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Abstract— Modeling and simulating soft robot hands can aid
in design iteration for complex and high degree-of-freedom
(DoF) morphologies. This can be further supplemented by
iterating on the design based on its performance in real
world manipulation tasks. However, iterating in the real world
requires an approach that allows us to test new designs quickly
at low costs. In this paper, we leverage rapid prototyping of the
hand using 3D-printing, and utilize teleoperation to evaluate the
hand in real world manipulation tasks. Using this method, we
design a 3D-printed 16-DoF dexterous anthropomorphic soft
hand (DASH) and iteratively improve its design over five itera-
tions. Rapid prototyping techniques such as 3D-printing allow
us to directly evaluate the fabricated hand without modeling
it in simulation. We show that the design improves over five
design iterations through evaluating the hand’s performance
in 30 real-world teleoperated manipulation tasks. Testing over
900 demonstrations shows that our final version of DASH can
solve 19 of the 30 tasks compared to Allegro, a popular rigid
hand in the market, which can only solve 7 tasks. We open-
source our CAD models as well as the teleoperated dataset
for further study. They are made available on our website
https://dash-through-interaction.github.io.

I. INTRODUCTION

Rapid prototyping technologies have advanced signifi-
cantly, making way for designers to build new systems at
a fast pace. These techniques, such as 3D-printing, allow for
quick turnaround between design iterations to test and eval-
uate systems quickly. This is especially useful for systems
with dynamics that are difficult to predict or model, such as
soft robot manipulators.

Iterating for dexterous soft hand designs is a laborious
process. The complex design space and the infinite degrees of
freedom make it difficult to predict the effects of incremental
design changes. Unlike rigid robot hands, state-of-the-art soft
body simulators are not able to provide accurate, efficient,
and robust evaluation of soft designs [1]. Hands such as
the BRL/Pisa/IIT SoftHand [2] or the RBO hand [3] have
evolved over years to incorporate more adaptive synergies
and dexterity. To speed up development times and reduce
fabrication overhead many works have recently turned to-
wards 3D-printing to either directly print soft hands [4]
or to quickly create complex molds [5]. While this has
significantly reduced the cycle time for fabrication, designing
dexterous soft hands still requires a lot of expertise, and
trial and error due to the continuously deformable nature
of soft robots. The lack of appropriate simulators means the
evaluation of soft hand designs has to be done on the real
prototype by using hand-crafted policies [6] or sequential

Fig. 1: Manipulation task performance over five iterations
of DASH designed through rapid prototyping and real-
world evaluation on tasks alongside task performance of our
baseline hand Allegro.

keyframed open-loop poses [4].
Our key insight is that we can evaluate these systems

beyond hand-crafted policies or sequential keyframed open-
loop poses using recent advancements in teleoperation sys-
tems. Improvements in hand tracking and pose estimation
[7] have led to the development of vision-based teleoperation
approaches including using a single RGB camera for real-
time tracking of human hand poses [8]. Teleoperation offers
valuable insights into system performance and enables the
identification of robust strategies in real-world scenarios.
Simulation often falls short in capturing system nuances,
accurately modeling soft materials, and adapting strategies.
Therefore, tasks that succeed in simulation can still fail when
observed and evaluated through teleoperation, providing a
clearer understanding of the system’s capabilities and limi-
tations.

In this paper, we 3D-print soft robotic hands to test
iteratively using teleoperation on a designated manipulation
task set, modify the design, and repeat this process shown
in Figure 2(a). While manually testing and revising designs
to improve systems is not a new concept [5], recent tech-
nologies allow us to repeatedly iterate the entire framework
of designing, fabricating, and evaluating in a matter of days.
This framework is versatile and can be implemented at any
stage of the design process. Its purpose is to bridge the gap
between the real world and simulation by adjusting for dis-
crepancies or expediting fine-tuning for real-world scenarios.
We envision this framework as a valuable augmentation to
existing design frameworks, enhancing the overall design
process for soft anthropomorphic robotic hands.

Using our framework, we present a case study to design a
16-DoF tendon-driven 3D-printed soft hand DASH, shown
in Figure 1. This hand has a small form factor similar in
size to a human hand, 3D-printable parts that are easily
replaceable, and a modular customizable design that allows
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Fig. 2: (a) Our soft robotic hand design process involving rapid prototyping and real-world evaluation (b) CAD models and
differences across DASH iterations V1 through V5, as explained in Section IV.

for easy iteration. Through teleoperation, we explore the
capabilities of the soft hand in order to inform our design
iterations across five hands: DASH V1, V2, V3, V4, and V5.
In order to evaluate the dexterity of the hand, we designed
a suite of 30 manipulation tasks with varying grasp types
and objects that are inspired by human hand capabilities,
which allows us to test the capabilities of our robot hand.
Our hands show improvements across iterations, albeit not
monotonically, and each iteration, except V1, required less
than 100 hours to design, fabricate, and test. DASH V1,
V2, V3, V4, and V5 succeed on 70%, 82%, 83%, 75%, and
87% of executions across all tasks, respectively. We also out-
perform a commercial dexterous robotic hand, Allegro [9],
which has a success rate of 60% on the same 30 tasks.

