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Abstract— A number of models that learn the relations
between vision and language from large datasets have been
released. These models perform a variety of tasks, such as
answering questions about images, retrieving sentences that
best correspond to images, and finding regions in images that
correspond to phrases. Although there are some examples, the
connection between these pre-trained vision-language models
and robotics is still weak. If they are directly connected to
robot motions, they lose their versatility due to the embodiment
of the robot and the difficulty of data collection, and become
inapplicable to a wide range of bodies and situations. Therefore,
in this study, we categorize and summarize the methods to
utilize the pre-trained vision-language models flexibly and easily
in a way that the robot can understand, without directly
connecting them to robot motions. We discuss how to use these
models for robot motion selection and motion planning without
re-training the models. We consider five types of methods to
extract information understandable for robots, and show the
examples of state recognition, object recognition, affordance
recognition, relation recognition, and anomaly detection based
on the combination of these five methods. We expect that
this study will add flexibility and ease-of-use, as well as new
applications, to the recognition behavior of existing robots.

I. INTRODUCTION

With the advancement of neural network, various deep
learning methods have been developed. The tasks include
image recognition [1], image generation [2], etc. Modalities
such as vision and language are well suited for deep learning
due to the ease of large-scale data collection, and they
have made great progress mainly in the fields of computer
vision and natural language processing. In addition, the
development of vision-language models that combine these
two aspects has been gaining popularity in recent years. [3]
has set forth a problem called Visual Question Answering
(VQA) and released its dataset. [4] has successfully solved
a zero-shot image classification problem by training the
relations between images and phrases through contrastive
learning. [5] has successfully solved various problems such
as Visual Question Answering, Image Captioning, and Visual
Grounding with a single model. Several methods to learn the
relations among various modalities is being applied to robot
behavior. [6] has set forth a problem called Embodied Ques-
tion Answering, in which the robot performs path planning
to search for the answer to a question in a 3D simulation
space. On the actual robot, [7] has successfully achieved a
picking task from object recognition and ambiguous verbal
instructions. [8] has enabled a variety of pick-and-place
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Where is the handle of 
the kettle?

Where is the handle of 
the fork?

Is the elevator 
door open?

Is the kitchen clean?

Is the door open?

What number is written 
on this display?

Fig. 1. The concept of this study. The mobile robot recognizes if the door
is open, if the kitchen is clean, where the handles of the kettle and fork are,
what number is shown on the display, and if the elevator door is open.

tasks using CLIP [4]. However, the data collection suddenly
becomes difficult once the robot motion is used as data, and
the number of data that can be contained in the dataset drops
by a large order of magnitude. In most cases, the models
trained using robots work only in the environment and robot
body where the data is collected, resulting in a significant
loss of versatility and adaptability. Note that there are efforts
to solve this problem by collecting a large amount of data
on a large number of embodiments [9].

From these points of view, we do not relate robot motions
directly to vision and language in this study, but apply Pre-
Trained Vision-Language Models (PTVLMs) in a form
that can be understood by robots. The form of information
understandable for robots is a continuous value with a few
dimensions or a discrete value with a small number of
choices. Depending on its usage, PTVLMs can significantly
improve the recognition ability of existing robots, and lead
to a variety of new recognition behaviors. We will categorize
the extraction methods of information understandable for
robots using PTVLMs, and experiment with various tasks
that can be accomplished by combining the methods. Our
policy is to take full advantage of the high versatility and
adaptability of PTVLMs provided by the large datasets, so
we do not perform any re-training using our own datasets
that would reduce the versatility and adaptability.

We will first describe some possible applications of this
study. For example, whether the door is open or closed
has been previously recognized by the presence or absence
of point cloud, but by using PTVLMs, its recognition is
possible by simply asking the question “Is the door open?”
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Fig. 2. The overview of tasks using Pre-Trained Vision-Language
Models (PTVLMs), implementations of PTVLMs, information extraction
understandable for robots using PTVLMs, and robotic applications of the
information extractions.

for the current image. The door handle has been previously
recognized using template matching or a trained model with
a dataset created by human annotation, but with PTVLMs,
the location of a door handle can be recognized by simply
asking “Where is the door handle?”. Also, anomaly detection
has been previously performed by learning images in the
normal state and calculating the rate of reconstruction [10],
but with PTVLMs, it is possible to detect anomalies with
verbal explanations by comparing the descriptions of the
normal and current states. Although a very simple idea, we
believe that this method of applying PTVLMs can easily
and flexibly increase the recognition ability of robots.

