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Abstract— This paper proposes a framework that combines
online human state estimation, action recognition and mo-
tion prediction to enable early assessment and prevention of
worker biomechanical risk during lifting tasks. The framework
leverages the NIOSH index to perform online risk assessment,
thus fitting real-time applications. In particular, the human
state is retrieved via inverse kinematics/dynamics algorithms
from wearable sensor data. Human action recognition and
motion prediction are achieved by implementing an LSTM-
based Guided Mixture of Experts architecture, which is trained
offline and inferred online. With the recognized actions, a single
lifting activity is divided into a series of continuous movements
and the Revised NIOSH Lifting Equation can be applied for risk
assessment. Moreover, the predicted motions enable anticipation
of future risks. A haptic actuator, embedded in the wearable
system, can alert the subject of potential risk, acting as an
active prevention device. The performance of the proposed
framework is validated by executing real lifting tasks, while the
subject is equipped with the iFeel wearable system. The source
code for this paper is available at https : //github.com/ami−
iit/paper guo 2023 humanoids lifting risk prediction.

I. INTRODUCTION

Work-related low-back disorders (WLBDs) still represent
a societal challenge that threat the health conditions of
working adults [1]. Among the large variety of their causes,
payload lifting tasks in industrial environments play a pivotal
role in determining poor ergonomic conditions that favor
WLBDs [2]–[4]. In this context, ergonomics techniques to
assess the quality of work conditions emerged, albeit based
on qualitative questioners that are often costly and inconve-
nient to apply for dynamically changing work environments.
It is then essential to develop quantitative scalable systems
that online monitor human ergonomics and that potentially
alert the worker before endangering health conditions. This
paper proposes a framework that combines wearable sensors
and haptic devices, learning-based prediction algorithms and
traditional lifting ergonomics to enable early assessment and
active prevention of worker biomechanical risk during lifting
task execution.
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Fig. 1: An overview of the proposed framework.

The Revised NIOSH Lifting Equation (RNLE) is a
renowned tool for assessing two-handed manual lifting er-
gonomics – it is published by the National Institute for
Occupational Safety and Health (NIOSH) [5], [6]. The RNLE
defines a Recommended Weight Limit (RWL) and a Lifting
Index (LI) based on payload weight, which may lead to
reliable risk assessment for WLMDs [4]. Unfortunately,
approximately 35% of lifting tasks and 63% of workers
can not be assessed by means of the RNLE due to its
limited number of parameters and system constraints [7].
To overcome such limitations, further approaches have been
proposed to assess lifting-related risks, e.g., L5-S1 Internal
Forces [8], Mechanical Energy Consumption [9] and Mus-
cles Co-Activation [10]. However, these offline ergonomics
evaluation tools are not flexible enough to be used directly
in an unstructured work environment.

As an attempt towards online human ergonomics evalua-
tion, observational methods – like the Rapid Entire Body As-
sessment (REBA) and Rapid Upper Limb Assessment (RULA)
– are leveraged for human-robot interaction [11]. The human
data are measured by wearable sensors and an estimation of
motion’s ergonomics is provided by automatically fulfilling
the worksheet. More recently, real-time tools for tracking
joint compressive forces during robot interactions are em-
ployed [12]. Analogously, the overloading joint torques can
be computed using the displacement of the center of pressure
during heavy lifting tasks, returning visual feedback of the
worker state [13]. For manual lifting tasks, the existing
attempts are either overly generic, e.g. [11], or limited by
hardware settings, e.g. portability restriction [13]. They also
lack the ability to alert the worker in advance, beforehand
that biomechanical risks endanger health conditions.
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Generally, human action recognition and motion prediction
are tackled as two separate issues. Action recognition can be
addressed as a classification problem, solved by applying
supervised learning methods [14], [15]. Motion prediction is
more often regarded as a regression problem, that has been
addressed for example by means of generative adversarial
networks [16], graph convolutional networks [17], dropout
auto-encoder LSTM [18]. In [19], it was proposed the Guided
Mixture of Experts (GMoE) framework that can resolve
these two problems simultaneously, having the potential
to simplify the architecture for motion prediction and risk
assessment.