The contributions of this paper are

• A detailed report of our process for designing soft
hands that leverages rapid prototyping techniques and
uses a teleoperated real robot for evaluation, instead of
simulation.

• The design of a state-of-the-art dexterous anthropomor-
phic soft hand using our framework, that outperforms
a commercial robotic hand on real world manipulation
tasks.

• The release of open-source CAD models and data cor-
responding to 900 teleoperated human demonstrations
to democratize access to low-cost dexterous hands.

II. RELATED WORK

Soft robotic hands such as RBO [3] utilize intrinsic com-
pliance, rapid prototyping, and actuated palms for a modular,
highly compliant, high degree-of-freedom, and low cost ma-
nipulator in order to perform a large variety of in-hand ma-
nipulation tasks and object grasps. However, existing robotic
hands are still far from achieving human-like dexterity for
manipulation [10]. It is necessary to continuously improve
and refine the design of both existing and new robotic hands
in order to achieve greater dexterity and functionality for
performing more complex manipulation tasks.

Although there is currently no unified framework for
designing iterations of soft anthropomorphic hands, design
iteration methods for robotic systems have been explored.
Typically, Finite Element Method (FEM) is used to assess
optimal geometries and morphologies before fabricating the
final design for real-world evaluation [11], [12]. For instance,
the SOFA soft robot simulator has been used to co-optimize

control and design of soft hands [13]. However, these ap-
proaches are primarily limited to simulated environments
and do not address the sim-to-real gap or real-world design
iteration. A related framework in robotic fish design utilizes
simulation-based FEM testing, real-world design iteration,
and proposes a modular design for easier iterations [5].
Nevertheless, optimizing soft robots is challenging due to
their complex geometries, impeding the development of
efficient optimization algorithms. Furthermore, the lack of
efficient simulation tools that can rapidly evaluate design
candidates further compounds the challenge [1].

Learning control policies for dexterous manipulation is
challenging due to the high DoFs and complex interac-
tions [14], [15]. In contrast, teleoperation offers a swift and
natural way to control robot hands, beyond pick-and-place
scenarios. It has been used for human demonstrations in
imitation learning [16], [17]. Teleoperation is particularly
valuable during the design process of dexterous hands,
enabling quick evaluation of nuanced capabilities. Mapping
human to robot hand morphology can be categorized as
Joint-to-Joint, Point-to-Point, or Pose-based [18]. For our
soft hand, we adopt a similar joint-to-joint mapping tech-
nique as Liarokapis et al. [19].

Our work extends the design and fabrication methodology
presented by Bauer et al. [4], consisting of simplifying the
design complexity of soft hands by incorporating geometric
features such as bumps or creases to achieve ‘joint-like’
deformations. They perform kinematic testing on designs
before fabricating and evaluate a single design. Similar to
Bauer et al. [4], we utilize 3D printing, creases for ‘joint-
like’ deformations, and tendon-driven actuation to curl the
soft fingers. In addition to these features, DASH’s design
incorporates three additional tendons in all fingers, enabling
adduction, abduction, and folding of the fingers towards the
palm, thereby enhancing dexterity.

III. EXPERIMENT SETUP

A. Robot Hand design

1) Finger Joints: All iterations of DASH consist of four
fingers: the thumb, index, middle, and ring fingers (see
Figure 3(a)). In order to achieve modularity, each finger,
including the thumb, is designed identically. Each finger has
three joints (from the base of the finger to the fingertip): the
metacarpophalangeal (MCP) joint, proximal interphalangeal



Fig. 3: (a) Assembly of DASH-V3 (top to bottom) including
fingers, palm, top plate, motors, bottom plate, xArm6 mount.
(b) Calibration procedure to map motor angles to finger joint
positions, where tendon 0 actuates MCP side-to-side, tendon
1 actuates MCP forward folding motion, and tendon 2 curls
the finger controlling both PIP and DIP joints.

(PIP) joint, and the distal interphalangeal (DIP) joint. The
joints for each finger are shown in Figure 3(b).

