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Fig. 1: Our human-to-robot motion retargeting connects robot control with diverse source modalities, such as a text
description, an RGB video, or key poses. Our approach can encode human skeletons into a shared latent space between
humans and robots, and subsequently decode these latent variables into the robot’s joint space, enabling direct robot control.
Additionally, our approach facilitates the generation of smooth robot motions between human key poses (represented as
green and blue dots) through interpolation within the latent space (indicated by the orange dots).

Abstract— This paper introduces a novel deep-learning ap-
proach for human-to-robot motion retargeting, enabling robots
to mimic human poses accurately. Contrary to prior deep-
learning-based works, our method does not require paired
human-to-robot data, which facilitates its translation to new
robots. First, we construct a shared latent space between
humans and robots via adaptive contrastive learning that
takes advantage of a proposed cross-domain similarity metric
between the human and robot poses. Additionally, we propose a
consistency term to build a common latent space that captures
the similarity of the poses with precision while allowing direct
robot motion control from the latent space. For instance,
we can generate in-between motion through simple linear
interpolation between two projected human poses. We conduct a
comprehensive evaluation of robot control from diverse modal-
ities (i.e., texts, RGB videos, and key poses), which facilitates
robot control for non-expert users. Our model outperforms
existing works regarding human-to-robot retargeting in terms
of efficiency and precision. Finally, we implemented our method
in a real robot with self-collision avoidance through a whole-
body controller to showcase the effectiveness of our approach.
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I. INTRODUCTION

In recent years, human-robot interaction (HRI) has gained
significant attention as it plays a leading role in deploying
robots into our daily lives. For a natural HRI, the robot
needs not only to capture the human movements but also
to understand the human motion intentions behind them. To
enhance HRI, it is also crucial to intuitively retarget these
human motions onto robots while preserving their similarity
and improving robot autonomy. This paper addresses the
challenge of enabling robots to mimic human motions while
preserving the likeness of the original movement.

However, retargeting human motions to robots is a com-
plex task due to the fundamental differences between human
and robot anatomies, kinematics, and motion dynamics.
Unlike humans, robots possess rigid bodies, different form
factors, and distinct physical limitations. Consequently, di-
rectly mapping human motion to robot actuators often leads
to unnatural and suboptimal robot behavior, undermining the
objective of achieving human-like movements. For example,
when retargeting the motion of a human touching his head
with his right hand, it is crucial that the retargeted robot
poses also reproduce this touching behavior in their motion.
Solely replicating the specific arm movements could lead to
the robot hand not being close to the head due to the different
robot kinematics. Encoding such motions in the retargeting
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task is essential to ensure that robots have more natural and
intuitive behaviors, leading to better and easier HRI.

While motion retargeting is a long-standing challenge in
the robotic and animation community, most recent research
has been focused on the exploration of large human motion
capture datasets [1], [2] to learn and synthesize human mo-
tions from different modality inputs: text [3], 3D scene [4],
audio [5] or conditioned by key poses [6]. Our primary goal
in this research is to develop a novel method that eliminates
the reliance on data annotation, thereby accomplishing the
learning of a shared representation space in which human and
robot poses are mutually and integrally represented. A good
representation space ensures that similar poses from both
domains are positioned close to each other while dissimilar
poses are far apart. While previous research [7], [8] requires
manually annotating human and robot pairs performing the
same pose to learn this retargeting process, we consider an
unsupervised training technique that does not require pairing
data. Consequently, we can reduce the implementation costs
for retargeting human poses to new robots.