II. ROBOTIC APPLICATIONS OF PRE-TRAINED
VISION-LANGUAGE MODELS

A. Overview of Pre-Trained Vision-Language Models

The overall structure of this study is shown in Fig. 2.
There are various tasks in the vision-language model, and
[11] has classified them into four categories: generation
task, understanding task, retrieval task, and grounding task.
The generation task includes Image Captioning (IC), which
generates captions of images, and Text-to-Image Generation
(TIG), which generates images from texts. The understanding
task includes Visual Question Answering (VQA), which
answers questions about images, Visual Dialog, which an-
swers questions based on images and dialog history, Visual
Reasoning, which requires justification to the answer of
VQA, and Visual Entailment (VE), which verifies the seman-
tic validity of image-text pairs. The retrieval task includes
Image-to-Text Retrieval (ITR) and Text-to-Image Retrieval
(TIR), which retrieve the relationship between image and text

from predefined choices. The grounding task includes Phrase
Grounding and Reference Expression Comprehension, which
extract the bounding box of the corresponding location in the
image from the text.

Considering the simplicity of use for robots, we only
handle tasks that use direct vision-language relations. In
other words, we do not deal with Visual Dialog which
includes dialog history and Visual Reasoning which requires
reasoning. To summarize, the tasks we handle in this study
are IC, TIG, VQA, VE, ITR, TIR, and VG (since Phrase
Grounding and Reference Expression Comprehension are
almost the same, we unify them as Visual Grounding, VG).
In this study, we treat OFA [5] and CLIP [4] as PTVLMs
that cover these tasks. OFA is a method that unifies IC, TIG,
VQA, VE, and VG with a single model. CLIP is a model
that can acquire the relationship between images and texts
through contrastive learning, and is capable of ITR and TIR.
Note that the model itself is not limited to OFA or CLIP, as
long as it can perform these tasks.

B. Information Extraction from Pre-Trained Vision-
Language Models for Robotics

Discrete values with multiple choices (e.g. language) are
difficult to handle in a robot, which operates by human pro-
gramming. Also, multi-dimensional continuous values (e.g.
vision) are difficult to incorporate directly into a program,
and some kind of information extraction is necessary. In other
words, it is necessary to extract information as discrete values
in a predefined small number of choices, or as continuous
values in a small number of dimensions. In this study, we
classify the methods to extract information from PTVLMs
in a way that robots can understand into the following five
categories.

• Binary VQA (BVQA): binary information is extracted
by asking questions such as “Is -?” and “Do -?” in VQA.

• Matching with VQA (MVQA): discrete values in
a small number of choices are obtained by asking
questions such as “What kind of -?” and “How much
-?” in VQA and by matching the answers to the phrases
prepared in advance.

• Image-to-Text Retrieval (ITR): discrete values in a
small number of choices are obtained by searching
for the phrase that best matches the image among the
predefined choices.

• Visual Grounding (VG): continuous values in a small
number of dimensions are obtained by selecting the
bounding box in the image that best matches the phrase.

• Difference of Image Captioning (DIC): binary in-
formation is obtained by quantifying the difference
between the descriptions output by IC.

It is difficult to extract information directly from images in
a form understandable by robots, so it is difficult to use
Text-to-Image Generation (TIG) and Text-to-Image Retrieval
(TIR). If the output of VQA is a sentence, it is not possible
to extract information directly in a form understandable by
robots, so we ask “Is -?” or “Do -?” questions that return
a binary answer of Yes or No (BVQA), ask “What kind



of -?” or “How much -?” questions that output simple and
short answers that match predefined choices (MVQA), or
calculate the difference in descriptions output by Image
Captioning using Sentence-BERT [12] (DIC). ITR and VG
can directly output the answers in a form understandable by
robots. Visual Entailment (VE) is considered to be included
in BVQA.

The details of the models to be used for the five types of
information extraction are described below.

