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Tabletop Transparent Scene Reconstruction via Epipolar-Guided

Optical Flow with Monocular Depth Completion Prior

Xiaotong Chen1, Zheming Zhou2, Zhuo Deng2, Omid Ghasemalizadeh2,

Min Sun2, Cheng-Hao Kuo2, Arnie Sen2

Abstract— Reconstructing transparent objects using afford-
able RGB-D cameras is a persistent challenge in robotic percep-
tion due to inconsistent appearances across views in the RGB
domain and inaccurate depth readings in each single-view. We
introduce a two-stage pipeline for reconstructing transparent
objects tailored for mobile platforms. In the first stage, off-the-
shelf monocular object segmentation and depth completion net-
works are leveraged to predict the depth of transparent objects,
furnishing single-view shape prior. Subsequently, we propose
Epipolar-guided Optical Flow (EOF) to fuse several single-view
shape priors from the first stage to a cross-view consistent 3D
reconstruction given camera poses estimated from opaque part
of the scene. Our key innovation lies in EOF which employs
boundary-sensitive sampling and epipolar-line constraints into
optical flow to accurately establish 2D correspondences across
multiple views on transparent objects. Quantitative evaluations
demonstrate that our pipeline significantly outperforms baseline
methods in 3D reconstruction quality, paving the way for
more adept robotic perception and interaction with transparent
objects.

I. INTRODUCTION

Transparent objects are prevalent in daily life, from small

tabletop objects like cups, bottles, and bowls, to large glass

windows and doors. They possess challenges to robotics

visual perception mainly two-fold. In the RGB domain,

transparent objects lack distinctive visual features, and their

appearance is highly correlated to the background and en-

vironmental lighting, aggravating the problem. In the depth

domain, the non-Lambertian surface cannot produce reliable

structure light patterns nor has a consistent refractive index

of the medium which leads to missing depth readings from

the conventional depth camera as shown in Figure 2. As a

result, it remains effectively difficult for robots with RGB-D

sensors to correctly reconstruct and interact with transparent

objects in household settings.

Most existing works [1]–[6] on table-top transparent object

reconstruction are performed under the lab environment

with specialized hardware setup. These approaches have

strict prerequisites: known material index of refraction, one

or two times of light refraction through an isolated solid

object, external light sources, or a background with coded

patterns. Apart from those prerequisites, These approaches

often acquire object silhouettes from multiple views, perform
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Fig. 1: An overview of D-EOF transparent object 3D reconstruction
pipeline. The first stage predicts depth and segmentation mask
from single viewpoints. The second stage generates 2D correspon-
dences and refines through the epipolar-line-guided optical flow for
transparent surfaces. The finalized 2D correspondence and camera
pose from opaque objects will be jointly optimized through Bundle
Adjustment to output the reconstructed point cloud.

a space carving/visual hull to initialize a 3D convex shape,

and then use the consistency between position and normal

to refine the 3D shape further.

By contrast, in this paper, we build a tabletop transparent

object scene reconstruction pipeline (Figure 1) using a RGB-

D camera without any extra external device or strict assump-

tions on background and lighting conditions. The proposed

approach serves as an upstream scene reconstruction module

to provide reliable point clouds for downstream robotics

reasoning and action over transparent objects.

More specifically, we propose Monocular Depth Prior-

based Epipolar-Guided Optical Flow (D-EOF) as a two-stage

tabletop transparent scene reconstruction approach using a

sequence of RGB-D images as input. In the first stage, off-

the-shelf single-view depth completion networks and a seg-

mentation network are employed to acquire transparent ob-

ject masks and approximate depth predictions. However, due

to errors in depth predictions, inconsistencies across views

are present at this stage, leading to a noisy reconstruction of

http://arxiv.org/abs/2310.09956v1


Fig. 2: (Left) an RGB image of a transparent object scene. (Right)
raw depth image from an Intel RealSense L515 camera. Compared
to ground truth, most pixel values in the transparent region in the
raw depth image are missing or inaccurate.

