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Abstract— This paper presents a simplified model-based tra-
jectory optimization (TO) formulation for motion planning on
quadruped mobile manipulators that carry heavy payload of
known mass. The proposed payload-aware formulation simulta-
neously plans locomotion, payload manipulation and considers
both robot and payload model dynamics while remaining
computationally efficient. At the presence of heavy payload,
the approach exhibits reduced leg outstretching (thus increased
manipulability) in kinematically demanding motions due to
the contribution of payload manipulation in the optimization.
The framework’s computational efficiency and performance is
validated through a number of simulation and experimental
studies with the bi-manual quadruped CENTAURO robot
carrying on its arms a payload that exceeds 15 % of its mass
and traversing non-flat terrain.

I. INTRODUCTION
Quadruped robots have in general outperformed wheeled

platforms in rough terrain by taking advantage of their ability
to discretely make and break contact with the environment. In
contrast to aerial robots (which move without contact), they
can, significantly, compensate and exert higher interaction
forces due to the legged contact and articulation. This renders
quadruped robots, compared to other mobile manipulation
platforms, more promising for all-terrain applications that
require executing manipulation actions with large physical
interaction or increased payload capacity. This promise has
in no case been fulfilled so far since very few works [1]–[8]
have addressed the problem of simultaneously performing
locomotion and manipulation tasks on real quadrupeds.

Among other challenging tasks, quadruped manipulators
promise robotizing heavy payload transportation in non-flat
terrain, a task that is tedious for humans and unsuitable for
their wheeled and aerial counterparts (while it has been also
subject of research for humanoid robots [9]). At the presence
of payload with substantial mass the robot dynamics are
highly affected. As a result, locomoting while simultane-
ously carrying heavy payload poses significant challenges to
the robot, namely compromising stability, forcing actuator
saturation and reaching joint limits.

Despite the existence of numerous quadruped manipula-
tors [1]–[3], [10]–[13], their deployment and feasibility to
maintain locomotion while carrying heavy payload (more
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Fig. 1. The CENTAURO robot walking while carrying 17 kg payload.
Corresponding video: https://youtu.be/09APxzIehpI

than 15 % of the robot’s mass) has been either relatively
unexplored or compromised by generating motions only for
the lower-body of the robot and overlooking the manipulation
capabilities of the platform [14]. Relying solely on loco-
motion for a task involving high interaction forces/payload
at the robot’s upper body can result in inefficient or at
best suboptimal robot behavior. On the contrary, considering
both locomotion and payload manipulation together at the
planning stage is a more sophisticated alternative that can
result in lower-body trajectories of greater margins, which
can be tracked more easily.

This work optimizes both locomotion and manipulation
and considers both robot and payload simplified model
dynamics together at the level of motion planning (before
control). Deploying payload manipulation results in avoiding
compromising kinematic performance of the robot’s lower-
body and remaining far from leg singular configurations
in kinematically demanding motions. The formulation is
combined with a whole-body controller (WBC) and the
framework, efficiently, generates a variety of motions (for
flat and non-flat terrains) that are successfully executed in
both simulation and real hardware under heavy payload.

A. Related Work

Previous work on CENTAURO [14] relies on total CoM
estimation to plan only lower-body motion (no manipulation
planning) for heavy payload transportation. Reaching the
leg workspace kinematic limits (outstretching) is traded off
with zero moment point (ZMP) stability margin through a
cost term. In contrast, the current approach leverages the
platform’s dual arm manipulation capabilities to avoid leg
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outstretching without compromising stability. Indeed, the
framework achieves to plan and execute more challenging
motions on both simulation and real hardware.

Existing works have explored separating locomotion and
manipulation planning. In [1] contact wrenches are com-
manded to the controller while the planner accounts only for
locomotion. Similarly the BigDog robot of Boston Dynamics
[13] was shown to carry and throw a cinder block [4].
The work of [5] proposes a learned locomotion policy
that accounts for the predicted wrenches on the robot base
planned by a separate model-based manipulation planner.
The above approaches suffer from the same drawback in that
locomotion planning is assigned to compensate for/reject the
manipulation motion effect without having control over it.
Thus, the manipulation behavior cannot be changed based
on locomotion margins.