2) Tendons: Each finger is controlled by four tendons
shown in Figure 3(b). Two tendons run along the sides of the
MCP joint, closest to the palm, for abduction and adduction,
which allows the fingers to move closer together and farther
apart. These two tendons are controlled by a single motor, so
we refer to them as tendon 0. A single tendon, tendon 1, is
used to flex the finger forward at the MCP joint, orthogonally
to the axis of motion of the abduction-adduction tendons. The
last tendon, tendon 2, runs through the entire length of the
finger to enable completely curling into itself.

B. Fabrication using 3D-printing

The hand assembly, shown in Figure 3(a), is the same
for all hand iterations and consists of 4 soft fingers attached
to the soft palm. The rigid components include a top plate
below the palm, 12 motors, a bottom plate which also houses
the Dynamixel U2D2 motor controller, and a xArm6 mount.

The soft dexterous hand’s mounts, motor housing, and
motor pulleys are all 3D-printed from PLA (rigid material
depicted in black in Figure 3(a)) while the soft hand was
printed with Ninjaflex Edge (83A shore hardness) [20] using
an Ender 3 S1 Plus. For all the robot experiments, the
hand was mounted onto a xArm6 [21] robot arm. DASH
costs approximately $1500 to build with the majority of the
cost consisting of 3D-printer ($500) and the twelve motors
($1000) required. For comparison, the Allegro hand is also
16-DoF and costs around $15000 [22].

C. Hand Evaluation using Teleoperation

1) Learning Kinematics: To approximate the kinematics
of the finger joints without real-time feedback, we learn a
model from collecting offline paired motor and joint angle
data from a single finger. Through small increments of 3 de-
grees of actuation and joint angle tracking across 1000 finger
configurations using AR tags and RGB cameras, we obtain
a collection of tuples (joint angles, motor angles) that are
normalized to [0, 1] for independent kinematic calibration,
assuming fixed joint lengths and bending at the creases.

Hand Design v1 v2 v3 v4 v5

w1 −1.05 −0.43 −0.43 −0.59 −0.59
w2 0.01 0.2 0.2 −0.12 −0.19
w3 0.1 0.51 0.51 0.26 −0.32
w4 0.83 0.54 0.54 0.38 0.72
w5 0.67 0.6 0.6 0.62 0.63
w6 0.99 0.76 0.76 1.69 0.65
b1 0.47 0.38 0.38 0.45 0.58
b2 −0.07 0.01 0.01 0.44 −0.03
b3 0.03 −0.04 −0.04 −0.05 −0.09
b4 −0.01 −0.16 −0.16 −0.3 −0.07

TABLE I: Calibration weights for all five iterations of DASH
mapping from finger joint angles to motor angles.

Fig. 4: Manus Meta Quantum Metagloves used for tracking
the hand for teleoperating the robot arm and DASH.

A linear model is learned using the collected data to
map finger joint angles to motor angle outputs. We refer
to the motors controlling tendons 0, 1, and 2, as shown in
Figure 3(b), as motors 0, 1, and 2, respectively. The equations
for MCP, PIP, and DIP joint angles are shown below. In
equation 1, we learn the MCP joint angles θMCPside

, θMCPfwd

jointly since the amount of side-to-side angle at the MCP
joint can restrict the forward folding motion of the finger. In
equation 2, the Motor 2 angle θmotor2 is an average measure
of the motor angle for the desired PIP and DIP joint angles
θPIP, θDIP since the same tendon controls both the PIP and
DIP joints. The weights in equations 1 and 2 are found by
fitting our data using linear functions. We collect training
data for almost two hours for each iteration of the hand to
calibrate new models, using the weights shown in Table I.

[
θmotor0

θmotor1

]
=

[
w1 w3

w2 w4

]
·
[
θMCPside

θMCPfwd

]
+

[
b1
b2

]
(1)

θmotor2 =
θPIPw5 + b3

2
+

θDIPw6 + b4
2

(2)

2) Teleoperation System: We use Manus Meta Quantum
Metagloves [23] designed for VR tracking and Mocap Use,
as shown in Figure 4 (costs ∼ $8000). The Manus glove is
worn on the operator’s hand and tracks fingertip positions
within a 0.1-degree accuracy using hall effect sensors. Each
finger returns 4 angles θMCPside

, θMCPfwd
, θPIP, θDIP in real

time, which are mapped one-to-one to the robot hand. Then,
we convert to motor angles using our kinematics models.