1) Binary VQA: BVQA is a task that asks questions Q
such as “Is the door open?” or “Does the image describe
a person running?” for the current image V to extract
binary answers A of Yes or No. We can express BVQA
as fBV QA(V,Q) = A (A ∈ {Yes,No}). Binary values are easy
to use with the robot programming of “if-else”. Multiple V
with noise and multiple Q with rephrased expressions of the
same content are prepared, and A is determined based on
the ratio of Yes and No. In this study, five V are prepared
by RGBShift, which adds randomly selected values from a
uniform distribution within the range of [-0.1, 0.1] to each
RGB value. We prepare four types of Q by changing the
article to {a, the, this, that}, and integrate a total of 20 results
which are the combinations of these V and Q. Since OFA
is trained by combining five multimodal tasks including IC
and VQA, A does not always become Yes or No. Therefore,
if a value other than Yes or No is obtained, the answer is
considered as Invalid.

2) Matching with VQA: MVQA is a task to select the
matching answer A to questions Q such as “What object
is included in this image?”, “What color is the apple?”,
and “How big is this apple?” from the predefined choices
C. We can express MVQA as fMV QA(V,Q,C{1,··· ,NC}) = A
(A∈C{1,··· ,NC}, where NC expresses the number of predefined
choices). The robot behavior is described for each C, and
conditional branching is possible depending on the selected
C. Similar to BVQA, multiple V with noise and multiple Q
about the same state are prepared, and A is determined based
on the percentage of matches. Since the C are not always
output as the answers, the answers are considered Invalid if
they do not match.

3) Image-to-Text Retrieval: ITR calculates the degree
of matching between the current image V and each of
the predefined phrase choices C, and selects the choice
A with the highest degree of matching. We can express
ITR as fIT R(V,C{1,··· ,NC}) = A (A ∈ C{1,··· ,NC}, where NC
expresses the number of the predefined choices). Similarly to
MVQA, the actions are described for each C, and conditional
branching is possible depending on the selected C. In the
original CLIP to conduct ITR, a sentence similar to the
current sentence is selected from a large amount of textual
datasets. However, in this study, a small number of C are
given in advance and the robot selects its answer among
them, so that it is understandable for robots. Compared to
MVQA, it is likely to be able to select a more precise answer
than MVQA, since it can output the probability for each C.

4) Visual Grounding: VG is a task to determine a target
phrase Q such as “a refrigerator” to ask the question “Which

region does the text ‘a refrigerator’ describe?”, and to get
the bounding box A of the relevant part. We can express
VG as fV G(V,Q) = A (A expresses the coordinates of the
bounding box). This method is compatible with various
controls because it can obtain the location of an object in V
based on an arbitrary Q. Note that there are many methods
to perform only VG, such as ViLD [13] and LSeg [14].

5) Difference of Image Captioning: DIC computes the
difference A of the situational descriptions obtained from the
question Q “What does the image describe?” for two images
V{1,2}. We can express DIC as fDIC(V{1,2},Q)=A (−1≤A≤
1). The two sets of the situational descriptions obtained at a
certain location are vectorized by Sentence-BERT [12], etc.
By calculating the cosine similarity A between these vectors
and cutting them by a threshold value, it is possible to obtain
a binary result of whether or not a change has occurred. In
addition, since the language is given, it is easy for humans to
understand the change intuitively. Also, by using GPT-3 [15]
and asking questions such as “What is the difference between
‘text1’ and ‘text2’?” (where ‘text1’ and ‘text2’ refer to each
situational description), it is possible to directly output what
the difference between them is as sentences.

C. Robotic Applications of Information Extraction from Pre-
Trained Vision-Language Models

Using the five information extraction methods described so
far, we categorize the specific tasks that can be performed.
Here, we consider the following five tasks: object recogni-
tion, state recognition, affordance recognition, relation recog-
nition, and anomaly detection.

1) Object Recognition: Among object recognition, we
can mainly perform class recognition, feature recognition,
and location recognition of objects. Class recognition can
be achieved by making a binary judgment of whether a
particular object exists or not using BVQA, or by making a
multiple-choice judgment using MVQA or ITR. This method
can be used to determine whether or not an object is correctly
grasped and to make a transition to the next action.

Feature recognition can be achieved by a multiple-choice
judgment using MVQA or ITR. Q of “How big is -?” or
“What color is -?” in MVQA can extract information such
as color, shape, and size of an object. Regarding ITR, feature
recognition is also possible by defining C such as “a {large,
medium, small} egg”.

Location recognition can be achieved by outputting the
location of a specific object in the image using VG. The
obtained locations can be used for grasping control by
masking the point cloud within the location, or for wheeled-
base control by measuring the distance to the location.

