,
the choice of d t becomes crucial. Here, we suggest setting d t
small enough to capture the evolution of the system dynamics.



B. Inverse dynamics propagation

Assuming that ϕLa
i

has been computed as in Sec. IV-A
and considering (13) with nf = 2, the dynamics of La

i holds

ϕi = ifλ(i),i + ifi+1,i, mf + 1 ≤ i < ma +mf , (26)

where λ(i) gives the parent link of La
i , ifλ(i),i is the spatial

force exerted by the parent link λ(i) to La
i whose coordinates

are expressed in La
i . ifi+1,i is the spatial force exerted by

La
i+1 to La

i expressed in La
i . We now reorganize (26) to

reveal its recursive structure:

ifλ(i),i = ϕi − ifi+1,i (27a)

= ϕi + iX
i+1

i+1fi,i+1 (27b)

We notice that by projecting (27) into the joint motion axis
is ∈ R6 [17], [18], the torque acting on the joint sai writes
as τai = is⊤ifλ(i),i ∈ R. If the system is equipped with
joint torque sensors, τai can be directly measured. Using this
information, we attempt to improve the estimation of the 6D
force ifλ(i),i as follows:

if
c
λ(i),i =

[
(1− β)τam

i +β is⊤ifλ(i),i

]
is

+
(
I6−is is⊤

)
ifλ(i),i. (28)

Here, if
c
λ(i),i denotes the corrected 6D force and τam

i is the
measured joint torque. We choose the parameter β ∈ [0, 1]
according to our trust among measurement and calculations.
At its extremes, β = 0 considers only the measured torques,
and β = 1 just takes the computed torques.

C. Elastic joint state estimation

Propagating the inverse dynamics in Sec. IV-B, we recur-
sively compute the wrench acting on the joint sa1 . Assuming
a neglected mass and inertia for the flexible link Lf

mf
, i.e.,

MLf
mf

≈ 06×6, we write the flexible link dynamics as

mf
fmf−1,mf

= -mf
fmf+1,mf

= mf
Xmf+1

mf+1fmf ,mf+1, (29)

where mf
Xmf+1 depends on the position of the joint samf+1

obtained in Sec. IV-B.
Given (29), we can compute the elastic joint torque τfmf

by projecting mf
fmf−1,mf

into the joint motion axis mf s

τfmf
= mf s⊤ mf

fmf−1,mf
. (30)

Combining (30) with the discretized elastic joint position (9a)
we estimate the elastic joint position sfmf

. Applying the same
approach, we can estimate the elastic joint torque τfi and
position sfi , with 1 ≤ i ≤ mf − 1

At each time step, applying the procedure of Sec. IV-A,
IV-B, Eq. (29) and (30), we estimate the elastic joint state.
The result is finally considered by the whole-body controller
to compute the desired actuated joint torques.

V. RESULTS

In this section, we test the control strategy presented in
Sec III on a simulated version of the TALOS humanoid robot
[16] – see Fig. 1. TALOS’s hip flexibility has a significant
impact on its leg control and, as a result, its balance and
locomotion [6]. Since the hip flexibility is due to the vertical
linkage following previous work [10], we model the flexibility
along the pitch and roll axis for each leg. As a result, we have
nf = 4 while na = 32. The architecture takes (on average)
less than 1ms to evaluate its output. The OSQP [24] library
is used to solve the optimization problem. The simulations
are obtained by integrating the robot dynamics and the joint
elasticity as in Fig. 2.

To validate the performance of the proposed architecture,
we present two main experiments. First, the proposed strategy
is compared with a state-of-the-art task-based inverse dynam-
ics algorithm that considers rigid links [25] in the case of
different stiffness parameters k. From now on, the proposed
control approach is called TSID-Flex and the state-of-the-art
controller TSID-Rigid. Second, we analyze the performance
of the TSID-Flex in the case of different stiffness. In both
scenarios, the desired robot CoM, footsteps, and actuated
joint trajectories are computed offline1. The robot walks 1
meter forward with a step length of 20 cm, starting with the
right foot. The first and last steps are 10 cm long. The double
support lasts 0.2 s, while the single support lasts 1.2 s.

A. Comparison between TSID-Flex and TSID-Rigid

In Table I, we summarize the results of the control strategies
for different stiffness parameters k. Labels success and failure
mean that the associated controller is either able or not
to ensure the robot’s balance while walking. In all the
experiments presented in this section, the damping parameter
is arbitrarily set to b = 2

√
k.

To compare the two controllers, we decided to perform two
main experiments. In the former, we choose a set of stiffness
parameters such that both whole-body controllers guarantee
the balance while walking. In the latter, we decrease the value
of the stiffness parameter. Namely:

- Experiment 1 k = 1× 104 Nmrad−1;
- Experiment 2 k = 3× 103 Nmrad−1.
1) Experiment 1: Fig. 3 shows the CoM tracking perfor-

mance obtained with TSID-Flex and TSID-Rigid in terms
of tracking error. The TSID-Flex controller seems to show
good tracking performance, and the CoM error is kept below
2mm. On the other hand, the TSID-Rigid induces a higher
error on the CoM tracking. Similar considerations hold also
for the tracking of the centroidal angular momentum.