To control the robot arm shown in Figure 4, we em-
ploy wearable SteamVR trackers [24], utilizing time-of-flight
lasers emitted from SteamVR Lighthouses positioned around
and above the operator. One tracker is worn on the glove,



while another is placed around the waist. We align the waist
tracker’s rotation with the robot’s base frame and adjust the
end-effector pose to match the orientation of the human wrist.
Then, the human wrist poses are scaled up to cover the
robot’s larger workspace, making necessary adjustments to
ensure user comfort. Safety checks, including dynamic force
feedback on the arm, prevent accidental damage to the robot
or its surrounding environment.

D. Manipulation Tasks

Each DASH iteration is tested on a suite of tasks, named
DASH-30, listed in Table II which were inspired by the
different types of grasps defined in Liu et al. [25] and tasks
from previous teleoperation works [26], [8]. These tasks
are categorized by the type of grasp or force necessary.
Categories like Hold include a greater number of tasks aimed
at testing different grasping techniques and objects. On the
other hand, skills like Lever or Twist involve fewer tasks
specifically designed to assess whether a particular hand
design can successfully perform these skills. Additionally,
some tasks were hand-picked as tasks where compliance of
the hand may be advantageous.

The feedback from the manipulation task evaluation com-
bines observations from the following metrics: task success,
performance across five repetitions of the same task, trends
in tasks the hand fails to complete, type of grasps possible or
used, opposability of fingers, and reachability of fingertips.

Hold

1) Scissor, 2) Hammer, 3) Chopsticks (single), 4) Pen,
5) Wooden cylinder (using adduction/abduction),
6) Screwdriver, 7) Drill, 8) (Plastic) Egg*,
9) (Plastic) Chip*, 10) M&M*

Pick (and place)

11) Dry-Erase Board Eraser, 12) Tennis Ball,
13) Softball, 14) Cloth*, 15) Plush Broccoli,
16) Plush Dinosaur,17) Pringles Can, 18) Spam Box,
19) Mustard Bottle, 20) Wine Glass, 21) Bin picking

Lever

22) Cube flip, 23) Card pickup from deck

Twist

24) Dice rotation in-hand, 25) Grape off of stem*

Open

26) Plastic bag*, 27) Drawer

Put in/on

28) Cup Pouring (onto plate),
29) Cup Stacking & unstacking, 30) 1 inch Block stacking

TABLE II: DASH-30: task set of 30 manipulation experi-
ments. Tasks with the asterisk (*) were hand-picked as tasks
where compliance of the hand may be advantageous.

IV. DASH ITERATIVE DESIGN STUDIES

A. Iteration V1
DASH-V1 performs best on pick and place tasks and tasks

using adduction-abduction such as the grape task, shown

in Figure 5 due to the larger hand size and space between
fingers as illustrated in Figure 2(b).

1) Design & Fabrication: We start by designing the shape
of the finger to enable curling fully into itself, incorporating
four total tendons per finger, and redesigning the MCP joint
as a multi-axis flexure for increased dexterity in our desired
hand. We iterated on the finger design for approximately four
months and use this design for all four fingers in DASH-V1.

Designing V1 included considerations such as tendon
anchors, 3D-printing settings, and material stiffness. For
example, printing the hand with more infill makes it stiffer
but requires more torque than our motors can supply for the
joint’s full range of motion. To better understand the stiffness
of the fingers, we test the finger strength by curling the finger
completely and using a force gauge to pull on the finger until
it uncurls (see Table III for results). DASH-V1 hand design
is shown on the left in Figure 2(b). We designed the full
hand assembly for V1 in 1 month.

2) Evaluation: We test DASH-V1 on the 30 manipulation
tasks from Section III-D, repeating each task five times. Over
150 repetitions, DASH-V1 succeeded on all 5 repetitions
for 10 of the 30 tasks, as shown in Figure 6. For V1, these
tasks were Scissors, Hammer, Wooden cylinder, Cloth, Plush
Broccoli, Plush Dinosaur, Pringles can, Mustard bottle, Wine
glass, and Cup stacking. V1 struggled to grasp small objects
such as the M&M, Pen, and Chip since the fingers were
not able to reach and properly oppose each other. For tasks
involving precise motions such as picking the Grape off a
stem and opening the Plastic bag, V1 uses the abduction-
adduction capability. The abduction-adduction grip strength
of V1 is high and enables picking up objects such as the
grape off the stem with ease, as shown in Figure 5 inset.

V1 succeeds on five out of five repetitions on 10 tasks
but shows room for improvement. Grasps that require all
four fingers such as picking up a tennis ball would be more
successful if the thumb could reach and oppose the rest of
the fingers. The best opposability to the thumb was to the
ring finger, hence pinch (or precision) grasps were easiest to
execute with those two fingers. Improving the reachability
and opposability of the fingertips requires a smaller palm
or longer fingers. We explore these design options in V2 in
order to have more overlap in the workspace of the fingers.