By combining these methods, stepwise refinement of ob-
ject recognition is also possible. The presence of the target
object is confirmed by BVQA, MVQA or ITR, and its
bounding box is cropped by VG. After that, class recog-
nition for another target object against the cropped image is
performed, and these process are executed iteratively. This
method is useful for object recognition in a refrigerator,
object recognition on a desk at a distance, and so on.



2) State Recognition: State recognition mainly uses
BVQA or ITR to check the binary state of the current
environment, objects, etc. For example, in BVQA, the state
of a door can be recognized by asking “Is this door open?”.
Regarding ITR, the same result can be obtained by preparing
C of “an open door” and “a closed door”. Another benefit
of this state recognition is that it can recognize ambiguous
and qualitative states based on the knowledge obtained from
a large-scale dataset. For example, it can make human-like
judgments for Q such as “Is this kitchen clean?”.

In addition, it can recognize a character state by asking
Q such as “What is written on this bottle?”. Moreover,
this state recognition is likely to make it possible to write
conditional expressions such as “if-else” and “assert” in robot
programming using the spoken language.

3) Affordance Recognition: Affordance refers to the role
of each part of a tool or object; for example, the place to
grasp or the effector that exerts the action. PTVLMs enable
implicit affordance recognition, whereas in most cases, a
dedicated network for affordance recognition has been set
up so far [16]. For example, by running VG on Q such
as “handle of the scissors” or “handle of the kettle”, it is
possible to recognize the parts of tools and objects with
meaning related to their operations. The recognized parts can
be used for grasping, tilting the spout of the kettle toward
the cup, and so on.

4) Relation Recognition: MVQA and ITR allow us to
recognize relationships between objects. In MVQA, by ask-
ing Q “What is the relative relationship between the mouse
and keyboard?”, we can extract the relationship in terms of
position, such as “next to”, “in front of”, “on”, and “under”.
By recognizing the relations based on which prepositions
are included in the sentences, we can generate the next
robot movements. This can also be used for segmentation of
motions. By recognizing not only changes in relationships
between objects but also relationships between the robot
and objects, the robot can detect the changing point as an
anomaly by using DIC.

5) Anomaly Detection: DIC can be used for anomaly
detection. Until now, anomaly detection has usually been
performed by collecting and learning images in normal
conditions, and then using the degree of reconstruction of
the images [10]. Here, in the normal state, the robot takes
pictures at a certain location and records them. Next, we
generate captions for the current images taken at the same
location and for the images taken in the normal state,
and output the difference between them using DIC. If the
difference is large, it is assumed to be abnormal, and humans
can understand the change linguistically from the difference
between the captions.

III. PRELIMINARY EXPERIMENTS

We will experimentally describe specific use cases for the
five recognition behaviors described in Section II-C. The
purpose of this study is to classify the usage of PTVLMs
and its possible applications for easily and flexibly generating
recognition behaviors of robots. The experiments are mainly

qualitative as the comprehensiveness of the applications is
most important. On the other hand, the reliability of each
experimental application is ensured by adding noise to the
images or changing the angle of view to compute the mean
and variance.

A. Object Recognition

Although object recognition is partially a common prob-
lem setup, it is described for the sake of comprehensiveness.
The essence of this study lies in the next section and
thereafter.

First, Fig. 3 shows the results of object class and feature
recognition using MVQA or ITR. We set up problems of
class recognition “class”, shape recognition “shape”, and
color recognition “color”, and applied them to three object
images: (1) yellow round cup, (2) clear round glass, and (3)
blue rectangular box. The questions Q with four different
articles in MVQA, the choices C that takes the match,
and the choices C in ITR are prepared. MVQA shows the
percentage of each C and Invalid (invalid answer other than
the predefined C) for the 20 trials described in Section II-B,
and ITR shows the probability of each C for a single trial.
Note that for each object, V from five different angles of
view are prepared, and the mean µ and standard deviation
σ are also shown for the percentage of correct responses.
Regarding class recognition, both MVQA and ITR correctly
recognize (1) as “cup”, (2) as “glass”, and (3) as “box”. As
for MVQA, for example, various answers such as “yellow
cup” and “coffee cup on the desk” are output for (1), so if
a word of each C is included in the answer, we judge that
the output matches it. Next, regarding shape recognition, we
prepared two C: “round” and “rectangular”. (1) and (2) are
correctly recognized as “round”, and (3) as “rectangular”. In
MVQA, even if there are many invalid cases, the recognition
accuracy becomes 100% by ignoring them. On the other
hand, especially for (1), the answer of MVQA is often
invalid, and ITR is able to give a clearer answer. Finally,
for color recognition, MVQA and ITR correctly identify (1)
as “yellow”, (2) as “clear”, and (3) as “blue”, except for
(3) in ITR, almost the same as class and shape recognition.
However, there are many invalid answers for (2) in MVQA,
and the answers for (3) in ITR are highly scattered. In
the former, the answer is often “white” because it has
assimilated into the desk. In the latter, the white part of
the box seems to be transparent, and the probability of
“clear” is considered to be higher. Although color and shape
recognition is uncommon, class recognition is a common
problem. In [17], class recognition using ITR is used in
a robot competition because it is possible to improve the
recognition accuracy subsequently without re-training by just
tuning the text of the choices (called prompt tuning).