To this end, we propose an encoder-decoder architecture
to construct a latent space that preserves the spatial rela-
tionships between human joints as well as the likeness of
the original human motion. We achieve this process through
the synergy of multiple losses. First, we adopt adaptive
contrastive learning to autonomously construct the common
latent space based on a proposed similarity metric. Then,
we incorporate a reconstruction loss on robot data to ensure
the regeneration of the same motion from the latent space.
that the robot faithfully follows the movement of the human.
Finally, we enforce a consistency term to constrain that the
robot faithfully follows the movement of the human. As a
consequence, the constructed latent space remains tractable
via simple operations. For instance, we are able to generate
smooth robot motions between key poses by simply using
linear interpolation in the latent space. This intuitive behavior
facilitates motion control and also showcases the robustness
of our learned latent space. Finally, our decoder can translate
the latent representations to robot motion control commands.
Contrary to prior methods that adopt soft safety measures
in learned approach [9], we implement our method in a real
robot with a whole-body controller that ensures self-collision
avoidance in the retargeted motion.

Our pipeline allows for the seamless and real-time trans-
lation of human skeleton data into robot motion control.
Additionally, our model can be easily integrated into the
aforementioned deep learning architectures [3]–[5] to ac-
commodate robot motion control from various modalities,
enabling flexible and intuitive control over robot behavior.
By addressing this challenge, we anticipate significant ad-
vancements in HRI. Our research has broad applications, in-
cluding robot-assisted therapy, entertainment, teleoperation,
and industrial robotics. Enabling robots to replicate human
motion and intention opens up new possibilities for intuitive
and natural HRI, enhancing user experience and fostering
acceptance of integrating robots into our daily lives. Our
work leads to the following contributions.

1) Unsupervised deep learning approach to learn human-
to-robot retargeting without any paired human and
robot motion data.

2) Robust and tractable latent space to generate smooth
robot motion control through simple linear interpola-
tion.

3) Direct mapping from human skeletons to robot control
commands via an encoder-decoder neural network.

4) Evaluating control of a real robot from various modal-
ities: text, video, or conditioned by key poses, which
ensures user-friendly robot control, particularly for
non-experts.

II. RELATED WORK

Existing literature on human-to-robot motion retargeting
techniques is reviewed next, highlighting limitations and the
need for advancements in translating human motion’s overall
expressivity and naturality.

A. Motion retargeting in animation

Human motion retargeting onto animated characters has
been a long-standing challenge in the computer graphics
community. By bridging the gap between human motion
and animation, motion retargeting enhances the quality and
naturality of character animation, opening up possibilities
for various applications in fields such as film, gaming, and
virtual reality.

Classical motion retargeting approaches [10]–[13] in-
volved manually defining kinematic constraints and sim-
plifying assumptions to map human motion onto animated
characters. These methods were limited in their ability to
handle complex motions and could not accurately capture
human movement’s nuances. However, with the increased
availability of motion capture data [1], [2], data-driven
approaches emerged as a more attractive alternative. These
approaches offer the potential to overcome the limitations
of classical methods and achieve more natural and nuanced
motion transfer. [7], [8] learned a shared latent representation
to translate motions between different kinematic agents.
However, they required paired training data, which is costly
and specific for each robot. To cope with the cost of pairing
data, [14] used a recurrent neural network to learn motion
retargeting without those pairs using adversarial training
and cycle consistency. [15] showed that disentangling pose
from movement in the retargeting process leads to more
natural outcomes. However, these data-driven approaches
required the same source and target kinematics. Inspired by
the intuition that different kinematics can be reduced to a
common primal skeleton, [16] proposed explicitly encoding
the different skeleton topologies and projecting those into
a shared latent space without pairing data. [16] adopted a
latent consistency loss to ensure that the retargeted poses
remain faithful to the source. Our work is inspired by their
consistency idea, but we construct a more robust shared
latent space through a contrastive loss which improves the
retargeting outcome. Recently, [17], [18] focused on the
motion retargeting but considering the mesh constraints of



the animated characters, and thus adjusting motions to reduce
interpenetration and feasibility of the motions. Contrary to
the aforementioned works that consider self-collision avoid-
ance as an additional feature for more realistic animation,
our work ensures the feasibility of the retarget motion by
implementing self-collision in the whole-body control of a
real robot while preserving the source motion likeness. Fi-
nally, [18] proposed an Euclidean distance matrix to account
for the motion retargeting, which is relevant for skeletons
with similar proportions but underperforms when the targets
have different trunk-to-arms ratios, as in our case. On the
contrary, we propose to formulate this similarity through
global rotations, which precisely capture the likeness in the
retargeting task.