On the other hand locomotion and manipulation have been
simultaneously optimized for bipeds, to name but a few
[15], [16], and more recently for quadruped manipulators
as follows. The full dynamics TO formulations of [8],
[17] have achieved robustness against payloads [18] but are
computationally expensive (prohibiting online planning for a
robot much simpler than the one used in this paper).

The work of [19] substitutes the feet contact forces with
the ZMP for achieving tasks on flat terrain in simulation.
On the contrary, the unified framework of [6] accounts
for the centroidal robot dynamics and manipulated object
to efficiently plan combined locomotion and manipulation
tasks. Although the latter seems to find application for the
heavy payload transportation task, scaling efficiently1 to
more complex robots as the CENTAURO (which consists
of 39 actuated degrees of freedom [DoF] in contrast to
the 16-DoF robot used) remains challenging2. The current
paper handles this complexity by adopting a middle ground
between [19] and [6] in terms of robot model descriptiveness.
It accounts for a model richer than [19] since optimizing for
all contact forces as well as arm end-effectors (EE) motion.
The resulted TO is computationally efficient (planning at
least at 5 Hz with 4 sec. horizon) and is validated on the
real CENTAURO robot, which is of much higher system
dimension than any of the works above. Differently from
other works, results and insight are presented from real
experiments on non-flat terrain with 17 kg payload (85 %
of the arms’ capacity and 15.1 % of the robot mass).

B. Contribution

Based on the current literature, as discussed in I-A, this
work is characterized by the following contributions:

• A TO formulation for motion planning of quadruped
manipulators carrying heavy payload. The formulation
simultaneously plans locomotion and payload manipu-
lation and as a result, in contrast to locomotion-only,

1In this paper, a TO is considered computationally efficient if the planning
time is at least an order of magnitude shorter than the planning horizon.

2This is further compounded since by the time of writing the augmented-
Lagrangian-based inequality constraint handling approach [20] that is used
in [6] is not yet open source released, thus cannot be off-the-shelf accessed.

avoids excessive lower-body motion that can cause leg
outstretching (boundary singularities) when stepping.

• The formulation is used for (but, as shown in Sec. IV-
D, not restricted to) offline planning. Combined with
a WBC it is evaluated in various simulation and ex-
perimental scenarios with the CENTAURO robot [11],
demonstrating the ability to generate motions that can be
tracked by real robots of high complexity. The obstacles
negotiated in both simulation and real experiment have
not been shown before from a quadruped manipulator
that carries such heavy payload.

• The approach is computationally efficient for high di-
mensional robots (as is a bi-manual quadruped) such
that can be straightforwardly extended to online reced-
ing horizon TO. This work is the first to provide insights
on the application and efficiency of simplified model-
based TO on quadrupeds with more than one arms.

II. TRAJECTORY OPTIMIZATION FORMULATION

In this work, the motion planning problem is formulated
using direct transcription/collocation which transcribes the
continuous optimization problem in a constrained Nonlinear
Programming (NLP) problem. This is done by discretizing
the horizon of the optimization in a number of knots and
the solver is assigned to find the optimal values of the
variables at these knots. The optimal values of the obtained
solution are then interpolated. Although many off-the-shelf
NLP solvers exist interior-point ones are faster [18], [21] and
can handle any type of constraint, thus, they are preferred.

The TO formulation plans both locomotion and manipula-
tion trajectories for the task of carrying heavy payload with
known mass3, thus referred as payload-aware. It consists of
a CoM and arm EE motion planning framework, i.e. feet
trajectories are not optimized. The latter are, heuristically,
planned before the TO based on user inputs (gait pattern,
stride length and duration, total time T of the motion and step
vertical clearance). Based on the above, feet EE trajectories
are known and introduced in the TO as NLP parameters.

The robot arms are considered in rigid (prehensile) contact
with the payload and able to manipulate it, thus, the motion
of the payload is identical to the motion of the arm EE. The
CENTAURO robot has two arms and, henceforth, this paper
focuses on scenarios with one payload at each arm. However
the approach can be easily adapted for different quadrupeds.
For the rest of this paper all position vectors are expressed
in a fixed inertial (world) frame whose notation is omitted.