the scene. Addressing this, the second stage formalizes the

problem as a Bundle Adjustment (BA) optimization process,

focusing on the identification of reliable 2D correspondences

on transparent surfaces within the RGB domain. Recognizing

the inherent challenges in feature matching on transparent

surfaces due to intricate light interactions, we introduce

Epipolar-guided Optical Flow (EOF). EOF integrates two

components: (1) Boundary-inspired 2D landmarks gener-

ation, which judiciously selects features within transpar-

ent regions by capitalizing on boundary information, and

(2) Epipolar-guided optical flow correspondence estimation,

which monitors the selected landmarks to establish, correct,

and refine correspondences utilizing epipolar constraints.

This synergistic pairing is pivotal in securing reliable feature

matches, which are indispensable for the precise reconstruc-

tion of transparent objects.

We assessed D-EOF against a state-of-the-art end-to-

end transparent object reconstruction method, two state-

of-the-art depth completion networks (utilized as our first

stage), a general-purpose reconstruction method, and con-

ducted two ablation studies. The comparisons underscored

the advantages of our EOF approach. In terms of overall

3D reconstruction accuracy and completeness metrics, D-

EOF surpassed these methods, underlining its effectiveness

in reconstructing transparent objects.

II. RELATED WORK

A. Transparent Surface Reconstruction

Reconstruction of transparent surfaces or objects is a

challenging problem. Except for intrusive techniques that

require physical contact and might destroy the object, most

approaches utilize the light reflection or refraction rules. For

reflection-based methods, one approach is to estimate the

3D geometry based on the specular highlights from a spot-

light [7]–[9], structured light [10] or polarization [11], [12].

Another line of works developed the ‘scanning from heating’

pipeline that determined the shape through laser surface

heating and thermal imaging [13], [14]. For refraction-based

methods, the shape is solved by analyzing the distortion of

background patterns using a time-of-flight camera [15] or

light-field camera [16], [17]. Some recent works used the

RGB camera to capture multiple views to solve light path

triangulation [18] and do environment matting [19] with the

help of a turntable [2], [3] or AprilTags [5] to get accurate

camera poses.

Without the dependency on external hardware, Li et al. [4]

designed a physically-based deep rendering network that

learned the normal of front and back surfaces and fused

features from multiple viewpoints to reconstruct the 3D point

cloud. However, this work still requires carefully placed iso-

lated objects and ground truth segmentation. Zhu et al. [20]

built a transparent SLAM system on a mixed transparent-

opaque object scene, where they trained a segmentation net-

work on transparency, used the opaque parts to solve camera

trajectory, and reconstructed the transparent objects using

visual hull space carving. Compared to this work, we used

single-view depth completion plus multi-view optimization

that could deal with concave shapes.

B. Transparent Scene Depth Estimation

Transparent objects cause missing or inaccurate values on

transparency pixels. Before diving into the depth completion

task, object detection or segmentation is a prior task to locate

where the transparency lies on the image. Lai et al. and

Khaing et al. [21], [22] pioneered on transparent object

detection using CNNs. Xie et al. [23] developed a deep

segmentation model that outperformed other baselines and

a large-scale segmentation dataset. ClearGrasp [24] tackled

the problem of depth completion for transparent object scene.

They employed depth completion on robotic grasping tasks,

where they trained three DeepLabv3+ [25] models to perform

image segmentation, surface normal estimation, and bound-

ary segmentation. Recently, various different approaches

have been explored to improve the speed and accuracy of

the depth completion task, including implicit functions with

ray-voxel pairs [26], neural radiance field for rendering [27],

combined point cloud and depth estimation [28], adversarial

learning [29], multi-view input [30], network structure from

RGB image completion [31], and sim2real transfer [32].

Along with the proposed methods, massive datasets, across

different sensors and both synthetic and real-world domains,

have been collected and made public for various related

tasks [23], [24], [28], [31]–[36].

Our system will utilize the advance in deep networks on

single-view depth completion and take their output as a prior

for further optimization.