B. Motion retargeting in robotics

Despite the great success of motion retargeting for char-
acter animation, their community has only been considering
the feasibility of the movements in terms of physical con-
straints [12], [17]–[19]. Besides ensuring motion’s feasibility,
robotics research also requires adequate control of the appro-
priate robot based on the source motion. [19], [20] considered
constrained optimization algorithms to retarget a human
motion in a simulated robot but required learning a given
trajectory and can not quickly overcome new variations.
[21] proposed Bayesian optimization and inverse kinematics
(IK) to tackle natural retargeting, but their approach required
manually selecting joints of interest and was constrained to
a few specific motions. Likewise, [19], [22], [23] considered
whole-body retargeting by mapping human link orientation
to robots and solving IK. [22] introduced a dynamic filter
to enforce robot stability, which also over-smoothed the
robot poses, thus failing to capture the motion nuances in
the retargeting. Moreover, [22] method did not generalize
to new kinematics. To cope with that issue, [23] proposed
to solve the IK over the robot model, which facilitated
the generalization to new robots. For that, [23] orients the
robot links closer to the corresponding human links to better
capture the likeness in the retargeting. We adopt a similar
approach by considering the global rotation of body links
as the similarity measurement between humans and the
retargeted robot pose. However, all these previous works
failed to overcome the manual morphing problem [24]: the
challenge of mapping in the joint space from human to robot,
which requires similar joint orders among the human and
robot. On the contrary, our work does not focus on the task
of retargeting the poses while keeping the robot balanced,
[22], [23], but on the generalization of a unique method
for human-robot retargeting with accuracy and capturing the
nuances. Closer to our work, [25] proposed a learned-based
footstep planner and a whole-body controller to retarget
the human locomotion to a robot while being coherent
with the generated footsteps. However, [25] only considered
locomotion retargeting and assumed that the robot had at
least one known contact with the environment at any time.
Therefore, [25] was inappropriate for contact-free motions
such as jumping or running.

Deep learning has become a solution to ensure the retarget-
ing process generalizes in terms of kinematics and diversity
in the motions while being efficient. First, [26] proposed to
construct a shared latent space to retarget human motion to
humanoid robots, and the shared latent space is constructed
with annotated human-to-robot pair data. Gathering a suf-
ficient quantity of paired data for constructing the latent
space is a laborious and time-intensive process and hardens
the generalization to new configurations. [9] extended this
approach by creating an automated paired data generation
process. However, both works have to use nonparametric
optimization in the latent space to retrieve similar robot poses
to control the robot, which is inefficient if the dataset to
retrieve is large. Contrastingly, our method learns a direct
mapping from human poses to robot control commands.
Therefore, our approach can control a robot at a high rate
without being constrained by the quantity of training data.

III. METHODOLOGY

In this section, we present an overview of our proposed
framework for unsupervised human-to-robot motion retarget-
ing via a shared latent space. First, we formulate the human-
to-robot retargeting task. Then, we describe our encoder-
decoder deep learning architecture, illustrated in Figure 2.

A. Problem Formulation

Let xh = [xh,1, · · · ,xh,Jh ] ∈ RJh×n be a human pose com-
posed by Jh joints. Similarly, xr = [xr,1, · · · ,xr,Jr ] ∈ RJr×s

represents a robot pose. Then, the task of human motion
retargeting can be formulated as finding a function f that
maps a xh to xr ( f : xh 7−→ xr) so that xr preserves the
human-like naturality of the pose xh. However, the joints
for humans and robots usually have different configurations:
a human joint (e.g., wrist joint) can have more than 1DoF,
while one robot joint usually has only 1DoF. To cope with
such differences, we describe each human joint xh, j as its
quaternion representation referring to its parent (n= 4), while
each robot joint xr, j (i.e., revolute joint) is described as its
joint angle (s = 1).