Next, Fig. 4 shows the results of the object location recog-
nition using VG. Not only phrases for the class recognition
such as “cup”, “glass”, and “box”, but also phrases for the
feature recognition such as “round object” and “clear object”
can be used to extract the location of the corresponding
object. As exactly the same results can be obtained from the
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Fig. 3. The results of the object class, shape, and color recognition using MVQA or ITR for three examples.
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Fig. 4. The results of object location recognition with the information of
the object class, shape, and color using VG.

MVQA: 𝑄. What does the image describe?
𝐴. a hospital room with a TV on the wall.

VG: a TV

MVQA: 𝑄. What does the image describe?
𝐴. a view of the mountains on a computer 

screen

MVQA: 𝑄. What does the image describe?
𝐴. a small kitchen with a sink and a stove 

and a refrigerator

VG: a stove

MVQA: 𝑄. What does the image describe?
𝐴. a stove top with a tea kettle on it

(1)

(2)

Fig. 5. The results of stepwise refinement of object recognition using
MVQA and VG, in order.

class recognition and feature recognition phrases, the results
represented by the green bounding boxes have overlapped.
Note that since OFA outputs only one bounding box that
matches best, only object (1) is recognized as “round object”.

Finally, Fig. 5 shows the results of stepwise refinement
of object recognition. Two situations, (1) and (2), were
prepared, and object recognition of the target object was
performed in the order of MVQA, VG, and MVQA. For
example, in (1), the recognition is initially limited to a room
with a TV on the wall, but by extracting the location of

the TV and performing MVQA on the image, it is possible
to recognize that a mountain is displayed on the TV. More
detailed object recognition is possible by stepwise refinement
of the target object.

B. State Recognition

Fig. 6 shows the results of binary state recognition using
BVQA or ITR. Regarding BVQA, we describe four types
of Q with different articles, and regarding ITR, we describe
two C. BVQA shows the percentages of Yes, No, and Invalid
(answers other than Yes or No) for the 20 trials described in
Section II-B, and ITR shows the probabilities of Yes (the first
choice) and No (the second choice) for one trial. Note that for
each state, V from five different angles of view are prepared,
and the mean µ and standard deviation σ are also shown for
the percentage of correct responses. Three examples (1)–(3)
are provided, where all the answers should be Yes for the left
image and No for the right image. From the figures, BVQA
correctly outputs Yes or No in all cases. On the other hand,
the ratio of Yes and No for ITR is close to 50% and 50%,
and it is not as clearly recognized as BVQA. As for (3),
the answer is reversed. BVQA is easier to use to describe
the state of the environment and objects than ITR, because
BVQA allows more flexible question phrases and clearer
answers than ITR. Note that in (1) and (2), Q is asked in
the form of “Is -?” but by asking Q of “Does this image
look like -?” as in (3), it is possible to make the percentage
of invalid answers almost zero. For (3), if we ask Q of “Is
-?”, 20/20 cases are invalid. On the other hand, it has been
experimentally found that the answers to Q of “Does this
image look like -?” is not very accurate compared to “Is -?”.

Of course, it is possible to build state recognizers with
almost 100% accuracy by collecting training data or by man-
ually programming for the specific environment. However,
an important contribution of this study is that it can be
easily applied to a wide variety of environments and robots,
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ITR: 𝐶. {a refrigerator with open door, a refrigerator with closed door}
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BVQA: Q.  Does this image look like the robot hand is grasping
{an, the, this, that} apple?

ITR: 𝐶. {an apple grasped in the robot hand,
an apple not grasped in the robot hand}

BVQA

ITR

(1)
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Fig. 6. The results of state recognition using BVQA and ITR for three
situations.

without any programming or model training specific to each
environment and robot.