III. TRANSPARENT SCENE RECONSTRUCTION PIPELINE

Given a sequence of RGB-D input O and corresponding

camera poses T initialized by opaque objects, the objective

of D-EOF is to infer a point cloud represented by a set of

3D points {Xi|i=1,...,n} of the transparent objects.

The two-stage transparent scene reconstruction pipeline is

shown in Figure 1. The first stage consists of a single-view

depth completion neural network and transparent objects

segmentation estimation neural network. The second stage

is a transparency-aware 2D landmarks sampling followed by

EOF Bundle Adjustment.

A. Single-view Depth Completion and Segmentation

After evaluating recent advancements in depth completion

neural networks [24], [26], [28], [31], we chose to build



the first stage on top of TransCG [31], which offers an

good balance between processing efficiency and prediction

accuracy. TransCG employs a four-layer U-Net architecture,

comprising blocks with intertwined convolutional and fully-

connected layers. The network ingests an RGB image along-

side a depth image, and outputs a refined depth image with

matching resolution. To regulate both the value and gradient

of the predicted depth, the network employs a combined loss

L of depth and surface normal:

L = ||D̂ − D∗||2

+ β(1− cos
〈

∆D̂h ×∆D̂w,∆D∗

h ×∆D∗

w

〉

)
(1)

where D̂ and D∗ denote predicted and ground truth depth,

and ∆Dw,∆Dh denote normalized gradient vectors along

depth width-axis and height-axis, respectively. β is the

weighting factor between two losses.

As the depth completion network is designed to esti-

mate the depth value at transparent pixels specifically, it

is common practice that they require a transparent mask

as input. For this purpose, we utilize the widely-adopted

Mask R-CNN [37] architecture to train a binary segmentation

model for transparent objects. Importantly, we fine-tune both

TransCG and Mask R-CNN on a dataset specifically con-

sisting of transparent objects to enhance their efficacy. The

transparency mask obtained in this stage is also instrumental

in the second stage for sampling 2D correspondences.

B. Multi-view Boundary-Inspired and Epipolar-Guided Op-

tical Flow

Utilizing pre-trained networks that have been fine-tuned

on a transparent dataset for single-view depth prediction

and transparency segmentation, we are able to directly con-

catenate the masked predicted depth from multiple views to

create an initial 3D shape. However, this direct fusion fails

to mitigate the noisy depth predictions and inconsistencies

across different views (Figure 6 direct concatenation meth-

ods). In this section, we introduce the boundary-inspired 2D

landmarks generation along with the Epipolar-guided Optical

Flow (EOF) Bundle Adjustment algorithm for transparent

object point cloud reconstruction. In this process, we initial-

ize the camera poses from SLAM or dense reconstruction

methods over the opaque background, similar to [20], [36].

1) Boundary-Inspired 2D Landmarks Generation: In-

spired by how humans perceive transparent objects, we

exploit the boundary feature of transparent objects to find

reliable visual landmark correspondence between images.

As shown in Figure 3 (Right), the optical flow estimation

error is lower in the region near the object boundary while

larger in the central areas. Our explanation is shown in

Figure 3 (Left). Firstly, for a table-top transparent object,

typically a container within the camera field of view, the

near-boundary area appears much thicker, which behaves

more like opaque surfaces and provides consistent color

intensity. Therefore, it provides more reliable correspondence

across frames compared to the central area of transparent

objects, which corresponds to a relatively thinner surface

and is more sensitive to changes in lighting and background.

Secondly, the near-boundary area has a distinct appearance

compared to the background, which naturally bounds the area

in the 2D landmark correspondence search step. Based on

this observation, we use the pixels near the transparent seg-

mentation mask boundary to generate 2D landmarks. Even

though this operation will filter out all 2D landmarks located

near the center of the transparent object in a single view,

our approach can still obtain enough coverage of objects by

incorporating different view angles from a sequence of the

RGB-D inputs.