In our particular case, and contrary to all works focusing
on character animation, we are interested in the direct control
of a robot. Robots can be controlled via their joint angles. As
joint angles for robots and humans have different configura-
tions, it makes little sense to compare joint angles to measure
their similarity. Inspired by [23], we propose to use the global
rotation of body links to compare the similarity between
human and robot poses, which better captures their likeness
and allows for better generalization to different kinematics.
The similarity metric is defined in Section III-B.

Previous works [9], [26] rely on the acquisition of a
dataset of mapped motions between the human and the
robot to retarget, which we describe as a {xh,xr} pair.
These works learn the retargeting function f in a supervised
manner. On the contrary, we consider the retargeting task
without collecting the correct {xh,xr} pair and learn without
supervision how to approximate f better. To this end, our
model first learns to project human xh and robot xr poses to



Fig. 2: Model overview. Two human poses (xi
h,x

j
h) are encoded into latent variables (zi,z j) within the shared space using

the function Qh. Similarly, a robot data xk
r is mapped into zk by Qr. Given three samples (zi,z j,zk), zi is randomly chosen

as an anchor zi
o, and z j,zk are estimated as a negative z j

− and positive zk
+ sample through similarity metric in Equation 1.

The triplet loss Ltriplet constrains the construction of the latent space by bringing zi
o and zk

+ closer and pushing zi
o and z j

−
apart. The decoder Dr decodes latent variable zk into x̂k

r that should be consistent with the robot data xk
r regarding Lrec. The

latent variable z j from the human data x j
h is mapped into a robot data x̂ j

r . To ensure that x̂ j
r is from the same distribution

as xk
r , Qr encodes x̂ j

r back to latent variable ẑ j, and Lltc minimizes the distance between ẑ j and z j. During the inference
phase, x̂ j

r is used to control the robot directly to mimic human pose x j
h.

the same representation space. Then, we decode the learned
representation to robot joint angles, which allows us to
control the robot directly.

B. Cross-domain similarity metric

To create a shared latent space in an unsupervised way, we
initially define a similarity metric that captures the likeness
of the poses between humans and robots. Contrary to prior
works that use the local quaternions [16] or the relative XYZ
position of the end effector [18], we consider the global
rotation of body limbs as the similarity metric that better
preserves the skeleton visual appearance. By using global
rotation, our model captures the complete 3D orientation
and remains invariant to coordinate systems and articulation
variations. Let qh, j and qr, j represent the global quaternions
of the same limbs (e.g., shoulder-to-elbow, elbow-to-wrist,
etc.) of a human pose xh and a robot pose xr. As a human
pose is represented as limb quaternions, it is straightforward
to obtain qh, j from xh. To get limb quaternions of a robot,
we utilize forward kinematics to map robot joints xr to its
limb quaternions qr, j. Then, the distance between the two
poses can be computed as shown in Equation 1, where <,>
denotes the dot product between two vectors.

SGR(xh,xr) = ∑
j
(1−< qh, j,qr, j >

2) (1)

SGR is employed to measure the similarity between two
poses used for contrastive learning in Section III-C.

C. Human-to-Robot shared representation

We formulate the task of motion retargeting as the trans-
lation between two domains. We adopt two multi-layer

perceptron (MLP) encoders (Qh, Qr) to project the human
and robot poses to a shared representation space, respectively.
This way, Qh projects xh ∈ RJh×n to z ∈ Rd while Qr
translates xr ∈RJr×s to z ∈Rd . Given a human pose xh, our
shared latent space is used as a bridge to generate xr while
conserving its similarity defined in Section III-B.