This paper proposes a learning-based approach that en-
ables predictions of worker biomechanical risk during lifting
tasks with anticipated haptic feedback. We use IMU-based
sensing systems that show some advantages over vision-
based approaches when used for human motion tracking
due to easier calibration and a more convenient application
in wider, partially occluded spaces. Moreover, the wearable
device can integrate the actuation unit to provide feedback
to the subject. The employed wearable system is composed
of 10 IMUs with haptic actuators and a pair of Force/Torque
shoes. The contribution of this paper is threefold. First, we
develop a system that can monitor human ergonomics online
in the context of lifting activities. To do so, we propose
a framework that integrates both the human state estima-
tion algorithm and human action/motion prediction method,
enabling the RNLE to not only estimate but also predict
lifting risk continuously. Second, we adapted the GMoE [19]
approach for recognizing a set of predefined actions that
compose a complete lifting activity. The GMoE network is
trained on a data set collected in a laboratory environment.
Finally, we validate online the proposed framework via an
experimental analysis conducted on lifting tasks.

The paper is organized as follows. In Section II we in-
troduce the underlying technologies used in our research. In
Section III the proposed framework is clarified, including the
implementation of RNLE-based human lifting ergonomics
monitoring system. Section IV presents an experimental
analysis conducted on a human subject. At last, Section V
concludes the paper.

II. BACKGROUND

A. Wearable System

Sensing technologies are used to collect inputs from
the environment by measuring physical quantities. In this
research, we employed iFeel1, a wearable sensors system
developed at Istituto Italiano di Tecnologia (IIT) to monitor
human states and provide responses [20]. The system inte-
grates both motion capture and force/torque sensing. Motion
capture aims at tracking and recording the motion, based
on IMU sensors. IMUs ensure high-frequency data and low
latency, making iFeel suitable for real-time motion tracking.
F/T sensors are used for measuring and regulating contact
forces/torques when interacting with the environment.

1https : //ifeeltech.eu/

B. Human Modeling and State Estimation

The human is modeled as a floating-base multi-rigid-
body dynamic system [21]. The system configuration is
represented by q = (qb, s), where qb implies the floating-
base pose (position and orientation) w.r.t. the inertial frame
I and s is the joint position vector. The system velocity and
acceleration are denoted by ν and ν̇ respectively. The n+6
equations describing human motion with nc applied external
wrenches is [19]:

M(q)ν̇ + C(q, ν)ν + g(q) = Bτ +

nc∑
k=1

JT
k (q)f c

k , (1)

where M(q) and C(q, v) represent respectively the mass and
Coriolis effect matrix. g(q) is the vector of the gravitational
term. B is a selector matrix for joint torques τ . Jk is the
Jacobian mapping the system velocity with the k-th link
velocity that is associated with the external wrench f c

k . n
indicates the number of joints.

To estimate in real time the system configuration q and
its velocity ν, a dynamical inverse kinematics optimization
approach is proposed in [22]. The idea is to minimize the dis-
tance between the computed state configuration (q(t), ν(t))
with the target measurements. First, the measured velocity is
corrected using a rotation matrix. Then, to compute the state
velocity, the constrained inverse differential kinematics for
the corrected velocity vector is solved as a QP optimization
problem. At last, the state velocity is integrated to obtain the
configuration q(t). For the base estimation, force/torque mea-
surements are applied to determine the location of contacts.
Then base estimation can be solved as part of the dynamical
inverse kinematics framework [23].

In [21], the estimation of the human dynamics is per-
formed by means of a Maximum-A-Posteriori (MAP) algo-
rithm. The overall system dynamics can be reshaped to an
equivalent compact matrix form. In this (Gaussian) domain,
the vector of human kinematics/dynamics quantities can be
regarded as stochastic variables. Given the measurement
reliability, the solution is computed by maximizing the
probability of this kinematics/dynamics vector.

C. Guided Mixture of Experts

The problem of simultaneous human action recognition
and motion prediction is solved jointly by GMoE, a learning-
based approach proposed in [19]. Given the past human states
xk−i, external forces f c

k−i and hidden states rk−i, the next
optimal human state x∗

k+1 can be formulated as:

x∗
k+1 = H∗(xk, ..., xk−N , f c

k , ..., f
c
k−N , rk, ..., rk−N ), (2)

where the optimal mapping H∗ is learned from human
demonstration. By recursively applying equation (2), we can
predict the future human states for the time horizon T.

In terms of rk−i, we only consider human symbolic
actions as the hidden states for simplification and estimate
it as a classification problem. Hence, equation (2) can be

https://ifeeltech.eu/


further rearranged as:

ãk+1 = D∗
1(xk, ..., xk−N , fc

k , ..., f
c
k−N ) , (3a)

x̃k+1, f̃
c
k+1 = D∗

2(xk, ..., xk−N , fc
k , ..., f

c
k−N , ãk+1) . (3b)

where ãk+1 denotes the estimated human next action, D∗
1

and D∗
2 are two optimal mappings to learn.

Integrating the idea of Mixture of Experts (MoE), the gat-
ing network is guided to learn mapping D∗

1 as a classification
problem for recognizing human actions, while each expert
network learns D∗

2 as a regression problem to predict human
motions associated with each specific action.