A. Decision variables

The formulation optimizes the CoM state zzz(t) =[
rrr(t) ṙrr(t) r̈rr(t)

]T
, which includes position, velocity and

acceleration vectors, the CoM jerk
...
rrr (t), the motion of the

arm EEs as well as the forces fff i(t) at all (feet and arm)
EEs. Fixed-step discretization is used, thus t = k ·∆t where
k ∈ {0, ..., N − 1} and N the number of knots. For the rest

3The mass of a grasped payload can be estimated through force estimation
at the EE using a wrist force/torque sensor or by exploring the joint torque
sensing available on the arm.



Fig. 2. Visualization of the CENTAURO robot with the arm EE box
workspaces (left). The simplified dynamic model considered by the payload-
aware planner (right). For the sake of clarity, the position vector pppi with
respect to (wrt) the inertial frame I is depicted for one EE.

of this paper the time dependency of the decision variables
is omitted. The CoM position and EE forces are interpolated
as cubic splines and piecewise linear, respectively. Arm EE
position trajectories are parameterized as cubic splines based
on Cubic Hermite Parameterization (CHP) [22].

The initial and final value of some of the decision variables
is specified with equality constraints on the first and last NLP
knot (initial and final conditions, respectively). In particular,
before the beginning of each TO the CoM and arm EEs
position are perceived and enforced. All decision variables
related with velocity and acceleration are enforced to be
zero at both the beginning and the end of the TO so that
the robot starts and stops smoothly. The final CoM position
is bounded within a desired region (centered around the
nominal CoM position consistent with the final footholds)
through an inequality constraint.

B. The robot model

The robot is modeled using the Single Rigid Body Dy-
namics (SRBD) model, which assumes rigid robot links,
negligible momentum produced by the joint velocities and
that full-body inertia remains similar to the one in nominal
joint position. Additionally, point contacts are assumed. The
SRBD model is described by the following equation:[

ṖPP

L̇LL

]
=

[
mggg +

∑ncont

i=1 fff i∑ncont

i=1 (pppi − rrr)× fff i

]
(1)

where ṖPP = m · r̈rr and L̇LL are the derivatives of the linear
and angular momentum, respectively, ggg is the gravity vector,
pppi denotes the feet and arm EE position vectors, m is the
robot mass and the number of contacts ncont = 6 (con-
sidering that both feet and arm EEs make contact with the
environment/payload). Base angular motion is not optimized
(it is generated by the WBC of Sec. III) and constant angular
momentum is assumed L̇LL = 000 so as to maximize efficiency.
An illustration of the model is shown in Fig. 2.

C. Locomotion-related behavior

During legged locomotion the robot has to maintain sta-
bility/balance and not slip on the ground. These conditions

are satisfied with constraints related with the feet EE con-
tact forces, namely the stability constraint (2) and friction
pyramid (3) (preferred over the second-order cone due to
linearity) constraints.

fffTi n̂̂n̂ni ≥ fzmin (2)

|fffTi t̂̂t̂t
j
i | ≤ µ · fff

T
i n̂̂n̂ni (3)

where j = {x, y}, n̂̂n̂ni, t̂̂t̂txi , t̂̂t̂tyi denote the unit vectors normal
and parallel to the tangential contact plane of foot i and µ is
the friction coefficient. Large stability bounds are imposed
by setting a positive lower bound of fzmin = 100 N (9 % of
the robot’s weight) in (2) for the normal component of the
force at each foot in contact. The above positive bound was
selected from trials in simulation and is necessary in order
to compensate for the SRBD model assumptions, like the
neglect of the momentum produced by the joint velocities
which is significant due to the considerable distal mass of
CENTAURO (leg to robot mass ratio is 10.8 %). This way the
stance feet do not lose contact with the terrain and the robot
remains stable. For each swinging foot, the corresponding
force is set to zero and, thus, is not optimized.