We propose to learn the retargeting function f : xh 7−→ xr
without any paired human and robot motion data. Inspired
by the recent success of contrastive learning methods (e.g.,
CLIP [27]), we propose to construct a shared latent space
between two domains (here human and robot poses) in
an unsupervised manner. Contrastive learning is a training
technique that aims to learn from unlabeled data by com-
paring and contrasting different instances according to given
similarity metrics. To do that, a neural network is optimized
to maximize the agreement between positive pairs (similar
instances) and minimize the agreement between negative
pairs (dissimilar instances).

Let us assume a large set of data that contains feasible
human poses xh and robot poses xr. Our method randomly
selects triplets of projections from these data instances. As
shown in Figure 2, xi

h,x
j
h and xk

r are a triplet. Then, we first
encode them to the shared latent space through Qh and Qr,
respectively. For the encoded triplet (zi,z j,zk), zi is randomly
selected as an anchor zi

o, which serves as the reference. We
compute the global rotation distance SGR detailed in Equation
1 to obtain the similarity between our anchor pose zi

o and the
two other poses (z j,zk). The dissimilar z j is a negative sample
z j
− while zk is a positive sample zk

+.
Then, we adopt the Triplet Loss [28] that pulls similar

samples (anchor zi
o and positive zk

+) close while simultane-



ously pushing dissimilar samples (anchor zi
o and negative z j

−)
away in the latent space. This allows a representation space
where similar instances are clustered together and dissimilar
instances are pushed apart. Equation 2 shows the Triplet Loss
Ltriplet used in our scenario, where α = 0.05.

Ltriplet = max(||zi
o − zk

+||2 −||zi
o − z j

−||2 +α,0) (2)

D. Shared representation to robot control

Our proposed encoders allow us to project human poses
and robot poses into a shared representation space. Therefore,
the next step is to learn how to decode latent variables z
sampled from the shared space into robot joint space that
can be directly used to control the robot. As shown in Figure
2, the decoder Dr decodes the latent variables z j and zk to
robot data x̂ j

r and x̂k
r , respectively. As zk is encoded from

the robot data xk
r , we employ a standard reconstruction loss

over x̂k
r and xk

r , as shown in Equation 3. Additionally, to
ensure that the predicted robot data x̂ j

r from human data x j
h

is from the same distribution as the real robot data, we adopt
the latent consistent loss shown in Equation 4 to encourage
direct mapping in the retargeting process, similar to [16].

Lrec = ||xr −Dr(Qr(xr))||1 (3)

Lltc = ||Qh(xh)−Qr(Dr(Qh(xh)))||1 (4)

Our approach employs an end-to-end training strategy,
enabling the encoder to learn a shared representation space
for both human and robot poses unsupervised while ensuring
that this representation space is reconstructible to robot
control through our decoder. The total loss employed during
training is a weighing sum as described in Equation 5, where
λtriplet = 10,λrec = 5.

L = λtripletLtriplet +λrecLrec +Lltc (5)

IV. EXPERIMENTS

The experimental setup and datasets used to evaluate the
performance of our model are presented, along with the
metrics and benchmarks employed to assess the accuracy
and fidelity of the retargeted robot motions.

A. Experiment Settings

The hyperparameter configurations used in our framework
are listed in this subsection. The network consisting of
two encoders and one decoder is trained end-to-end with
a learning rate of 0.001 and batch size of 256. The encoder
and decoder are Multi-Layer Perceptrons with the same
structure; they have 6 hidden layers, each with 128 units.
The shared latent space is of 8 dimensions. Adam [29], a
momentum-based method, is utilized to optimize the loss
function during training. We trained our model for 2.5 hours
until the losses reached convergence. We did not experiment
with the hyperparameters but chose default values to simplify
the training. We acknowledge that further finetuning of those
parameters could result in improvements in our results. We

use a Ubuntu 22.04 and RTX A4000 Graphic card for our
experiment.