Fig. 3: An example that inspires transparent mask boundary-
based filtering. (Left) a diagram of camera light rays through a
transparent surface, where the effective length is shown as dotted
lines. (Middle) an RGB image example of a transparent object
scene. (Right) a heatmap corresponding to the RGB image, showing
the error of a common dense optical flow estimation between its
neighbor frames, measured in pixels.

2) Epipolar-Guided Optical Flow Correspondence Esti-

mation: We estimate the 2D correspondences within the

local epipolar line segment projected from the predicted

depth with uncertainty. As shown in Figure 4, given a 2D

pixel sample p from one keyframe, its ground truth depth

point lies near the 3D points projected using the depth

prediction x∗ on the camera ray. When the depth prediction

error is within a certain distance δd, the ground truth depth is

between the ‘Near End’ x− and ‘Far End’ x+. Accordingly,

the ground truth 2D correspondence lies on the projected

epipolar line segment l between p− and p+ projected by x−

and x+, respectively, in a neighbor frame when the transform

T between the keyframe and this frame is known:

x± =
(

D̂ ± δd

)

K−1 [p 1]
T

[

p± 1
]

= s ·K
(

Rx± + t
)

(2)

where D̂, K are the single-view depth prediction, camera

intrinsic matrix, and R, t are rotation and translation part of

transformation T , respectively. s is the scale factor (inverse

depth) to get the pixel value of p±.

We then use the dense optical flow estimation ~v0 to get a

prediction pixel

pO = p+ ~v0

that might not lie on the epipolar line, and take its orthogonal

projection towards the line as the final correspondence esti-

mation pEO . This correspondence will be ignored when the

projected point is outside this line segment. The calculation



can be formulated as

pEO = p− +
(pO − p−) · ~n

|~n|2
~n (3)

where

~n = p+ − p−

is the 2D vector of epipolar line segment.

Fig. 4: 2D correspondence estimation based on epipolar line search
and optical flow estimation.

3) Bundle Adjustment Formulation: We initialize the es-

timated camera poses from off-the-shelf SLAM systems and

formulate a structure-only Bundle Adjustment. The 2D pixel

samples p in keyframes with valid correspondences pEO in

neighbor frames are set as the 2D landmarks. Their according

3D landmarks x are initialized as x∗ and optimized by

minimizing the reprojection error e. The optimized 3D points

compose the output 3D shape of the EOF module.

x∗ = D̂K−1 [p 1]
T

e = p− π(T ,x)
(4)

where π is the projection function same as Equation (2).

IV. EXPERIMENTS

A. Dataset and Network Training

We evaluate our method using the comprehensive Clear-

Pose dataset [36], a recent collection of continuous RGB-

D video frames featuring static transparent object scenes.

The training set comprises 25 scenes with 200K images,

while the test set spans eight scenes, each containing 1,700

images. The latter encompasses challenges such as novel

backgrounds, mixed scenes with opaque objects, and signif-

icant occlusions. Figure 5 illustrates examples from the test

samples. Notably, even though the training and testing sets

include identical object instances, our initial stage is ego-

centric, employing a depth completion network that remains

independent of the object’s specific instance.

The network models are implemented in Pytorch. For

binary segmentation, we train a Mask R-CNN model1 on

an RTX 2080 SUPER GPU for 5 epochs, with batch size 5

and a learning rate of 0.005 using the SGD optimizer. After

training, Mask R-CNN gets an accuracy of Intersection over

Union (IoU) as 0.9542 on the training set and 0.8850 on the

test set.

1https://github.com/opipari/ClearPose

Fig. 5: Examples of testing scenes and objects. (Top row) three
challenging test scene categories. (Bottom row) object instances
that is used in the testing.

TransCG2 is trained on an 8G RTX-3070 GPU for around

300K iterations. β is set to 0.001 following the original

paper. We use the L2 loss to train the TransCG network

and improve the depth image resizing by using nearest

neighbor replacement to maintain the depth discontinuity

property near object boundary. After training, TransCG gets

the mean absolute error (MAE) as 0.044m and the root of

mean squared error (RMSE) as 0.057m inside the transparent

mask on the test set.