B. Iteration V2

DASH-V2 performance improves on pick and place and
hold tasks requiring power grasps. Furthermore, V2 excels
at the levering task of cube flip on table, shown in Figure 5
inset, due to higher finger strength and fingertip reachability
from a smaller palm and longer finger hand design shown in
Table III and Figure 2(b).

1) Design & Fabrication: The second iteration of DASH
consists of changes to the size of the hand and the MCP
joint of the finger. To allow for more reachability among the
fingers as well as opposability, the fingers were made longer
and the palm was made smaller as shown in Figure 2(b).
For comparison, DASH-V2 is similar in size to the average
male hand which is 88.9mm wide and 193mm long (wrist to



Fig. 5: Subset of tasks with different performance success across V1 to V5 on specific tasks used to inform design iteration.
The top row of inset images shows representative tasks of successful tasks for each hand.

fingertip) [27] . Compared to DASH-V1, there is more than
a 25% reduction in area of the palm and the finger length
increased by 11% in V2 which is shown in Figure 2(b).

The MCP joint was improved to achieve a larger range
of motion. The underlying structure of the MCP joint is a
cylinder to act as a multi-axis flexure, thus we increase the
height of the cylinder to increase the joint angle range for the
side-to-side and forward motion of the fingers. The design
changes also resulted in a higher maximum load of a single
finger as shown under finger strength in Table III. Thus, V2
achieves increased range of side-to-side and forward motion
for the fingers by redesigning the MCP joint, and has a
larger overlap in the workspace of the fingers solving the
reachability and opposability issues in V1.

Designing, printing, and assembling V2 took 5, 83, and
6.5 hours, respectively. Printing V2 required us to not only
re-print the soft hand, but also the rigid motor housing as
the motor arrangement differs from V1. In total, making V2
from V1 took 94 hours.

2) Evaluation: With larger range of motion at the MCP
joint and better reachability, we expect V2 to achieve better
performance on tasks involving smaller objects like M&M,
Pen, and Chip. As shown in Figure 5, V2 did improve
performance on Pen and Chip. M&M and Card pickup were
tasks that did not improve from V1. Both of these tasks
require fine manipulation which is still a limitation in V2.
Instead, our main improvement from V1 to V2 is in achieving
better power grasps. Tripod grasps or using more than two
fingers was necessary to have stable grasps, especially for
the holding tasks such as Hammer, Screwdriver, and Chop-
stick. However, observations during teleoperation included
difficulty using precision grasps with two fingers.

V2 performs better than V1 in 14 tasks (refer to Figure 6),
including tasks involving Soft ball, Screw driver, Tennis
ball, Dry-erase board eraser, and Spam box that all require
power grasps. As shown in Figure 5, the most significant
improvements are seen for Pen, Chip, Tennis ball and Cube
Flip. The inset in Figure 5 shows V2 grasping Chip with the
ring finger and thumb finger, and V2 succeeding at all five
repetitions of Cube Flip. These improvements are possible
with better reachability and opposability of the thumb with
the rest of the fingertips.

Having more space between the fingers made abduction-
adduction tasks such as picking Grape off of a stem and

Hand design v1 v2 v3 v4 v5

Palm size 94x102 84x84 84x84 84x84 84x84
Finger length 90 100 100 100 100
MCP diameter 6 6 6 10 8
MCP height 6 8 8 8 8
DIP crease width 10.3 10.3 8.9 10.3 13.0
Thumb angle 45◦ 45◦ 0◦ 22.5◦ 22.5◦
Fingertip edge 3.5 3.5 1.73 3.5 3.5
Fingertip thickness 13.21 13.22 7.98 11.22 8.75
Finger strength 37.8 47.6 34.5 51.8 27.4

TABLE III: Hand design parameters where finger length
refers to the distances in millimeters from the top of the MCP
joint to the fingertip and finger strength (N) is measured by
pulling on a fully curled finger with a digital force gauge.

Wooden cylinder easier for V1 compared to V2, but V2
still performs reasonably well. Out of the 150 repetitions,
V2 is successful in 123 repetitions, which is 18 more when
compared to V1. Additionally, the number of tasks where
all five repetitions were successful increased from 10 tasks
using V1 to 14 tasks using V2.