Additionally, we employ a bi-manual TiaGo++ robot that
integrates two 7-DoF arms. In this paper, we focus on the
motion of the upper and lower arm parts. We ignore the
motion of the two hands because the HumanML3D human
motion dataset [2] used does not contain hand motions.
Therefore, the similarity metric SRD in Equation 1 is defined
on four limbs: left shoulder-to-elbow, left elbow-to-wrist,
right shoulder-to-elbow, and right elbow-to-wrist.

To control the robot in the real world, we send joint
commands to the whole-body-controller [30] integrated in
Tiago++ robot. The whole-body controller handles joint an-
gle limits, joint velocity limits, and self-collision avoidance.

B. Data collection

We present a robot pose generation procedure that requires
only the robot’s kinematic information. First, we sample the
robot joint angles from its configuration space. The robot
pose can be computed by following its forward kinematics.
In such a way, we collect around 15M poses from the
TiaGo++ robot by randomly sampling angles per joint. For
human motions, we use the HumanML3D dataset [2] that
consists of 14616 motions with a total length of 28.59
hours, summing up to around 20M poses. HumanMl3D
covers human daily activities (e.g., ’walking’, ’jumping’),
sports (e.g., ’playing golf’), acrobatics (e.g., ’cartwheel’),
and artistry (e.g., ’dancing’). In HumanML3D, a human pose
is represented by its skeletons. As robot poses are sampled
randomly from the configuration space, they are not matched
to human poses in HumanML3D.

C. Baseline

We implement S3LE [9] as our baseline. To train S3LE,
we use a similar method as mentioned in [9] to generate
paired data. We generate the same amount of paired data as
in [9], 200K, by selecting the pairs with minimal rotation
distance measured by Equation 1. The paired data is only
used to train our baseline method.

D. Quantitative evaluation

To evaluate the performance of each retargeting method,
we annotated 11 distinct motions that were not observed
while training. The annotated motions serve as the ground
truth for our evaluation. We employ the Mean Square Error
(MSE) of joint angles between ground truth and predicted
results to quantify our proposed method. Furthermore, our
method endeavors to address motion retargeting in real-
time scenarios. We thoroughly evaluated the computational
efficiency and speed at which our model operates.

Table I compares our method with the baseline in Section
IV-C. Our method outperforms the baseline in terms of MSE
of joint angles. Furthermore, our novel approach demon-
strates a notable increase in operational efficiency, surpassing
the baseline by more than a factor of three. With a speed of
1.5kHz, our method readily fulfills the requirements of most
advanced robot control systems.



TABLE I: Performance of our proposed method and the
baseline. The Mean Square Error (MSE) of joint angles
between ground truth and predicted results are compared
here. Bold fonts indicate better results.

Joint Angles Control Frequency (kHz)
Baseline 0.44 0.4
Ours 0.21 1.5

Fig. 3: Human Retargeting comparison for different key
poses. Various human skeleton key poses are retargeted to
the Thiago robot. Our model captures the initial pose’s visual
similarity and is closely related to the manually annotated
ground-truth poses.

E. Qualitative evaluation

Visually compelling examples and comparisons between
the original human and retargeted robot motions are show-
cased in Figure 3. For the selected human motions, we
annotated their ground truth shown in the second row.
Our method accurately retargets the motion when the input
skeleton lifts hands above his head, lifts hands to his chest,
or performs T-pose, whereas the baseline fails.

F. Ablation Study

An ablation study is conducted to systematically analyze
the impact of individual loss components in our proposed
model. We utilize three loss components in our approach
to optimize retargeted motions. When analyzing the results
in Table II, it becomes apparent that the removal of the
latent consistency loss Lltc results in a slight reduction in
the performance of our method. On the contrary, the Triplet
loss Ltriplet is indispensable for the optimization process. As
supported by the experimental results, eliminating Ltriplet
significantly increases the loss value, rising from 0.21 to
0.57. This underscores the crucial role played by Ltriplet in
achieving improved optimization outcomes, contrary to all
previous works that do not explore our contrastive training.