Next, Fig. 7 shows the results of binary state recognition
using BVQA for qualitative states that are more difficult to
judge. The percentages of Yes, No, and Invalid are shown
for Q of (1) whether the trash can is full and (2) whether
the kitchen is clean. Although the results are not as clear as
those of Fig. 6, answers are generated in a manner consistent
with human intuition. It can be applied to tasks such as robot
patrolling.

Finally, Fig. 8 shows the results of character state recogni-
tion using MVQA. The robot can recognize various character
shapes such as numbers on an elevator display, letters on
a cardboard box, room numbers, and so on, by devising
questions. This can be applied to robots checking mail,
recognizing the floor number in an elevator, and entering
a certain room based on the room number.

C. Affordance Recognition

Fig. 9 shows the results of the affordance recognition
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Fig. 7. The results of qualitative state recognition using BVQA for two
situations.

𝑄. What number is 
written on this display?

A. 12

𝑄. What is written on 
this box?

A. amazon

𝑄. What is the room 
number written here?

A. 73b1

(1) (2) (3)

Fig. 8. The results of character state recognition using MVQA.

using VG. First, the handle and the spout of the kettle are
recognized in the top row of Fig. 9. This means that the
robot can grasp the kettle, bring the spout close to the cup,
and pour hot water into the cup. In addition, the robot can
recognize the grasping positions of various objects such as a
door, cup, spray, shelf, oven, toaster, scissors, hammer, and
umbrella.

D. Relation Recognition

Fig. 10 shows the results of relation recognition using
MVQA. We prepared V where the keyboard and mug are in
front-back, left-right, and top-bottom positional relationships,
and asked Q of “What is the relative relationship between
the mug and the keyboard?”. Each relationship is expressed
by the prepositions “in front of”, “next to”, or “on top
of”. By matching these prepositions with predefined C,
we can recognize the relationship and apply it to robotic
manipulation.

E. Anomaly Detection

Fig. 11 shows the results of anomaly detection using DIC.
We take “original” as an original V , and prepare a set of V
that are almost the same (“same”) or different (“different”)
with the original V . We show the description of those images
output by IC and the cosine similarity between “original” and
“same”, or “original” and “different”. Note that five images
applied with RGBShift are prepared for each V , and the



handle of the kettle spout of the kettle

handle of the mug handle of the mug

handle of the shelf handle of the oven handle of the toaster

handle of the door

handle of the scissors handle of the hammer handle of the umbrella

handle of the spray

Fig. 9. The results of affordance recognition using VG.

𝐴. It is sitting on top of
the keyboard

𝐴. It is next to the 
keyboard

𝐴. The mug is in front of
the keyboard

MVQA: 𝑄. What is the relative relationship between the mug and keyboard?

Fig. 10. The results of relation recognition using MVQA for three
situations.

average µ and standard deviation σ of the similarity are
described. Three examples (1)–(3) are given, all of which
show high similarity between “original” and “same”, and
low similarity between “original” and “different”. Opening
the door of the shelf or placing objects on the desk increases
the number of descriptions about the objects in the shelf
or the newly placed objects. Although the results output
by IC change slightly when the angle of view and lighting
conditions change, the similarity does not decrease much
because the descriptions are similar. This similarity enables
the robot to detect anomalies and to communicate them to
the surrounding people through spoken language.

IV. DISCUSSION

The experimental results are summarized and discussed
in terms of their performance, limitations, and development.
First, object recognition was possible using either MVQA
or ITR. In MVQA, there are some cases where the answer
becomes invalid, but this can be improved by preparing
multiple questions and images, ignoring the invalid answers,
and obtaining the answer with the highest probability. While
shape and color recognition of objects can be performed in
the same way, there were some cases where recognition does
not work well with ITR. It was also possible to recognize

same

𝜇 = 0.952
𝜎 = 0.076

original different

a table with a keyboard and 
a monitor on it

a box of tissues sitting on a 
table next to a box

a table with a computer 
monitor and a keyboard on 
it

a kitchen with blue cabinets 
and a sink with dishes in it

an open cupboard in a 
kitchen with dishes and cups 
on the shelves

a kitchen with blue cabinets 
and pots and pans on the 
wall

a refrigerator and a 
microwave in a small 
kitchen

the inside of an open 
refrigerator with soda and 
other drinks

a kitchen with a refrigerator 
and a microwave

(1)

(2)

(3)

𝜇 = 0.453
𝜎 = 0.029

𝜇 = 0.964
𝜎 = 0.037

𝜇 = 0.530
𝜎 = 0.023

𝜇 = 0.885
𝜎 = 0.107

𝜇 = 0.635
𝜎 = 0.061

Fig. 11. The results of anomaly detection using DIC for three situations.
The original image and the images that are “same” as or “different” from
it are shown, along with the similarity scores.

the location of an object not only by its class, but also by its
shape and color. Furthermore, the combination of VG and
MVQA enables stepwise refinement of object recognition.