D. Revised NIOSH Lifting Equation

The Revised NIOSH Lifting Equation (RNLE) consists of
the following two empirical equations:

RWL = LC · HM · VM · DM · AM · FM · CM , (4a)
LI = Wpayload/RWL . (4b)

Equation (4a) determines a Recommended Weight Limit
(RWL) for a specific task. Each factor in the equation is
either from a qualitative assessment or from geometrical
measurements weighted by a multiplier. More precisely, LC
is the load constant (23kg), HM is the horizontal multiplier,
VM is the vertical multiplier, DM is the vertical traveling
distance multiplier, AM is the asymmetry multiplier, FM is
the frequency multiplier and CM is the coupling multiplier.

The Lifting Index (LI) provides an estimate of the physical
stress level, which is obtained in equation (4b) by dividing
the payload weight Wpayload by the recommended weight
limit. A LI smaller than 1.0 implies a safe condition for
working healthy employees, while a higher value of LI
denotes an increasing risk of work-related injuries.

III. PROPOSED FRAMEWORK

In this research, we propose a four-stage framework, as
illustrated in Figure 1, that integrates methods introduced
in Section III for continuously estimating lifting risks and
monitoring human ergonomics in real-time applications. A
more detailed data flow of working pipelines is shown in
Figure 2.

Fig. 2: Data flow of the proposed framework, composed of
an online and offline phase.

Firstly, human kinematic measurements and ground con-
tact force/torque are collected by iFeel node and F/T shoes.
The sensor data are then regarded as the targets for esti-
mating human full-body joints/floating-base configurations
(e.g. positions and velocities) and external feet wrenches
(e.g. forces and torques) via Inverse Kinematics (IK) and
Inverse Dynamics (ID) algorithms. Afterwards, the output
of the human state estimation module is manually annotated
according to pre-defined action labels for the GMoE network
training. Finally, during the online phase, combining the
outputs of GMoE and IK/ID modules, the NIOSH-based
method module is able to provide risk predictions for a given
time horizon and thus send commands to haptic actuators
worn by human subject.

A. Data Preparation

To apply GMoE for a lifting task scenario, we build a 15-
minute dataset, with data sampled at a frequency of 100Hz.
The dataset consists of two volunteers executing three types
of lifting tasks repetitively, lasting for 150 seconds each. The
volunteer is asked to naturally lift a 3kg payload to a certain
height without twisting the upper trunk. The lifting height
ranges from 68cm to 92cm, while the other variables (e.g.,
horizontal distance, payload weight, etc.) remain the same.

Assume the human subject starts with a standing pose,
a natural sequence of actions during a single lifting activity
consists of squatting, rising and back to standing pose again.
The lifting risks are most likely to happen during squatting
and rising phases. To apply the NIOSH equation, we must
identify the starting and ending moments of each action to
establish the initial and final positions of the human subject.
For this purpose, we segment a single lifting activity into
three continuous phases, each corresponding to a specific
action, as illustrated in Figure 3.

(a) standing (b) squatting (c) rising

Fig. 3: The three phases composing the lifting activity.

Given the high cost associated with manual labeling, we
have developed an autonomous tool aimed at enhancing
the efficiency of annotation. In this labeling process, the
estimated data for the entire human body is visualized using
a URDF model, while data are streamed in a terminal with
a fixed frequency. By observing the action change of the
URDF model, an action label is carefully assigned to the
current data frame. As long as no new label is assigned by
the user, the following data frames are considered to belong
to the previous action. More precisely, the transition between
standing and squatting is discerned by observing the bending



of the knee. Once the squatting action is reaching the end, the
ascent of the pelvis denote the beginning of the rising phase.
The accomplishment of rising is detected when, observing
a totally erect trunk, the label is assigned as standing once
again. In the end, the annotated data are divided into three
subsets, 70% for training, 20% for validation, and the last
10% for test.

B. GMoE for Lifting Activity

To achieve simultaneous action recognition and motion
prediction, we adopt the network model proposed in [19].
Since three actions are considered in our case, the im-
plemented GMoE architecture is composed of three expert
networks and one gate network, as illustrated in Figure 4.

The input layer is of size 10x74, where 10 represents the
window size for reading past data frames, while 74 is the
number of input features, consisting of 31 joint positions, 31
velocities, and 12 contact forces/torques. The gate network
output layer has size 3x50, where 3 denotes the action
categories, and 50 denotes the number of future frames for
which action probabilities are computed. It should be noted
that when generating time series data, we practically take
one data frame every three time steps, such that the period
between two adjacent data frames in an input sequence is
30ms. Therefore the total prediction time horizon is 1.5
seconds. Similarly, the output size of each expert network
is 3x50x43, where 31 joints’ positions and 12 foot wrenches
are considered (in total 43 output features), excluding the
joints’ velocities.