CoM jerk and feet force components fffxyi (where i ∈
{0, ..., 4}) are penalized to avoid oscillatory trajectories and
favor forces close to contact normals, respectively. Finally, a
penalty cost is included for the CoM position with the form:

Jr = ‖rrr − (pmeanpmeanpmean + crefcrefcref )‖2 (4)

where nfeet = 4, pmeanpmeanpmean = 1
nfeet

∑nfeet

i=1 pppi is the mean of
the feet EE position vectors (regardless of contact state) and
crefcrefcref is a robot-specific vector with only vertical component
(so that the CoM reference point is above pmeanpmeanpmean). This
way the horizontal deviation of the CoM from the geometric
center of the polygon formed by the feet EEs is penalized.

It is worth mentioning that the above locomotion-related
elements of the formulation can make up alone a reliable
formulation for planning locomotion (i.e. without moving the
arms wrt the robot base). This can be done by excluding the
two arm EEs from the robot model (1), the manipulation-
related decision variables (arm EE trajectories and forces
of Sec. II-A) as well as any manipulation cost/constraint
(elements of Sec. II-D). Such a locomotion-only formulation
is used for comparison in Sec. IV, the competitiveness of
which is thoroughly explained in that section.

D. Payload manipulation-related behavior

Similar to [6], the motion planner accounts for the payload
dynamics. The motivation for this is that the payload dynam-
ics are directly interacting with the robot dynamics through
the interaction forces at the arm EEs. Here, each payload is
modeled as a point mass to which a force fffpaypaypay,i is exerted
by the grasping robot arm. Therefore, its dynamics can be
described with the Newton’s equation of motion (5):

mpay · p̈payp̈payp̈pay = mpay · ggg + fffpaypaypay,i, i ∈ {5, 6} (5)

where p̈payp̈payp̈pay = p̈ppi is the payload acceleration (identical to the
i-th EE), mpay is the payload mass and fffpaypaypay,i = −fff i is
equal and opposite to the arm EE force.



The arm EE trajectories should remain within their kine-
matic range without self-colliding and, thus, the solver is
constrained to do so. Box constraints are preferred because
of convexity and linearity. The workspace of each arm EE
(shown in Fig. 2) is centered at the nominal position wrt
the CoM p̄ppri and aligned with the inertial frame. Since base
orientation is not available at the planner (it is not optimized)
boxes cannot be expressed wrt the base frame. For the variety
of scenarios presented in this work this is not a limitation,
however it may be crucial for more complex maneuvers. The
constraint for each arm EE can be described as:

|(pppi − rrr − p̄ppri)T ĵ̂ĵj| ≤ 0.5 · beebeebeeT ĵ̂ĵj (6)

where ĵ̂ĵj ∈ {x̂̂x̂x, ŷ̂ŷy, ẑ̂ẑz} are the unit vectors along the inertial
directions and beebeebee is a 1 × 3 array matrix including the
box dimensions. The two workspaces are selected to overlap
with each other, as shown in Fig. 2, in order to provide the
solver with more freedom regarding the arm motion. The
bigger the workspaces are, the more freedom the solver has
to manipulate the payload. Due to this overlap a constraint
is added to ensure no self-collision by keeping the distance
between the two EEs along the y inertial direction greater
than a safety threshold bs > 0, as shown in (7).

|(ppp5 − ppp6)T ŷ̂ŷy| ≥ bs (7)

Finally, the magnitude of each arm EE force is bounded
with a box constraint, which results in bounding the cor-
responding arm EE acceleration. This is because each arm
EE and the corresponding payload are subject to the same
acceleration, which is coupled with the corresponding arm
EE force through the payload dynamics (5). Each arm EE
force box is centered at the payload’s weight vector mpay ·ggg,
thus the constraint has the form:

|(fff i −mpay · ggg)T ĵ̂ĵj| ≤ 0.5 · bfbfbfT ĵ̂ĵj (8)

where bfbfbf is a 1 × 3 array matrix including the box dimen-
sions. The larger the bounding boxes are, the more dynamic
arm motions the framework is permitted to plan. For the
CENTAURO robot bfbfbf =

[
16 16 6

]
N was found to work

well. Based on (5) this results in admissible accelerations up
to
[
0.8 0.8 0.3

]
m/s2 (for the three inertial directions,

respectively) for a 10 kg payload.
Penalty terms related to the desired manipulation behavior

are also considered. A large penalty cost is added at the last
NLP knot in order to favor final arm EEs position close to
nominal. For each arm a cost is added to favor motions with
small EE acceleration (among the ones specified through
(8)). This cost has analytical form and penalizes the integral
of the squared acceleration polynomial, as shown in (9).