G. From RGB videos to robot motions

The proposed method can generate natural and visually
similar motions from RGB videos. We adopt [31] to obtain

TABLE II: Ablation study of proposed loss components.
Mean Square Error (MSE) of joint angles between ground
truth and predicted results. Bold fonts indicate better results.

Ltriplet Lrec Lltc MSE
✓ ✓ ✗ 0.24
✗ ✓ ✓ 0.57
✓ ✓ ✓ 0.21

human 3D skeletons from RGB images in real-time. We
extended [31] with the state-of-the-art YOLOv8 [32] for
human detection and tracking to optimize the speed. Since
there is no ground truth, we only show snapshots of reference
images and corresponding TiaGo poses in Figure 4 for
qualitative evaluation. We implement the whole pipeline that
runs in real-time to control the robot’s motions based on the
human video.

H. From texts to robot motions

Text is an essential modality for human motions. Using a
pre-trained motion synthesis model, Text-to-Motion Retrieval
[33], our method can generate robot motions with texts. To
this end, we first retrieve human motions from texts with
Text-to-Motion Retrieval and then retarget human motions
to the TiaGo++ robot. Figure 5 shows two examples of
retargeting motion from texts. More examples can be found
on our webpage.

I. From key poses to robot motions

Our training strategy allows us to build a shared latent
space that covers diverse motions. The contrastive loss
Ltriplet makes similar poses close and dissimilar poses far
away in latent space. In such a way, our proposed method
learns a smooth latent space, which enables us to interpolate
motions between key poses. In Figure 6, we show three key
poses: A, B, and C, and the interpolated in-between motions.
For interpolation, two key (e.g., A and B) poses are mapped
into two points in latent space, and intermediate steps can
be linearly interpolated in between them. The in-between
motions are decoded from these interpolated steps.

J. Future work

Our work proposed to construct a likeness-aware latent
space that unifies human and robot representations seam-
lessly and allows for real-time robot control. While our
model exhibits high precision in the retargeting process, we
still observe room for improvement. Better exploring the
similarity metrics between the different domains as well as
connecting the shared space to higher-level representations
(textual descriptions of the poses), will be considered in the
future to enhance human-to-robot retargeting.

V. CONCLUSIONS

In this paper, we presented an unsupervised motion retar-
geting method that ensures a shared latent space for motion
generation. To this end, we use contrastive learning combined
with deep latent space modeling to incorporate human and
robot motion data. To construct a shared representation of



Fig. 4: Video-to-Motion. We leverage the state-of-the-art off-the-shelf 3D human pose estimator [31] to translate RGB
images into human skeletons. Then we employ our proposed method to achieve direct motion control from human skeletons.

Fig. 5: Text-to-Motion. Our model can connect as a pipeline to pre-trained motion synthesis models. In this case, we first
use Text-to-Motion Retrieval [33] to get human motion in skeleton representation. Then, we utilize our proposed method to
translate the motion into robot control commands (i.e., joint angles) to mimic it.

Fig. 6: Key poses-to-Motion. The proposed method enables
motion generation with key poses. Given distinct key poses,
natural in-between motions can be generated by linearly
interpolating key poses in our learned latent space. Our
results provide the potential for direct motion control in latent
space

human and robot motion, we define a cross-domain simi-
larity metric based on the global rotation of different body
links. Similar motions are clustered together, and dissimilar
motions are pushed apart while constructing the latent space.
Furthermore, our decoder maps the shared representation to
robot joint angles to control a robot directly without any
additional optimization process. Additionally, we connect our

model with existing pre-trained models to achieve motion
retargeting from different modalities, such as controlling
the robot with given texts or retargeting from RGB videos.
Moreover, our learned latent space remains tractable and
allows for the generation of smooth motion inbetweening
between two distinct key poses through linear interpolation
in the projected latent space. We showcase all results and the
robustness of our model through various experiments, both
quantitatively and qualitatively.
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