During the training phase, the loss function L1 associated
with gate network and loss function L2 associated with
expert network are chosen as categorical cross-entropy loss
and mean squared error loss, respectively. The total loss
function L for GMoE is expressed as a linear combination
of L1 and L2:

L = b1L1 + b2L2

= − b1
2M

T∑
t=1

M∑
j=1

N∑
i=1

aj,ti log(ãj,ti )

+
b2
2M

T∑
t=1

M∑
j=1

∥
N∑
i=1

ãj,ti ỹj,t
i − ỹj,t∥2

(5)

where b1 and b2 are manually chosen for the convergence of
both classification and regression problems (in this case, b1
is 1.0 and b2 is 0.5 for faster convergence of gate network),
T is the prediction time horizon, M is the total number of
data frames, N is the number of experts, scalar value aj,ti

and vector ỹj,t
i denote for human action and motion ground

truth associated with i-th action and j-th data frame at time
instance t in the future, operator ·̃ represents prediction values
of both action recognition and future motions. To update
the network weights, Adam optimizer is applied with epsilon
equals 1e-6. Moreover, early stopping technique and adaptive
learning rate are used to avoid overfitting or local optimum.

Fig. 4: Adapted structure of Guided Mixture of Experts
architecture for action recognition and motion prediction.

C. Risk Prediction and Haptic Alert

As mentioned in Section III-A, action recognition is used
to determine the origin and destination time point of each
action during a single lifting activity. Once the origin status
is identified, each following instant can be considered a
temporary destination status, which makes it possible to
use NIOSH equation to compute risk at that time. Until
next action is detected, the NIOSH equation can be applied
repeatedly without violating any constraints. Furthermore,
by making use of predicted motions, we are also capable
of predicting potential risks in the future for a given time
horizon. The process of estimating and predicting risks is
demonstrated in Algorithm 1. Once any potential risk is
detected, a command will be sent to the haptic actuator
mounted on the human’s back. The vibration intensity of the
actuator corresponds to the predicted risk level. The human
can thus take appropriate measures based on the vibrotactile
feedback, i.e., to abort the task immediately or adjust only
the lifting posture.

In practice, the action transition cost about 0.5s, which
affects the accuracy of action detection. To retrieve more
precise NIOSH variables, we implement an approach to
compensate action change delay. At each moment, when the
probability of previously recognized action is growing, the
current action label maintains the same. Once the probability
decreases over a pre-defined threshold, we consider the
action transition already starts. Then we search for the action
label whose probability increases also over a threshold.

As shown in Algorithm 1, from predicted motions we can
update the human model in simulator and retrieve geometry
values to compute NIOSH variables H, V and D. Assume
that the middle point of human hands is always overlapped
with the Center of Mass (CoM) of the payload, H can be thus
represented as the horizontal distance between the position of
the CoM of human hand w.r.t. the frame attached to human
foot, while V is computed by using the vertical position of



the human hand w.r.t. the human foot:

H =
HLeftFoot

LeftHand +HRightFoot
RightHand

2
, (6a)

V =
V LeftFoot
LeftHand + V RightFoot

RightHand

2
. (6b)

and vertical traveling distance is denoted as D = Vt − Vt0 ,
where Vt and Vt0 represent the vertical distance at the des-
tination and origin moment, respectively. For simplification,
asymmetry angle A is not considered in our case, hence AM
constantly equals 1. Lifting frequency is computed as the
average number of lifts per minute over a 15-minute period.
The coupling situation is considered as Fair.

IV. VALIDATION

A. Experimental Setup

To validate the performance of the proposed framework
for assessing lifting risk in a real-time application, an exper-
imental analysis is performed in a laboratory environment. A
healthy volunteer is asked to perform three different lifting
tasks corresponding to varied risk levels. In this setup, the
participant’s kinematics state is collected using iFeel, which
is composed of a set of iFeel-Nodes (including sensors
and actuators) and a central processing unit iFeel-Station (a
micro-controlled board). The system operates for whole-body
motion tracking via iFeel-Nodes that are mounted in pre-
defined locations of the iFeel-Suit. Each iFeel-Node contains
a 9-DoF IMU that provides absolute orientation and sensor-
based velocity fusion data at a rate of 100 Hz. Once detecting
any possible risks, a signal is sent to the haptic actuator of the
ifeel node mounted on the human waist. The ground reaction
forces and torques are retrieved using iFeel-Shoes equipped
with F/T sensors integrated in the front and rear parts. The
collected human data are streamed and resampled via YARP
middleware [24] at a rate of 100Hz. Moreover, as mentioned