Second, state recognition was possible using either BVQA
or ITR, and BVQA was able to output clearer answers
compared to ITR. In ITR, information regarding the object
(e.g. door) is strong, while the information regarding the state
(e.g. open) is weak, making it difficult to judge the state. As
for BVQA, there may be many invalid answers depending
on the question, but this can be avoided by adjusting the
question. This state recognition can also answer to qualitative
questions such as whether the kitchen is clean or dirty, which
is less clear compared to whether the door is open or closed.
Of course, this is a concept averaged from a large dataset,
but it is possible that the robot can acquire a general human
sense. In addition, the robot can recognize the character state
on a display or on paper, and these can greatly expand the
range of executable tasks without any re-training.

Third, affordance recognition was possible by the textual
innovations in VG. The concept of affordance is obtained
implicitly from a large dataset without using a specialized
neural network. Affordance recognition is possible for a wide
variety of objects and tools.

Fourth, relation recognition was possible by taking prepo-
sitional matches with predefined choices using MVQA. By
knowing the relation between specified objects, the robot
can manipulate them to change to the target relation. In the
future, it is expected to be applied to motion segmentation,
human motion understanding, imitation learning, and so on,
based on the change of relations between objects and bodies.

Finally, anomaly detection was possible by vectorization
and differencing of sentences output by IC (DIC). Although
the outputs of IC change slightly with changes in the angle
of view or with noise, the differences in the descriptions



are not large, resulting in a high degree of similarity in the
outputs. On the other hand, when the images change signif-
icantly, the outputs of IC also change significantly and the
similarity score drops, thus enabling anomaly detection with
the threshold value. Using sentences to detect differences is
compatible with the use of chat tools and conversation to
report anomalies, and further applications are expected.

In this study, we have comprehensively described the
innovativeness of this idea through preliminary experiments.
The vision-language model is still in the process of signif-
icant development, and it is necessary to keep an eye on
its trend, create further applications, and incorporate them
into actual robots. As one example, we show a simple
experiment in a supplementary video. We have performed
an automatic patrol experiment using state recognition on
the mobile robot Fetch. The robot can close the refrigerator
door by ITR if it is open, turn off the faucet by BVQA if
water is running, and exit the room by ITR if the door is
open. On the other hand, more detailed performance checks
are needed for each example when incorporating PTVLMs
into actual robots, which will be addressed in the future.
In particular, it is important to discuss how to prepare
the question phrases, predefined choices, and thresholds for
determining the output. Although we have adjusted them
manually in the preliminary experiments, it would be better
to automatically acquire them from the data of actual tasks.
[18] has proposed a method to create multiple questions by
changing the articles, state expressions, forms, and wordings,
and to select the best combination of questions by a genetic
algorithm. In the future, we would like to generalize the
process of choosing questions and predefined choices for the
best performance.

V. CONCLUSION

In this study, we comprehensively and experimentally
show that a pre-trained vision-language model can be used
for various recognition behaviors in robots. The model is
used to extract discrete values of a few choices or continuous
values of a few dimensions, without directly connecting
them to the action of robots. We classify the information
extraction into five methods: binary state recognition using
VQA (BVQA), matching with predefined textual choices
after VQA (MVQA), retrieval of matching textual choices
from images (ITR), extraction of locations in images that
match the text (VG), and difference computation of outputs
by IC (DIC). Using these five methods, robots are able
to perform object recognition including class, shape, and
color, as well as location recognition of objects, state recog-
nition including qualitative states, affordance recognition
of objects and tools, relation recognition of objects, and
anomaly detection. Although the idea is very simple, the
appropriate combination of vision and language can improve
the flexibility and usability of recognition systems that have
been trained or programmed for specific robot bodies and
environments. The robot can figure out whether the door is
open or closed and where to grasp the tool using spoken
language, and detect anomalies in a descriptive manner.
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