C. Iteration V3

DASH-V3 has the best thumb opposability and thinnest
fingertip design out of all of our hand iterations, yielding
in the best score for Card Pickup as shown in Figure 5.
Thinner fingertips, however, led to weaker finger strength
which decreased task success for tasks such as Dry-erase
Board Eraser and Grape off stem.

1) Design & Fabrication: The changes from DASH-V2
to V3 involve changing the thumb placement and fingertip
shape. In order to make grasps with only two or three fingers
more stable, the thumb has to be directly opposable to the
rest of the fingers, most importantly the index finger. In
V2, the thumb has a 45-degree angle to the palm which
we change to be parallel to the index finger in V3, as
shown in the middle of Figure 2(b) and in Table III. In
addition to the thumb placement, the fingertip shape was
changed from a rounded surface to a thinner wedge-like
surface (see Figure 2). The rounded surface in V2 presented
a point contact when interacting with objects. In contrast, the
wedge-like surface will have a larger contact area and thinner
fingertip (similar to fingernail) in order to get under objects
to grasp. This results in a thin fingertip edge, almost half the
size of V1 and V2’s fingertip edge (see Table III). We also
move the tendon routing farther away from the center axis



Fig. 6: Task performance over 5 repetitions of each task
across V1, V2, V3, V4, V5, and Allegro as baseline. The
tasks are ordered difficult to easy from left to right, according
to task performance of Allegro.

of the MCP joint so that we can exert more torque when
folding the finger forward about the MCP joint.

Designing, printing, and assembling V3 took 4, 67.25, and
4.25 hours, respectively. Similar to V2, we reprinted the
motor housing again due to the new thumb placement. In
total, making V3 took almost 83.75 hours.

2) Evaluation: As shown in Figure 6, DASH-V3 has
more successful tasks than the previous hand iterations and
our baseline, completing 16 tasks successfully in all repeti-
tions as opposed to the 14 tasks V2 successfully executed.
V3 succeeded on all repetitions of Wooden Cylinder, Card
Pickup, Cup Pouring, Drill, Plush Dinosaur, and Mustard
Bottle, which are tasks V2 did not master. The task im-
provement was due to better thumb opposability compared
to V2. In total, V3 succeeded on 124 repetitions which is
1 more than the number of repetitions V2 is successful at.
With V3, we observe higher grasp stability during power
grasps and handling of delicate objects, during teleoperation.
Additionally, we find that the fingertip shape makes a large
difference for specific tasks. We clearly see this effect
occurring in Cube flip and Card pickup (see inset images
of V2 Cube Flip and V3 Card Pickup in Figure 5). The flat
fingertips of V3 are ideal for thin delicate card pickup but
not for the cube flip. Reorienting the cube in-hand in Cube
flip is better suited to the rounded fingertip on V2, keeping
a stable point contact while the object rotates on the table.

D. Iteration V4

DASH-V4 was optimized for strength as we found that
lacking for tasks such as Cube Flip for V3. This allowed
for heavy objects like Soft Ball to have great success with
V4 as shown in Figure 5 but decreased finger folding motion
resulted in decreased performance for tasks such as Hammer,
Screwdriver, and M&M.

1) Design & Fabrication: The fourth iteration of DASH
was designed to optimize for strength. We focused on re-
designing the MCP joint to be thicker, providing increased
stiffness for folding the fingers into the palm. Achieving the
right balance was challenging, as we aimed to maintain the
range of motion for MCP forward motion within the torque
limits of our motors. While a simple solution would be to

use larger motors to increase force and stiffness at the MCP
joint, this would result in a larger and heavier hand.

Additionally, we made changes to the fingertips and thumb
placement, creating a hybrid design influenced by DASH-
V2 and DASH-V3. Thicker fingertips proved useful for
tasks involving rotation, such as Cube flipping, while thinner
fingertips were beneficial for pinch grasps like Card pickup.
The result was rounded edges with a flat surface in the
center of the fingertip, providing versatility for pinch to
power grasps. Similarly, the thumb placement was positioned
between V2 at 45◦ and V3 at 0◦, settling at 22.5◦ relative
to the palm. While V2 excelled in power grasps and V3 in
pinch grasps like Card pickup, we aimed for V4 to perform
equally well in both types of grasping.

Designing, printing, and assembling V4 took 8.5, 82, and
5 hours, respectively. Similar to V3, we reprinted the motor
housing to accommodate the new thumb placement.