Algorithm 1 Risk prediction using RNLE

Require: action at t0: At0 , action at t: At, motion prediction
at t for future N steps: M t+N

t , human origin status at t0:
St0 , NIOSH variables: A, C, F

Ensure: risk prediction at t for future N steps: Rt+N
t

Initialize Rt+N
t

while True do
if At is not At0 then ▷ Detect next action

At0 ← At

St0 ← getHumanStatus(M t+N
t [0])

end if
for each item i in M t+N

t do
St ← getHumanStatus(M t+N

t [i]))
H,V,D ← getV ariables(St0 , St)
Rt+N

t .append(RNLE(H,V,D,A,C, F ))
end for
return Rt+N

t

end while

TABLE I: Experimental lifting task variables of RNLE.

Task
type

RNLE variables RNLE results
H origin

(cm)
H end
(cm)

V origin
(cm)

V end
(cm)

D origin
(cm)

D end
(cm) L

(kg)

RWL origin
(kg) LI

HM origin HM end VM origin VM end DM origin DM end RWL end
(kg)

Task 1 47 63 8 68 60 60 3 5.84 0.51
0.53 0.40 0.80 0.98 0.90 0.90 5.40 0.56

Task 2 47 63 8 80 72 72 7 5.71 1.23
0.53 0.40 0.80 0.99 0.88 0.88 5.33 1.31

Task 3 47 63 8 92 83 83 10 5.64 1.77
0.53 0.40 0.80 0.95 0.87 0.87 5.06 1.98

in section II-B, human is modeled as a floating-base multi-
rigid-body system considering 13 joints (e.g. T9T8, Right
shoulder, etc.). The programs run on a 64-bit i7 2.6GHz
laptop which is equipped with 32 GB RAM, Intel(R) UHD
Graphics and Ubuntu 20.04 LTS.

The parameters of performed lifting tasks are listed in
Table I. Specifically, asymmetry angle A equals zero (AM =
1.0), coupling quality is Fair (CM = 0.95), and lifting fre-
quency is controlled as 7 lifts/min (FM = 0.7). The payload
is evenly distributed inside a square box and the weight value
is sent to the framework as an external parameter from the
user. During the experiment, the participant is asked to repeat
each task three times as steady and natural as possible, such
that no jerks appear during lifting. The participant should
avoid twisting the upper trunk so that the assumption of zero
asymmetry angle is fulfilled. Furthermore, the participant is
required to hold the box with both hands while his feet are
maintained in a fixed position. The lifting activity is executed
slowly, hence every single execution can be regarded as
independent from the others.

B. Results and Discussion

In this section, we first performed a variety of quantitative
evaluations of the adapted GMoE model using an addition-
ally collected unseen dataset, which is in a total of 15248
frames. Then we conducted a qualitative analysis based on
the results of previously designed online experiments.

1) Quantitative Evaluation of Action Recognition: In or-
der to assess the action classification performance, a con-
fusion matrix associated with three human lifting actions
is presented in Figure 5. Based on this confusion matrix,
metrics such as Accuracy, Precision, Recall and F1 score
can be further retrieved. Accuracy is the number of correct
predictions of all N categories divided by the total number
of predictions, as shown in Equation 7, where total means
the number of all tested samples.

Accuracy =

∑N
i=1 TPi

total
(7)

Precision refers to the proportion of correctly predicted
positive instances out of all instances predicted as positive,
while Recall measures the proportion of correctly predicted
positive instances out of all actual positive instances, as
shown in Equation 8a and 8b, where i means each class.

Precision =
TPi

TPi + FPi
, (8a)

Recall =
TPi

TPi + FNi
. (8b)



Fig. 5: Confusion matrix for the action classification.

F1 score can be interpreted as a harmonic mean of the
Precision and Recall as shown in Equation 9.

F1 =
2 ∗ Presicion ∗Recall

Precision+Recall
(9)

Table II summarizes the experimental results of these
metrics for each single category classification. As we can see,
squatting has the highest accuracy of 0.925, which indicates
that the model has a low rate of falsely labeling instances
as this action. On the contrary, standing has a relatively
low accuracy. This is mainly because the transition period
between rising and standing can be quite ambiguous (also
partly due to the fact that the annotated border depends on
human judgment), such that it can be hard for the model
to distinguish these two phases exactly. Furthermore, both
squatting and rising have relatively lower Recall values than
standing. As explained before, the ambiguity between rising
and standing leads to some false labeling of standing when
they are actually rising. Also, the similarity between the
motion patterns of squatting and rising (they are basically
reversed) results in the confusion of them.