Ji =

N−2∑
k=0

∫ (k+1)·∆t

k·∆t

p̈̈p̈p2
polypolypoly,i(t) dt (9)

where p̈̈p̈ppolypolypoly,i(t) is the arm EE optimized acceleration poly-
nomial (which is a function of the decision variables at the
adjacent knots according to CHP [22]), ∆t is the duration of
each time segment and N the number of the time segments

according to the NLP discretization. The analytical cost
penalizes acceleration through the whole spline and not just
at the knots. An example of the effect of cost (9) as well as
constraint (8) on the acceleration of the arm EEs is shown
in Fig. 3.

Fig. 3. Left arm EE acceleration (plans from Sc. 2 of Section IV-
A). Constraint (8) and cost (9) result in motions with reduced arm EEs
acceleration.

The presented formulation can be easily adapted to
quadrupeds with different number of arms by enforcing all
constrains of this chapter, except from (7), for each arm EE.
Constraint (7) should be imposed for every pair of arms while
vanishes for a single arm.

III. WHOLE-BODY CONTROLLER (WBC)

Motion generation requires specifying whole-body trajec-
tories and, thus, a WBC based on hierarchical optimization
and inverse kinematics (using RBDL library [23]) is de-
veloped within the framework of [24]. The WBC accepts
the CoM and EE position plans and generates whole-body
joint position trajectories which are fed to the low-level joint
position controllers through dedicated ROS-based software
[25], [26]. The structure of the WBC (stack of tasks) is
shown in Table I. It is worth mentioning that sufficient
control authority is assumed and joint torque limits are
not considered which, nevertheless, does not diminish the
execution of the variety of motions presented in this work.

TABLE I
WBC TASKS AND CONSTRAINTS

Priority Tasks
1 Feet EE position tracking
1 CoM position tracking
2 Arms EE position tracking
3 Postural task

Constraint Joint limits
Constraint Velocity limits

IV. RESULTS AND EVALUATION

This section presents results from the motions generated
by the payload-aware formulation of Sec. II combined with
the WBC of Sec. III. The planner is compared with the
case of considering payload as part of the robot model (as
a fully observable link) and using locomotion-only plan-
ning. More specifically, this is derived by excluding all the
manipulation-related elements (i.e. the two arm EEs in the
robot model (1), the decision variables of arm EE motion
and forces as well as all costs/constraints of Sec. II-D).
This planner is, henceforth, referred as locomotion-only case.



Fig. 4. The robot during the execution of simulation experiments with 10 kg payload at each arm (top). Snaphots are showed for both locomotion-only
(L) and payload-aware (P) cases for Sc. 1-3. The attached green ball EEs consist the payloads. Manipulability metric of each leg for the locomotion-only,
payload-aware and no payload cases for Sc. 1-3 (bottom). The shaded regions denote swing periods.

The motivation for this comparison is that the locomotion-
only case was found to be more efficient than our previous
framework [14] (which is a state-of-the-art method handling
such heavy payload), achieving larger strides and traversing
larger gaps and obstacles. The underlying reasons are that
[14] accounts for a less descriptive (linear) dynamic model
and restricts the orientation of the robot base (at the WBC
stage) to be horizontal, thus angular base motion is not
contributing to CoM motion which is rather conservative for
robots with upper body/arms. Finally, [14] is based on total
CoM estimation that comes with estimation errors while the
locomotion-only case in our comparisons considers perfect
knowledge of the payload (which can be easily applied
in simulation). Based on the above, the locomotion-only
case consists a more competitive framework which handles
heavy payload of known mass and, thus, is used for the
following comparisons. For the sake of completeness the
case of planning only locomotion (again by excluding the
manipulation-related elements) without any payload carried
by the robot, named as no payload case, is also included in
the comparisons. The same WBC is used in all cases.