B. Evaluation Metrics of 3D Reconstruction

We use a combined metrics of Chamfer distance and inlier

ratio threshold to evaluate the quality of 3D reconstruction

comprehensively. We define 4 values: Accuracy, Complete-

ness, Precision, and Recall to evaluate the difference between

the predicted 3D point cloud Ppred and the ground truth point

cloud Pgt. Chamfer distance is defined as the average of the

nearest distance from the points in one point cloud to the

points in another point cloud. The inlier ratio is defined as

the percentage of points in one point cloud within a certain

radius d near the other point cloud. Among the 4 values,

Accuracy and Precision evaluate how close the prediction

point cloud Ppred is close to the ground truth point cloud,

while Completeness and Recall focus on how much of Pgt

is covered by Ppred.

ChamferDist(S1, S2) =
1

|S1|

∑

p1∈S1

min
p2∈S2

||p1− p2||

Accuracy = ChamferDist(Ppred, Pgt)

Completeness = ChamferDist(Pgt, Ppred)

InlierRatiod(S1, S2) =
1

|S1|

∑

p1∈S1

I

(

min
p2∈S2

||p1− p2|| < d

)

Precision = InlierRatiod(Ppred, Pgt)

Recall = InlierRatiod(Pgt, Ppred)
(5)

2https://github.com/Galaxies99/TransCG



C. Implementation Details and Baselines

The EOF module is implemented as follows. We build

optical flow based on Farneback [38] method. For Bundle

Adjustment, we implement it using g2opy3 library with

robust Huber loss. The 2D landmark points are sampled

within the transparent masks on the keyframe RGB images.

The 3D landmarks in BA are optimized with 30 iterations

to get the final 3D point cloud set. The unoptimized im-

plementation of the 2D landmark generation and refinement

took approximately 0.3 seconds per frame to execute on a

system equipped with an NVIDIA RTX 2080 GPU and an

Intel i7-10875H CPU.

To evaluate the accuracy of the proposed correspondence

matching method, we compare it with the SIFT feature

detection and matching and optical flow estimation. To assess

the effectiveness of our second stage (EOF), we integrate

it with two state-of-the-art single-frame depth completion

approaches: SeeingGlass [28] and ImplicitDepth [26]. For

these methods, the baseline directly concatenates the net-

work’s outputs across multiple frames. To evaluate our

full pipelines, considering the limited work in multi-view

transparent reconstruction, we compare it against one state-

of-the-art method on single tabletop transparent object recon-

struction: ThroughLookingGlass [4] and a general-purpose

3D reconstruction method, TSDF, implemented with Py-

CUDA [39]. To make TSDF compatible with transparent

objects, we feed the predicted masked depth images from our

first-stage network into the TSDF pipeline sequentially and

then infer a 3D point cloud surface using the ray marching

algorithm4. We fine-tune the parameters of TSDF fusion to

achieve its best performance. Furthermore, for full pipeline

evaluation, we conduct two ablation studies to evaluate how

correspondences would influence the final 3D reconstruc-

tion output. Specifically, we use SIFT and optical-flow-only

methods to refine the correspondences before feeding them

into our BA pipeline for 3D reconstruction.

D. Results and Discussions

1) 2D Correspondence Estimation Evaluation: To val-

idate the reliability of near-boundary pixels for tracking,

we measured the 2D correspondence accuracy against the

ground truth by projecting its depth onto various frames. Av-

erage pixel errors for different frame intervals are presented

in Table I.
Frame Interval / Pixel Error 2 4 6 8 10 12

SIFT Feature Only 2.380 4.192 6.184 8.364 10.782 13.418

Optical Flow Only 2.634 4.894 6.881 8.907 10.717 12.321

EOF (ours) 0.700 1.254 1.868 2.536 3.124 3.520

TABLE I: 2D correspondence search accuracy result.

In the SIFT Feature Only method, we utilized the DoG

detector for 2D landmark generation and the SIFT descriptor

for matching. The Optical Flow Only [38] method initialized

the 2D landmarks within the transparency mask and used

dense optical flow for matching.