2) Quantitative Evaluation of Motion Prediction: In the
following, we report the performance of GMoE regarding the
task of motion prediction. Two key joints (i.e., left knee and
right elbow) that can reflect respectively the human upper-
/lowerbody motion patterns during a lifting task are chosen.
The rotational angles around the y-axis of these two joints
during a period of about 5500 frames are demonstrated in
Figure 6. The ground truths are depicted in black curves,
while the predicted angles at the future time steps 0, 19 and
49 are shown respectively in blue, orange and yellow.

TABLE II: Performance metrics for assessing GMoE model
recognizing multi-class human lifting actions.

Accuracy Precision Recall F1 score
standing

/
0.890 0.969 0.928

rising 0.898 0.869 0.883
squatting 0.925 0.816 0.867
average 0.899 0.904 0.885 0.893

Fig. 6: Multi-time-step predictions of the y-axis rotation
angle of the joint left knee and right elbow.

It can be observed from both rows in Figure 6 that the
predicted y-axis rotational angle at future time step 0 (blue
curves) basically captures the motion pattern of the ground
truths (black curves), despite the amplitude gaps at peaks.
The amplitude differences at peak positions can be more
easily observed for the right elbow joint. The predicted
rotational angles at future time steps 19 and 49 exhibit a
leading phase compared with the ground truth, where the
phase differences should match the corresponding prediction
time steps. It should be noted that the predictions at future
time step 49 suffer more from uncertainties, which is re-
flected by the frequently appearing sharp fluctuations. This
may be due to the fact that the model only has very limited
historical information, yet to make a further prediction in
the future, it is apparently insufficient to solely rely on this
short period of history. Another interesting fact is that the
model seems to perform worse in predicting the motions of
the right elbow joint. A possible reason could be that the
movements of the right elbow are also affected by the pose
of the pelvis, while the knees have a more independent thus
also more predictable motion pattern.

3) Qualitative Evaluation: To further evaluate the effec-
tiveness of the proposed framework, we analyze qualitatively
the results of Task 2 (shown in Table I) as an example.
A complete process of rising is demonstrated in Figure 7.
As shown in the first row, the motions of both real human
subject and simulated models are captured. The grey model
reconstructs the human motion at current time t from sensor
measurements, while the red model represents the predicted
human motion at future time t+0.6s (in the experiment we
output the maximum future 20 data frames, recalling the
period between each data frame is 30ms, thus the prediction
time is 0.6s). The correspondingly recognized actions at
each moment are presented in the second row. The black,
blue and red solid curves denote the probability of action
rising, squatting and standing, respectively. In the third row,
we demonstrate the predictions of rotation degrees of left
knee joint around y-axis for future 1.5s (maximum 50 future
data frames), associated with the round dot curves. In the



meanwhile, the blue curve stands for the ground truth of left
knee joint rotation values. Figures in the last row demonstrate
the lifting index during the rising action. The red curve and
grey dot curve represent the risk value at the current time
and future 0.9s (namely 30 data frames), respectively.

As shown in the picture at the top left in Figure 7, the
human is almost finishing the action squatting at t=10.9s,
and as the red model indicates, at the future time t=11.5s,
the human model would probably be rising up a little bit.
The recognized action at t=10.9s is still squatting, therefore
no lifting risk is detected and the haptic actuator remains
silent. As for the rotation angle of the left knee joint, it
also reaches a peak value of about 100 degrees and it’s
going to decrease soon. When time t becomes 11.2s, it can
be observed that the gray model is reaching the pose as
predicted at t=10.9s. In the meanwhile, the action transition
already started, thus we can see that the lifting risk grows
from zero to 0.7 (hence a slight haptic alert appears), and
as the predictions show, the risk value at t=11.8s should be
equal to 1.0. Then at t=11.9s, the human is reaching the table
and intends to put the payload on it. At this moment, the
action is still recognized as rising with maximum probability.
Moreover, the currently estimated lifting index is around 0.9
(corresponding to a medium haptic warning), which almost
equals the value predicted at t=11.2s. At the final time
t=12.4, apparently the rising action is completed, and the
human subject is getting back to standing pose. Therefore
the probability of rising starts to decrease. Correspondingly,
the lifting index returns back to zero again.