2) Evaluation: DASH-V4 successfully completed all five
repetitions of 17 tasks, surpassing the task performance
of V3. V4 maintained its performance in most of these
tasks, with the exception of Scissors, as shown in Figure 5.
However, it outperformed V3 in tasks involving the Dry-
erase board eraser and performed better than any previous
hand iteration in the Soft ball task. This was attributed to the
stronger MCP joint, which enhanced the finger strength, as
indicated in Table III. Nevertheless, the limited range of mo-
tion in the MCP forward joint resulted in poor reachability,
causing objects like Scissors to slip between the fingertips.

Overall, the hybrid thumb position and fingertip shape,
combining features from V2 and V3, proved advantageous
in achieving a greater number of tasks. However, the next
iteration should address the loss of range of forward folding
motion to improve reachability. The limited reachability of
V4 also led to zero successes out of five repetitions in four
tasks, including Hammer, Screwdriver, M&M, and Grape
off stem. All of these limitations can be attributed to the
restricted range of motion in the MCP forward joint.

E. Iteration V5

DASH-V5 aimed to be a combination of all previous hand
design features with respect to joint and fingertip thicknesses.
V5 generally outperformed all previous design iterations and
excelled at the Screwdriver task as shown in Figure 1.

1) Design & Fabrication: The fifth iteration of DASH
features a stiffer MCP joint compared to V3, but it is more
compliant than the MCP joint of V4. By increasing the
compliance at the MCP joint, we were able to achieve a
greater range of motion at the joint compared to V4, which
had limited folding capabilities. Furthermore, we made the
fingertip thinner than that of V4, and widened the DIP crease
(as shown in Table III), in order to improve the curling of
the finger. As a result, DASH-V5 exhibits the most extensive
curling motion among all the previous iterations.

Designing, printing, and assembling V5 took 2, 24, and
2.75 hours, respectively. Unlike the previous versions, we
kept the motor assembly unchanged and only replaced the



Fig. 7: Task performance across V1, V2, V3, V4, V5, and
Allegro as baseline on each category of tasks from Table II.

fingers of V4. Consequently, the total time required for
iteration was the lowest for V5, totaling 28.75 hours.

2) Evaluation: Among all the design iterations of DASH,
DASH-V5 performed the best. V5 succeeded on five out of
five repetitions on 19 tasks and achieved a completion rate
of 131 out of 150 total task repetitions. In addition to the
tasks that V4 succeeded on, V5 also completed five out of
five repetitions on the Hammer and Stacking cubes tasks.
This improvement indicates that we have made incremental
progress on the hand design. V5 had the most curling
range of motion than previous hands which made picking
objects easier for the teleoperating user due to stable grasps
enveloping objects into the palm.

As shown in Figure 5, V5 showed improved task per-
formance for Hammer, Screwdriver, Chip, M&M, Grape
off stem, and Plastic Bag. However, it performed worse
for the Chopsticks and Egg tasks. Although V5 has the
lowest finger strength among all DASH iterations due to
thinner joints and thinner fingertips (as shown in Table III),
its enhanced finger curling abilities even enabled a single
finger to hold objects. However, when completely curled,
thin objects such as the chopsticks were prone to falling
between the thumb and fingers. This issue could be addressed
by introducing longer fingers to allow for more overlap
between the fingertips. Overall, V5 outperformed all previous
iterations of DASH across all 30 tasks. However, it is worth
noting that certain hands may specialize in specific tasks. For
instance, V5 excelled at picking up Screwdriver, while V3
was the most suitable for Card pickup, as shown in Figure 5.
One interesting result involved the V5 screwdriver hold,
which aligned perfectly in the groove on the tool handle.

V. BASELINE STUDY: ALLEGRO DEXTEROUS HAND

Allegro [9] is an off-the-shelf gripper that we use as
a baseline. Allegro is a dexterous robotic hand that has
four fingers with motors at the joints, rigid structure, and
large rubber spherical fingertips. We perform the same 30
manipulation tasks from DASH-30 (Table II) with Allegro
to compare the performance against all iterations of DASH.

Allegro succeeded on all five repetitions on 7 out of 30
tasks. These tasks included manipulating the Drill, Dry-Erase
board eraser, Plush broccoli, Plush Dinosaur, Spam box,
Wine glass, and Stacking cubes, as shown as the rightmost
tasks in Figure 6. Allegro performed best on pick and place
tasks compared to other types of tasks as shown in Figure 7.
However, all iterations of DASH, except V1, were also
successful at these tasks.