3https://github.com/uoip/g2opy
4https://scikit-image.org/docs/stable/auto examples/edges/plot marching cubes.html

Accuracy (cm)↓ Novel Background Hybrid Scenes Heavy Occlusion All Scenes

SeeingGlass [28] + Direct Concatenation 1.88 3.80 1.85 2.35

SeeingGlass + EOF 1.44 1.14 2.19 1.28

ImplicitDepth [26] + Direct Concatenation 2.10 4.02 2.53 2.69

ImplicitDepth + EOF 1.00 0.86 1.25 1.04

TransCG + Direct Concatenation 2.63 2.06 3.96 2.45

TransCG + EOF (D-EOF) 0.97 1.52 0.92 1.11

Completeness (cm)↓

SeeingGlass [28] + Direct Concatenation 0.66 0.72 0.83 0.72

SeeingGlass + EOF 1.01 1.01 0.83 1.18

ImplicitDepth [26] + Direct Concatenation 0.65 0.67 0.83 0.70

ImplicitDepth + EOF 0.92 1.03 0.66 0.94

TransCG + Direct Concatenation 0.51 0.48 0.50 0.59

TransCG + EOF (D-EOF) 0.93 0.65 0.95 0.87

Precision (% ≤2cm)↑

SeeingGlass [28] + Direct Concatenation 64.21 44.98 62.74 59.04

SeeingGlass + EOF 78.13 82.90 69.12 77.62

ImplicitDepth [26] + Direct Concatenation 62.72 43.22 53.20 55.47

ImplicitDepth + EOF 86.01 89.31 80.60 84.82

TransCG + Direct Concatenation 56.75 64.00 43.97 55.04

TransCG + EOF (D-EOF) 87.38 78.05 88.41 85.09

Recall (% ≤2cm)↑

SeeingGlass [28] + Direct Concatenation 85.55 76.46 54.03 75.40

SeeingGlass + EOF 78.57 81.31 82.89 68.78

ImplicitDepth [26] + Direct Concatenation 84.55 82.08 59.21 77.61

ImplicitDepth + EOF 86.33 86.76 91.67 80.12

TransCG + Direct Concatenation 95.91 96.07 99.06 92.43

TransCG + EOF (D-EOF) 86.68 89.48 79.58 86.07

TABLE II: Comparison of 3D reconstruction at the scene level,
considering results with and without the EOF. All methods involv-
ing EOF are bolded against direct concatenation approaches.

Our proposed method consistently outperforms both base-

line approaches across all frame intervals. Traditional tech-

niques tend to diverge rapidly when applied to 2D landmarks

on transparent surfaces due to errors from inconsistent RGB

observations. In contrast, our method’s correction and prun-

ing steps ensure more accurate correspondences.

2) EOF Evaluation: We further evaluate the efficacy of

our proposed second stage – EOF with boundary-inspired

sampling on improving overall 3D reconstruction perfor-

mance with different state-of-the-art single view depth com-

pletion networks. The results are shown in Table II. The

evaluation is conducted on 8 different scenes, which covers

3 different categories and 14 object classes. We evaluate

the performance of different baselines using the metrics

described in Section IV-B. The results illustrate a notable

enhancement in both accuracy and precision upon the in-

troduction of EOF, while maintaining comparable recall

results. It is important to note that the direct concatenation

method, despite having a higher point count and thus better

completeness, introduces excessive noise which obscures the

true shape of the objects.

3) End-to-end Evaluation: We evaluate the performance

of our proposed D-EOF pipeline with baseline end-to-end

methods using the metrics described in Section IV-B. The

results are analyzed on both per object and per scene basis

and are presented in Table III and Table IV, respectively.

D-EOF outperforms all baseline methods in terms of 3D

reconstruction accuracy, precision, completeness and recall at

the scene level, as demonstrated by our quantitative results.

Regarding object-level evaluation, our method performs sig-

nificantly better than all other baselines overall. We also

observed that our method performs better for objects with

significant height dimension, such as containers, wine cups,

and mugs, compared to flat objects like spoons, knives, and

forks.