The comparisons presented in this section are based on
three simulated scenarios4 (Sc.) while the robot carries 10
kg payload at each arm (full payload capacity for each arm
and total 17.8 % of the robot’s mass):
Sc. 1) 4 longitudinal steps of 0.25 m on flat terrain. Due
to the asymmetrical wrt the lateral axis (forward oriented)
robot and grasped payload mass distribution such large
strides are kinematically demanding for the front robot legs.
Locomotion-only exhibits excessive backward base motion
resulting in front leg configurations close to singularities.
Sc. 2) 4 lateral steps of 0.25 m on flat terrain. This mo-
tion highlights that the proposed approach, also, overcomes

4All motions can be found in the submitted video which is also available
on https://youtu.be/09APxzIehpI .

locomotion-only planning in large lateral strides, despite the
symmetrical robot and payload mass distribution wrt the
longitudinal axis.
Sc. 3) 4 steps of 0.2 m on a -10 degrees inclined terrain. This
scenario is more challenging than Sc. 1 since the negative
slope necessitates shifting the CoM more backwards5 and
highlights the efficiency of the payload-aware approach in
traversing sloped terrain under heavy payload. All motions
of Sc. 1-3 have 13 sec. duration.

A. Kinematically demanding motions

Unless very dynamic, quadrupeds have to move their CoM
inward the support polygon before step lift-off to maintain
stability. Under heavy payload, larger CoM motions may be
necessitated in order to compensate for the payload effect.
In kinematically demanding motions, e.g. large strides where
swing distance is large, swing leg may be outstretched and
reach its workspace kinematic limit, a configuration known
as boundary singularity. In this work, metric (10) is used to
evaluate the distance of a leg configuration from this kind of
singularity.

w(qqq) =
√

det(JuJuJu(qqq)JuJuJuT (qqq)) (10)

where JuJuJu is the linear velocity jacobian of the foot EE wrt
the base link while the joint position vector qqq is computed by
the WBC. This metric is proportional to the linear velocity
manipulability ellipsoid and the closer its value is to zero,
the closer the configuration is to a singularity.

In Fig. 4, simulation snapshots and metric (10) for each
leg during Sc. 1-3 are depicted for the payload-aware and
locomotion-only cases. In Sc. 1, 3 the locomotion-only
motion plans (green color in Fig. 4) result in a front left
(FL) leg configuration close to singularity before touchdown.

5On flat terrain, the robot loses static stability when the CoM projection
on the ground along the gravity vector exits the support polygon [27].



Fig. 5. Arm EE trajectories wrt to base link planned by the payload-aware
planner (left). Comparison of total CoM position for the payload-aware and
locomotion-only for Sc. 1 (right). The same trends were observed for Sc.
2-3 (omitted due to lack of space).

Fig. 6. Comparison of the 6 DoF base trajectories for the locomotion-only,
payload-aware and no payload cases during Sc. 1. The same trends were
observed for Sc. 2-3 (omitted due to lack of space).

This kinematic inefficiency is becoming evident at smaller
steps in Sc. 3 than Sc. 1 because of the negative slope.
Additionally, during Sc. 2 forward right (FR) leg reaches
a configuration close to singularity before lift-off, since the
robot base is moving inwards the future support polygon.
On the contrary, in all above scenarios the payload-aware
planner generates motions that are singularity free, as is
the case for the no payload case. Even more, in Sc. 2
payload-aware planner manages to exceed the no payload
case in terms of FR leg manipulability. Based on the above
comparisons, although manipulability is not explicitly con-
sidered in the formulation (as a constraint or cost), avoiding
excessive leg outstretching emerges naturally from engaging
payload manipulation planning that contributes to constraint
satisfaction (due to the substantial payload mass). As a
result the framework provides larger freedom for shaping
CoM trajectories (and, thus, lower-body motion). Finally, the
above strides were indeed tried and found infeasible using
our previous framework [14].