In fact, TSID-Flex ensures a smaller angular momentum
error with respect to the TSID-Rigid. One reason for this
behavior is that the TSID-Rigid assumes the robot composed
only by rigid link, hence all the joints are considered to be
actuated. This assumption is generally valid in the case of
stiff k, but it does not hold if k decreases. Fig. 5 presents

1The whole-body reference trajectories are provided by:
github.com/loco-3d/multicontact-api/tree/v2.1.0

https://github.com/loco-3d/multicontact-api/tree/v2.1.0


TABLE I: Controller outcome in the case of different stiffness parameter k.

Control 10 kNmrad−1 5 kNmrad−1 3 kNmrad−1 2 kNmrad−1 1 kNmrad−1

TSID-Rigid success success failure failure failure
TSID-Flex success success success success success
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Fig. 3: Centroidal momentum tracking: comparison between TSID-Rigid and TSID-Flex – k = 1× 104 Nmrad−1
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Fig. 4: Centroidal momentum tracking: comparison between TSID-Rigid and TSID-Flex – k = 3× 103 Nmrad−1.

the left foot trajectory error when the whole-body controller
is TSID-Flex or TSID-Rigid. The angular error is given by
the angle of the axis-angle representation between the foot
orientation and the desired orientation [26]. Since TSID-Rigid
does not consider link deformations, the controller assumes
a wrong foot orientation when the robot is on single support
– for 2.5 s ≤ t ≤ 5.5 s in Fig. 5.

2) Experiment 2: The centroidal quantity tracking problem
discussed in Experiment 1 worsens at lower values of

the stiffness parameter k. Fig. 4 shows the CoM tracking
performance of the two controllers. In Fig. 4 we also present
the tracking of the angular momentum. The TSID-Flex is still
capable of ensuring good performance. On the other hand,
the TSID-Rigid does not consider the elastic joint state. As a
consequence, this leads to a non-negligible error on the robot
CoM. In order to keep the balance, the TSID-Rigid controller
requires high variations of the robot’s foot orientation and at
t ≈ 10 s the robot falls – Fig. 6.
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Fig. 5: Foot tracking: TSID-Rigid and TSID-Flex comparison –
k = 1× 104 Nmrad−1.
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Fig. 6: Foot tracking: TSID-Rigid and TSID-Flex comparison –
k = 3× 103 Nmrad−1.

B. Performance of the TSID-Flex in the case of different k

We now benchmark the performance of the TSID-Flex
controller for different stiffness parameters k, namely k =
10 kNmrad−1, 5 kNmrad−1, 3 kNmrad−1, 2 kNmrad−1,
1 kNmrad−1, and 0.5 kNmrad−1.

Fig. 7 shows the CoM tracking error for different values
of k. The controller ensure acceptable performance for all
values of k, i.e., the error is always below 3mm. However,
the lower the stiffness, the higher the tracking error. This
increase in tracking error is caused by the elastic joint state
estimation error. Fig. 8 presents the estimation error of an
elastic joint. Similar considerations hold also for the other
three joints. When the robot switches from single support to
double support, the estimated torque associated with the
elastic joint has a spike – at t ≈ 8.5 s, 11 s and 13.5 s
in Fig. 8a. As a consequence, the error propagates in the
estimation of the elastic joint position and velocity – see
Fig. 8b and 8c. This behavior is caused by the discontinuity
of the contact force. To mitigate this effect, we may perform
a smother transition between single and double support.

VI. CONCLUSIONS AND FUTURE WORK

This paper contributes to the design of a whole-body QP
controller for a humanoid robot affected by link flexibility.
We model the flexibility by introducing equivalent passive
joints that simulate the motion caused by the viscoelastic link
deformation. We then considered the passive joints position
and velocity as state of the floating base system dynamics.
Thanks to this choice, unlike other state-of-the-art approaches,
we develop a whole-body controller that explicitly considers
link flexibility in the stabilization problem. The paper also
details the design of an estimator that aims at computing
the elastic joint state in real-time. The proposed approach
is validated in a simulated version of the TALOS humanoid
robot, where its hip flexibility has a significant impact while
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Fig. 7: CoM Tracking performance in the case of different k.

performing locomotion tasks. Moreover, the architecture is
then compared with a state-of-the-art whole-body controller
that considers all links rigid. In future work, we plan to
mitigate the contact forces discontinuity by performing a
smoother transition between contiguous support phases. We
also plan to make a comparison with other state-of-the-art
controllers that consider the flexibility of the robot link [10].
Another interesting research direction is to consider the
link flexibility in the generation of reference centroidal
trajectories [27], [28] and whole-body-motion [29], [30].
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