The Allegro robotic hand and fingers had difficulty with
tasks such as picking up the Pen, Card, Plastic bag, Scissors,

and Hammer which required precision.While both DASH
and Allegro hands lack sensing capabilities, this dispropor-
tionately affected Allegro because lack of compliance made
it easy to grasp too tightly or not enough, especially for rigid
objects. Similarly, the Cup pouring grasp was unstable due
to the spherical fingertips rotating the cup in-hand during
the task. The side-to-side motion (or abduction-adduction)
of the fingers was limited, making Dice Rotation coarse
and unpredictable. However, Allegro had stable grasps for
larger and softer objects such as the Drill, Softball, Plush
Dinosaur, Plush Broccoli, and Wine Glass (see rightmost
tasks in Figure 6).

VI. DISCUSSION

Across the 30 tasks, we observe that V5 has the best
performance solving 19 tasks successfully completing all
repetitions, while V4, V3, V2, V1, and Allegro solve 17,
16, 14, 10, and 7 tasks, respectively. In Figure 7, we see that
all iterations of DASH outperform the Allegro baseline on
most categories of tasks listed in Table II as well as steady
improvement in DASH iterations except for twisting and
opening which are the most difficult categories of tasks. The
two twisting tasks were Dice Rotation and Grape which both
more successful with the larger palm and space between
fingers for V1 compared to other iterations. For opening
tasks, V2 had more success on opening Plastic Bag due to
its rounder fingertips and higher finger strength. Through
our suite of varied manipulation tasks and human-in-the-loop
design iteration, we validate our framework’s ability to use
real world evaluation to iteratively design soft robot hands
through rapid prototyping and teleoperation.

From our case study in Section IV, we draw three crucial
observations regarding our proposed framework. Firstly, the
direct feedback from the designer performing real world
manipulation tasks with DASH was crucial for us in in-
forming the design changes required to improve performance
across iterations. In contrast, testing in simulation can result
in design changes that do not necessarily translate to per-
formance improvement in the real world. Secondly, using
teleoperation removed the necessity of designing different
control policies for 30 various tasks across six robot hand
morphologies in our case study, and allowed us to adjust
grasps in real-time during task execution, which is often not
feasible in simulation or by using keyframed poses. Lastly,
despite using real robot hands in the design iteration process,
our framework has a short iteration time, consisting mostly
of printing time (about 80% of total time), by leveraging 3D-
printing and the use of teleoperation to evaluate the design
in the real world.

Our framework can extend to testing other soft robotic
hands in the real world for rapid design iteration. There are
three stages of our framework, as shown in Figure 2(a),
including design, fabrication, and evaluation. Some best
practices include incorporating a modular design to facil-
itate easier iteration, adopting rapid prototyping methods
for seamless fabrication, and favoring incremental design
changes to allow for targeted iteration on specific design



features. Our method of evaluating using teleoperation also
allowed for minimal changes in control when the hand design
changed. Our framework can be used to test easily prototyped
hands, such as those by Bauer et al. [4] or RBO [3], using
the same setup used for DASH iteration, similar to our
Manus [23] VR teleoperation system. Additionally, DASH-
30, our suite of 30 varied manipulation tasks can be used to
benchmark other dexterous hands in the community.

Observing that our robot hand has similar structure and
size to human hands, we note a crucial limitation of our
framework, shown in Figure 2(a), for robot hand morpholo-
gies that diverge from human hand morphology as teleop-
eration might not be feasible in such cases. Additionally,
calibration or mapping of the teleoperator’s hand to the robot
hand can have a significant impact on the robot hand’s per-
formance in real-world manipulation tasks. For example, an
inaccurate mapping from the teleoperator’s hand to the robot
hand can incorrectly evaluate the robot hand to be incapable
of some tasks. Another limitation for this framework is that it
can result in longer turnover times for designs that cannot be
made with rapid prototyping techniques such as 3D-printing.
Lastly, monotonic improvement is difficult to guarantee due
to the manual design iteration process in our framework.

VII. CONCLUSION AND FUTURE WORK

This paper presents a design iteration process that can
supplement existing design iteration techniques by leveraging
3D-printing and teleoperation. We exhibit the potential of this
framework through a case study of designing a 16-DoF 3D-
printed dexterous anthropomorphic soft hand DASH. By 3D-
printing the new design at each iteration, and evaluating it on
real-world manipulation tasks using teleoperation to inform
future hand designs, we consistently improve its perfor-
mance over the baseline Allegro hand and across successive
iterations of DASH. We open-sourced our DASH CAD
models and teleoperated demonstration data at https://
dash-through-interaction.github.io.

Future directions include automatic design iteration by
singling out features of the CAD design and correlating them
with capabilities of the hand. Further study would be required
to automate this process and use collected data to learn what
properties of the hand should be improved for better task
performance. Currently, the process of design iteration in
our case study was manual in that we chose parameters to
change based on task performance and observations from
real-world manipulation experiments.
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