B. Payload manipulation contribution

Fig. 5 (left) shows the arm EE trajectories for the payload-
aware planner wrt the base link for Sc. 1. The graph demon-
strates the importance of the arm EE motion, especially in
the y direction (with a span of more than 0.4 m in some
cases) due to the selected boxes in constraint (6). Moreover,
the effect of constraint (7) is evident from the maintained
distance between the two EEs in the y direction.

Fig. 7. CENTAURO negotiating non-flat terrain while carrying 20 kg
payload in simulation. a) 0.2 m gap, b) 0.25 m gap, c) 0.3 m height platform
and d) staircase. Motion plans from consecutive TOs with 4 step horizon
are replayed. The attached green ball EEs consist the attached payloads.

Fig. 5 (right) depicts the total (robot and payload) CoM
trajectory of locomotion-only, and payload-aware cases for
Sc. 1. Overall, in the payload-aware case the total CoM
demonstrates a clear tendency to move less backward and
more on the lateral direction compared to the locomotion-
only. This preference in lateral motions is due to the larger
freedom provided in that direction by our formulation.

As shown in Fig. 6 the tendency of the locomotion-
only case to move the total CoM more backwards results
in a similar base link motion, since the payload mass is
not manipulated. Additionally, the base exhibits significantly
larger pitch up motions which are, also, observed in top
Fig. 4 (the difference reaches 7 degrees). Pitch motion is
generated by the WBC’s effort to track the CoM longitudinal
plans6. On the contrary, although the total CoM in the
payload-aware case follows large lateral motions, this does
not affect the motion of the base to a large extent due to the
contribution of the payload manipulation in this direction
(separately from the robot’s CoM). Therefore, leveraging
payload manipulation results in avoiding excessive linear and
angular base motions and reduced lower-body motions.

C. Negotiating non-flat terrain

In this section the ability of the payload-aware planner
to generate plans for efficiently traversing a variety of non-
flat terrains is presented. TO with 4 step horizon is run and
replayed consecutively on the robot in order to synthesize
large motions. In Fig. 7, CENTAURO is shown to negotiate
gaps, a 0.3 m height platform (36.8 % of leg’s length) and a
staircase comprised of 0.1 m height stairs in simulation. The
same platform step up motion is not completed successfully
using locomotion-only planning due to fast and large base
pitch and yaw motions before the last step (not displayed due
to lack of space). The second part of the accompanying video
shows the above complete motions as well as negotiation
of inclined terrain. This is the first work to demonstrate a
quadruped manipulator climbing such a high step, gaps and
a staircase under such heavy payload in simulation.

6Since the total CoM is forward concentrated pitch motion contributes in
moving the CoM backwards.



TABLE II
LOCOMOTION-ONLY (L), PAYLOAD-AWARE OFFLINE (P-OFF) AND

PAYLOAD-AWARE RECEDING HORIZON (P-RH) MEAN CONVERGENCE

TIME (ITERATIONS) FROM 5 SAMPLES

Sc. 1 [ms] Sc. 2 [ms] Sc. 3 [ms] Step up [s]
L 80.4 (25) 77.23 (26) 70.61 (24) 0.319 (134)

P-OFF 375.34 (44) 399.44 (46) 392.93 (45) 1.41 (194)
P-RH 60.43 (15) 64.53 (16) 76.75 (18) 0.053 (13)

D. Implementation and computational efficiency

The motion planner is implemented in Python within
the symbolic framework of CasADi [28] and solved with
the Ipopt solver [29] (with custom options ma57 linear
solver and adaptive barrier parameter update strategy). NLP
discretization is done at 5 Hz. The computations presented
were run on an Intel Core i9-10900K CPU at 3.70 GHz and
all simulations in Gazebo simulator with ODE physics.

As shown in Table II, the time needed for the optimal
solution of the payload-aware planner (P-OFF) is more than
30 times shorter than the planning horizon, namely ∼ 400
ms for 13 sec. (Sc. 1-3) and ∼ 1.4 s for 46 sec. of motion
(multiple TOs for the step up of Fig. 7c)), respectively.
Compared with the locomotion-only case (L) convergence
time is increased since the formulation is augmented with the
manipulation mode and both motion and force of arm EEs
are optimized, which renders a NLP with higher nonlinearity.
Zero initial guess was provided to the solver.