Figure 6 visually demonstrates the performance differ-



Fig. 6: Visualization comparison as 3D point clouds. The orange point clouds represent the ground truth, while the red point clouds depict
the predictions of the transparent scenes, corresponding to the RGB images displayed above. It is evident from the visualization that D-EOF
produces the most consistent and clean results, aligning closely with the ground truth. In contrast, TSDF incorporates numerous points from
the background table and opaque distractor objects, substantially reducing its performance. When employing direct concatenation with
Implicit Depth and SeeingGlass, the results lack distinction in the object shapes and blanket the entire space. This illustrates that merely
concatenating monocular depth priors results in inconsistency and noise across different viewpoints. ThroughLookingGlass generates very
sparse points, which can be attributed to its primary focus on single solid convex transparent objects. It struggles to handle cluttered
scenes effectively.



Accuracy (cm)↓ Container Wine Cup Water Cup Mug Plate Bowl Bottle Spoon Knife Fork Pitcher Funnel Syringe Pan

ThroughLookingGlass [4] 1.83 1.88 1.78 1.50 2.08 1.85 1.75 2.95 2.97 2.43 1.66 1.26 - -

TSDF 1.27 1.62 1.48 1.09 1.49 1.60 1.47 3.51 3.43 3.59 0.62 1.00 2.49 2.42

SIFT-BA 1.56 1.76 1.77 1.49 1.95 1.67 1.58 2.68 2.95 3.01 1.22 1.49 3.05 2.47

OF-BA 1.64 1.63 1.68 1.44 1.88 1.74 1.57 2.36 2.70 2.78 1.11 1.84 4.07 2.97

D-EOF 0.98 1.05 1.04 0.83 0.77 1.04 0.95 0.93 0.86 0.78 0.97 1.47 0.53 1.40

Completeness (cm)↓

ThroughLookingGlass [4] 2.11 1.88 1.73 1.74 2.14 2.38 2.49 1.92 2.99 3.21 1.65 1.27 - -
TSDF 1.46 2.58 1.60 1.27 2.94 1.58 1.95 2.62 4.86 2.82 0.83 1.01 1.13 4.67

SIFT-BA 1.15 1.22 1.45 1.36 1.48 1.33 1.13 2.83 3.21 2.72 0.74 1.72 3.35 1.54

OF-BA 1.19 1.15 1.43 1.00 1.23 1.35 1.12 4.08 3.38 1.84 0.87 0.96 4.42 2.51

D-EOF 0.68 0.66 0.62 0.48 1.08 0.66 0.56 2.53 3.10 2.14 0.67 0.33 0.96 1.79

Precision (% ≤2cm)↑

ThroughLookingGlass [4] 59.37 58.28 61.12 72.33 50.95 62.39 61.42 47.12 67.14 48.43 63.64 76.46 - -
TSDF 75.91 65.71 69.23 80.08 71.62 64.82 69.71 39.39 36.72 6.60 91.75 86.13 39.53 30.89

SIFT-BA 67.66 62.51 61.41 70.14 55.28 64.58 67.66 22.92 19.39 1234 79.39 70.10 4.64 35.74

OF-BA 64.28 65.40 63.94 70.90 56.39 61.95 67.52 28.02 21.16 29.83 83.80 57.73 00.00 16.77

D-EOF 86.48 84.72 85.19 91.70 94.49 84.68 87.57 87.66 98.62 94.64 85.95 71.16 100.00 93.46

Recall (% ≤2cm)↑

ThroughLookingGlass [4] 19.89 27.67 30.06 29.56 18.90 19.58 28.76 9.05 04.62 17.38 15.67 65.78 - -
TSDF 63.08 54.94 60.95 72.46 33.33 56.61 55.61 10.20 5.83 3.46 86.54 81.15 59.95 2.30

SIFT-BA 66.19 66.59 58.07 59.36 67.07 63.25 68.24 30.69 26.16 11.18 80.48 32.66 00.00 45.33

OF-BA 68.52 64.29 58.24 73.84 69.35 60.46 67.28 30.02 27.20 23.35 75.42 76.38 00.00 10.07

D-EOF 87.35 88.45 90.17 94.42 70.48 89.81 91.28 33.95 50.00 25.10 86.42 100.0 81.23 23.90

TABLE III: Object-level comparison of 3D reconstruction results across different end-to-end methods.