4) Failure Cases: We present some failure cases here to
reveal the limitations of the current system. As explained
in Section III-A, the GMoE network is trained on a 15-
mins data set that consists of basic lifting tasks. Hence,
a very typical unsuccessful scenario is when completely
unseen motion patterns appear in the online application, e.g.,
trunk twisting and overhead lifting. In such cases, precise
action detection can become an issue, let alone predict risks.
Additionally, the GMoE model can be further generalized
when trained on a dataset with multiple individuals (e.g.,
age, gender, body shape and etc). Another challenge lies
in the restrictions of the NIOSH equation. For example,
the system is not applicable to collaborative lifting tasks
where multiple workers are present. Moreover, the noise and
perturbations accumulated over time in online applications
also have a great effect on the accuracy of the GMoE
model. We hypothesize that the retrievement of unprecise
NIOSH variables is also a notable limitation. This is the
main reason for improving the swiftness of action detection
and the accuracy of motion predictions.

C. Discussion

In comparison to risk assessment approaches proposed
in literature [11]–[13], the main advantage of the proposed
framework lies in its ability to early assessment and pre-
vention of biomechanical risks faced by workers during
realistic lifting tasks, by utilizing a learning-based approach
and wearable sensing system. Despite training on a relatively

small data set, we have shown that our model is able to
generalize well to unseen data (though restricted to the same
motion patterns that appeared in the training dataset), as
analyzed in IV-B.1 and IV-B.2. We also demonstrate robust
qualitative performance during the live demo presented in
IV-B.3. It is worth mentioning that although humans can
feel muscular fatigue in the long term, the causal action
is often neglected due to the lack of real-time quantitative
ergonomic feedback. Therefore the anticipated haptic alerts
is very potentially to improve the risk awareness of workers
while performing heavy lifting tasks.

V. CONCLUSIONS

In this paper, we presented a framework that inte-
grates wearable sensing, human state estimation, human
action/motion prediction and NIOSH index for real-time
manual lifting applications. Through online recognition of
human actions, the execution of a single lifting activity
can be segmented into a series of continuous parts. The
commencement of each sub-action is considered the initial
human state, with subsequent moments within this sub-action
being regarded as temporary destination states. With the
help of motion prediction, future human status can also
be obtained. Hence RNLE can be applied to assess risks
within the predicted time horizon. The vibrotactile feedback
enables anticipated alert on the predicted lifting risks. The
performance of the framework is tested in an experimental
lifting scenario using the iFeel wearable system.

Future work should first address the problem of general-
ization by expanding the current lifting data set, such that
more complex realistic lifting tasks can be considered. By
improving the performance of GMoE model, a more precise
retrieval of NIOSH geometry variables could be expected.
It would also be interesting to include upper trunk twisting
and overhead lifting in order to utilize the NIOSH equation.
Moreover, a learning-based ergonomics assessment approach
could be another promising topic.

REFERENCES

[1] H. D. of Biomedical and B. Science, Work practices guide for manual
lifting. US Department of Health and Human Services, Public Health
Service, Centers . . . , 1981, no. 81-122.

[2] P. P. F. Kuijer, J. H. Verbeek, B. Visser, L. A. Elders, N. Van Roden,
M. E. Van den Wittenboer, M. Lebbink, A. Burdorf, and C. T. Hulshof,
“An evidence-based multidisciplinary practice guideline to reduce the
workload due to lifting for preventing work-related low back pain,”
Annals of occupational and environmental medicine, vol. 26, no. 1,
pp. 1–9, 2014.

[3] M.-L. Lu, T. R. Waters, E. Krieg, and D. Werren, “Efficacy of
the revised niosh lifting equation to predict risk of low-back pain
associated with manual lifting: a one-year prospective study,” Human
factors, vol. 56, no. 1, pp. 73–85, 2014.

[4] T. R. Waters, M.-L. Lu, L. A. Piacitelli, D. Werren, and J. A. Deddens,
“Efficacy of the revised niosh lifting equation to predict risk of low
back pain due to manual lifting: expanded cross-sectional analysis,”
Journal of Occupational and Environmental Medicine, pp. 1061–1067,
2011.

[5] T. R. Waters, V. Putz-Anderson, A. Garg, and L. J. Fine, “Revised
niosh equation for the design and evaluation of manual lifting tasks,”
Ergonomics, vol. 36, no. 7, pp. 749–776, 1993.

[6] T. R. Waters, V. Putz-Anderson, and A. Garg, “Applications manual
for the revised niosh lifting equation,” 1994.



Fig. 7: Experimental results of online action recognition and risk prediction. The first row shows pictures of the sensorized
subject during the task execution and virtual model visualization with estimated (gray) and predicted (red) configuration. In
the second row, it is shown the action prediction probability. In the third row, ground truth and prediction of the left knee
joint rotation angle are depicted. The bottom row shoes lifting index for the period till prediction time horizon.