Based on the achieved performance the payload-aware for-
mulation can run in a receding horizon fashion. Continuous
walking with the strides of Sc. 1-3 and the step up motion
is planned online at 5 Hz with 4 sec. horizon in simulation
(included in the last part of the video). The implementation
provides insight about the potentiality of the approach for
online planning. In this case the solver is warm-started with
an initial guess that consists of the previous solution for the
common knots and the last available knot solution for the
remaining ones. The mean convergence time for a solution
is shown in Table II (P-RH). Although the horizon is of
considerable length convergence time is more than 50 times
shorter (75 times for the step up motion), which renders
future implementations of higher frequency feasible.

V. EXPERIMENTAL VALIDATION AND
DISCUSSION OF THE APPROACH

A. Experimental validation

The efficiency on the real hardware is showcased with ex-
periments on the CENTAURO robot carrying 8.5 kg payload
attached at each arm (85 % of each arm’s payload capacity,
total 15.1 % of the robot mass). The scenarios include
motions of 4 lateral steps on flat terrain as well as stepping
up on a 0.3 m height platform (through multiple offline TOs),
which are shown in Fig. 8 and 9, respectively. The motions
can be found in the third part of the accompanying video. It
is noted that the used boxes in (6) are set more conservative
than in simulation for safety reasons. Moreover, a larger

Fig. 8. Snapshots of lateral walking experiments on flat terrain (left) FR
leg manipulability comparison based on experimental and simulation data
on the payload-aware and locomotion-only cases, respectively. (right)

Fig. 9. Snapshots of CENTAURO stepping up on a 0.3 m height platform
(top), planned (blue) and estimated (red) normal force component at feet
EEs (bottom). Shaded regions denote swing periods.

stability threshold fzmin = 175 N in (2) is used to increase
balance robustness against the sim-to-real gap.

The data from the lateral stepping experiment of Fig. 8
indicate that the generated trajectories are accurately tracked
from the real hardware such that the real FR leg manipulabil-
ity remains higher than the one planned in the locomotion-
only case. In Fig. 9 the planned and estimated normal force
components during the platform stepping up experiment are
depicted for the feet EEs. The estimated forces follow in
general the trend of the planned ones. The presented force
tracking errors are mainly due to the fact that forces are
not explicitly tracked, joint position control is used (there is
force redundancy) and there are estimation errors. Finally,
the estimated force components in Fig. 9 often reach low
values at each leg when the one diagonal to it is swinging
due to the momentum produced by the joint velocities when
swinging fast a robot leg. Nevertheless the robot remains
stable due to the considered stability constraint (2).

B. Discussion

This work uses simplified robot and payload models to
achieve computational efficiency for the high dimensional
CENTAURO robot. Nevertheless, the performance obtained
in simulation and real hardware indicate that the model
assumptions are not restrictive for the variety of showcased
motions. More challenging motions (larger singularity-free



strides, complex and fast maneuvers as well as more chal-
lenging terrain) will require more accurate enforcement of
kinematic constraints (e.g. accurate self-collision avoidance,
arm EE workspaces) and reasoning about richer models.
Complete kinematics would also enable better exploitation of
the arm EEs workspace and, thus, increase the manipulation
contribution. To the best of our knowledge, there is no
work efficiently reasoning about full models of a robot with
dimension equal or greater than CENTAURO.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an efficient TO formulation that
deploys locomotion and payload manipulation of quadruped
mobile manipulators in heavy payload transportation tasks.
The framework demonstrates enhanced performance on flat
and non-flat terrain under payload that exceeds 15 % of the
robot’s mass and overcomes the locomotion-only approach
that is proved to be poor for kinematically demanding mo-
tions. This work highlights the advantage gain on planning
tasks that involve large physical interaction by considering
both locomotion and manipulation of quadruped manipula-
tors together from the planning stage.

Future work shall focus on online planning for the real
robot with perception in the loop. Considering more accurate
models for CENTAURO robot is an interesting, yet chal-
lenging direction. Finally, picking up/placing down heavy
payloads consists future work as well.
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