Accuracy (cm)↓ Novel Background Hybrid Scenes Heavy Occlusion All Scenes

ThroughLookingGlass [4] 2.38 2.75 2.75 2.56

TSDF 2.95 4.42 1.12 2.86

SIFT-BA 2.15 3.06 1.43 1.94

OF-BA 1.95 2.58 1.66 2.02

D-EOF 0.97 1.52 0.92 1.11

Completeness (cm)↓

ThroughLookingGlass [4] 1.76 3.19 1.93 2.16

TSDF 1.66 2.59 1.80 1.93

SIFT-BA 1.54 1.68 1.15 1.21

OF-BA 1.54 1.23 1.32 1.39

D-EOF 0.93 0.65 0.95 0.87

Precision (% ≤2cm)↑

ThroughLookingGlass [4] 55.33 56.37 44.96 53.00

TSDF 51.75 36.72 80.42 55.16

SIFT-BA 54.57 48.75 73.31 63.63

OF-BA 58.58 59.83 66.97 61.78

D-EOF 87.38 78.05 88.41 85.09

Recall (% ≤2cm)↑

ThroughLookingGlass [4] 37.88 37.87 4.92 29.64

TSDF 57.69 43.07 59.26 54.43

SIFT-BA 59.38 54.70 69.80 68.18

OF-BA 57.74 67.18 62.43 62.06

D-EOF 86.68 89.48 79.58 86.07

TABLE IV: Scene-level comparison of 3D reconstruction results
across different end-to-end methods.

ences among various 3D reconstruction methods across

different scenarios. The first two scenes in each subfigure

belong to the New background category, while the 3rd

and 4th scenes represent With opaque objects and Heavy

occlusion categories. ThroughLookingGlass achieves rela-

tively poor results across all four metrics compared to our

method. This is because it focuses more on reconstructing

a single solid convex object, which does not work well for

household objects in a tabletop setup that often have concave

shapes and numerous occlusions, leading to missing areas in

the reconstruction and very sparse construction. The TSDF

method is not specific to transparent 3D construction and

produces relatively noisy results, containing many points of

the background table and opaque distractor objects, which

significantly diminishes its performance. In comparison, our

method establishes clear object shapes with fewer noisy

points from the background and displays great robustness

across heavy occlusions and opaque distractor objects com-

pared to all other baselines.

There are still limitations in our approach. The 2D

landmark generation, which uses heuristic filtering based

on object boundaries, presumes thicker surfaces near these

boundaries. This may not apply to flat surfaces like windows

and doors. Also, the approach relies on segmentation masks

and demands dense and complete view angle sampling. A

confidence map prediction would be preferable to sample

with importance and focus on the area with lower error. For

2D correspondence matching, the current optical flow-based

implementation hasn’t incorporated the recent advances such

as deep learning-based methods [40]. Another point to im-

prove is to consider more than two frames or to involve

other modalities, such as surface normal [4] to refine the

correspondence selection.

V. CONCLUSION

We presented a two-stage framework, D-EOF, for recon-

structing transparent objects in cluttered tabletop scenes. Our

evaluations demonstrate that the proposed D-EOF pipeline

yields reliable point clouds, adept at handling the challenges

posed by tabletop transparent scenes. For further perfor-

mance enhancement, integrating learning-based approaches

for optical flow estimation and incorporating additional

modalities, such as surface normals, are promising directions.

Additionally, taking into account instance-level object detec-

tion and utilizing shape priors could bring about finer details

in reconstructions. This development marks a promising

step forward in advancing robotic perception and interaction

within environments containing transparent objects.
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