[7] P. G. Dempsey, “Usability of the revised niosh lifting equation,”
Ergonomics, vol. 45, no. 12, pp. 817–828, 2002.

[8] S. A. Lavender, G. B. Andersson, O. D. Schipplein, and H. J. Fuentes,
“The effects of initial lifting height, load magnitude, and lifting
speed on the peak dynamic l5/s1 moments,” International Journal of
Industrial Ergonomics, vol. 31, no. 1, pp. 51–59, 2003.

[9] A. Ranavolo, T. Varrecchia, M. Rinaldi, A. Silvetti, M. Serrao,
S. Conforto, and F. Draicchio, “Mechanical lifting energy consumption
in work activities designed by means of the “revised niosh lifting
equation”,” Industrial health, vol. 55, no. 5, pp. 444–454, 2017.

[10] A. Ranavolo, S. Mari, C. Conte, M. Serrao, A. Silvetti, S. Iavicoli, and
F. Draicchio, “A new muscle co-activation index for biomechanical
load evaluation in work activities,” Ergonomics, vol. 58, no. 6, pp.
966–979, 2015.

[11] A. Shafti, A. Ataka, B. U. Lazpita, A. Shiva, H. A. Wurdemann,
and K. Althoefer, “Real-time robot-assisted ergonomics,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 1975–1981.

[12] L. Fortini, M. Lorenzini, W. Kim, E. De Momi, and A. Ajoudani,
“A real-time tool for human ergonomics assessment based on joint
compressive forces,” in 2020 29th IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN). IEEE,
2020, pp. 1164–1170.

[13] L. Fortini, W. Kim, M. Lorenzini, E. De Momi, and A. Ajoudani,
“A framework for real-time and personalisable human ergonomics
monitoring,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 11 101–11 107.

[14] R. Zhao, W. Xu, H. Su, and Q. Ji, “Bayesian hierarchical dynamic
model for human action recognition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
7733–7742.

[15] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 221–231, 2012.

[16] A. Hernandez, J. Gall, and F. Moreno-Noguer, “Human motion predic-
tion via spatio-temporal inpainting,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 7134–7143.

[17] W. Mao, M. Liu, M. Salzmann, and H. Li, “Learning trajectory
dependencies for human motion prediction,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
9489–9497.

[18] P. Ghosh, J. Song, E. Aksan, and O. Hilliges, “Learning human motion
models for long-term predictions,” in 2017 International Conference
on 3D Vision (3DV). IEEE, 2017, pp. 458–466.

[19] K. Darvish, S. Ivaldi, and D. Pucci, “Simultaneous action recognition
and human whole-body motion and dynamics prediction from wear-
able sensors,” in 2022 IEEE-RAS 21st International Conference on
Humanoid Robots (Humanoids). IEEE, 2022, pp. 488–495.

[20] D. M. Sortino, L. Rapetti, E. Valli, and D. Pucci, “Towards a real-
world application of wearable sensors for musculoskeletal disorders
prevention: the ifeel wired suit,” in 2023 IEEE-EMBS International
Conference on Wearable and Implantable Body Sensor Networks
(BSN), 2023.

[21] C. Latella, S. Traversaro, D. Ferigo, Y. Tirupachuri, L. Rapetti, F. J.
Andrade Chavez, F. Nori, and D. Pucci, “Simultaneous floating-base
estimation of human kinematics and joint torques,” Sensors, vol. 19,
no. 12, p. 2794, 2019.

[22] L. Rapetti, Y. Tirupachuri, K. Darvish, S. Dafarra, G. Nava, C. Latella,
and D. Pucci, “Model-based real-time motion tracking using dynami-
cal inverse kinematics,” Algorithms, vol. 13, no. 10, p. 266, 2020.

[23] P. Ramadoss, L. Rapetti, Y. Tirupachuri, R. Grieco, G. Milani, E. Valli,
S. Dafarra, S. Traversaro, and D. Pucci, “Whole-body human kinemat-
ics estimation using dynamical inverse kinematics and contact-aided
lie group kalman filter,” arXiv preprint arXiv:2205.07835, 2022.

[24] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 8, 2006.


	INTRODUCTION
	BACKGROUND
	Wearable System
	Human Modeling and State Estimation
	Guided Mixture of Experts
	Revised NIOSH Lifting Equation

	PROPOSED FRAMEWORK
	Data Preparation
	GMoE for Lifting Activity
	Risk Prediction and Haptic Alert

	VALIDATION
	Experimental Setup
	Results and Discussion
	Quantitative Evaluation of Action Recognition
	Quantitative Evaluation of Motion Prediction
	Qualitative Evaluation
	Failure Cases

	Discussion

	CONCLUSIONS
	References

