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Abstract— Recent progress in legged locomotion has rendered
quadruped manipulators a promising solution for perform-
ing tasks that require both mobility and manipulation (loco-
manipulation). In the real world, task specifications and/or envi-
ronment constraints may require the quadruped manipulator to
be equipped with high redundancy as well as whole-body motion
coordination capabilities. This work presents an experimental
evaluation of a whole-body Model Predictive Control (MPC)
framework achieving real-time performance on a dual-arm
quadruped platform consisting of 37 actuated joints. To the
best of our knowledge this is the legged manipulator with
the highest number of joints to be controlled with real-time
whole-body MPC so far. The computational efficiency of the
MPC while considering the full robot kinematics and the
centroidal dynamics model builds upon an open-source DDP-
variant solver and a state-of-the-art optimal control problem
formulation. Differently from previous works on quadruped
manipulators, the MPC is directly interfaced with the low-level
joint impedance controllers without the need of designing an
instantaneous whole-body controller. The feasibility on the real
hardware is showcased using the CENTAURO platform for the
challenging task of picking a heavy object from the ground.
Dynamic stepping (trotting) is also showcased for first time with
this robot. The results highlight the potential of replanning with
whole-body information in a predictive control loop.

I. INTRODUCTION

Model Predictive Control (MPC) has proved to be a
powerful strategy for addressing the motion planning and
control problem of quadrupeds, which have now achieved a
basic level of autonomy in real world [1]. The underlying
reason of deploying MPC is the intuitiveness to formulate
the problem as a constrained model-based optimal control
problem (OCP) that is continuously solved over a receding
finite time horizon. Optimizing over the time horizon enables
anticipating future expected events (e.g. make/break of con-
tacts) and continuous replanning compensates for model er-
rors and environment changes, while satisfying the imposed
constraints. Recently there has been an increasing interest in
extending these capabilities to quadruped manipulators to-
wards enabling the execution of complex loco-manipulation
tasks. Legged manipulators, in general, promise the real-
world sensorimotor skills needed for interaction not only
between the robot legs and the terrain to be traversed (legged
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Fig. 1. The dual-arm quadruped CENTAURO robot controlled with the
proposed whole-body MPC for a variety of motions: a) trotting b) 5 kg
object picking from the ground and c) large height reaching. Corresponding
video: https://youtu.be/8XIAtw4201o

locomotion) but between one or more mounted robotic arms
and its surrounding objects (manipulation), as well.

Unfortunately, the promising applicability when augment-
ing a quadruped with one or more robotic arms comes at
the cost of increased complexity, since quadruped manipu-
lators consist of multiple kinematic chains and Degrees-of-
Freedom (DoF). This increased system dimension combined
with the non-linear, hybrid and floating-base dynamics render
real-time MPC a hard problem, which highly depends on the
MPC design specifications, e.g. the robot model and the OCP
solver. This difficulty has motivated a number of approaches
which plan and/or control the motion for locomotion (legged
body) and manipulation (armed body) separately, therefore
splitting the problem into two tractable ones [2]–[6]. In
some cases the effect of manipulation planning has been
considered during locomotion control but not vice versa [5].
These approaches are considerably limited when it comes
to real-world tasks, which may require coordination of the
robot’s whole-body for leveraging the available redundancy,
e.g. interacting with objects close to the limit of the robot’s
workspace while satisfying multiple constraints. In fact,
humans’ advanced mobile manipulation skills are based on
whole-body coordination even for simple tasks like opening
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a door or picking up an object from the ground.
To that end it is easily understood that a MPC capable for

generating whole-body motion behaviors should consider the
full robot kinematics as well as a dynamics model with as
much fidelity as required by the targeted task (ideally full
dynamics). In this direction, a number of works on bipeds
[7]–[9], quadrupeds [10]–[13] as well as other mobile manip-
ulators [14] have achieved real-time performance. For what
concerns quadruped manipulators the work of [15] (applied,
also, to [16], [17]) has achieved similar results, considering
full kinematics and the centroidal dynamics, for a quadruped
with an up to 6 DoF robotic arm1. Despite this progress,
whole-body MPC has not been yet evaluated for quadruped
manipulators that go beyong the usual 3 DoF leg structure
and a single 6 DoF mounted arm, which can be only partially
explained by the limited current availability of this kind of
platforms. In fact, there exist highly redundant quadrupeds
(bi-manual and/or with more complex leg kinematics) but
they are mainly planned and controlled through simplified
model-based techniques [21] or teleoperation schemes [22],
[23] that rely on instantaneous control (i.e. there is no
prediction). As a result, it is not clear to what extent, in
terms of real-time performance, whole-body MPC can be
applied to such systems and the advantages of this method
have not been deployed for a variety of applications that
require higher redundancy. Such tasks can be bi-manual loco-
manipulation ones (where at least two arms are needed)
or heavy physical interaction tasks (e.g. where higher-DoF
legged articulation can establish suitable support contacts
[24]). This paper consists a first step towards this direction.

The main contribution of this work is presenting the ex-
perimental results of applying whole-body MPC and achiev-
ing real-time performance to a highly redundant dual-arm
quadruped. The aim is to bridge the gap between motion
control of today’s most redundant quadruped manipulators
and current MPC capabilities. The adopted approach is
inspired from [15], however the CENTAURO platform [25]
used in this work consists, at its current version, of much
more actuated joints. In particular, it has 37 actuated DoFs
which is more than double than the 18 actuated DoFs
quadruped manipulator of [15]–[17] and much higher than
the 22 actuated DoFs considered in state-of-the-art MPC
schemes for bipeds [8], [9]. Besides the technical details for
scaling whole-body MPC to such a high-dimensional system
the proposed framework, differently from [15], [16], [21],
does not rely on a WBC. This is only feasible due to the
whole-body information considered in the MPC formulation.
The motivation for exploring an approach without a WBC
arises from the fact that the latter is a separate controller
with different control objective and constraints, thus, does not
explicitly satisfy compliance with the optimal MPC policy,
as has been argued in [26]. Finally tuning a WBC consists
an additional task requiring high expertise. Summing up the
contributions of this paper are:

1Most of the mentioned works rely on recent advances on rigid multi-
body dynamics software [18] as well as numerical Differential Dynamic
Programming (DDP) based solvers [19], [20].

• An implementation and experimental evaluation study
using a whole-body MPC framework for a highly redun-
dant dual-arm quadruped that considers full kinematics
as well as the centroidal dynamics. To the best of
our knowledge this is the most redundant quadruped
manipulation platform (37 actuated DoFs) that has been
ever controlled using real-time whole-body MPC.

• A MPC-based pipeline providing motion plans that are
executed without an instantaneous WBC. Shown in
Fig. 2, the pipeline is characterized by two closed loops:
the whole-body MPC loop and the joints’ impedance
control loop at a lower level. The MPC is interfaced
with the low-level joint impedance controllers through
a low-level reference generator module.

II. PRELIMINARIES

A. The CENTAURO robot

CENTAURO robot is a human-size dual-arm quadruped
entirely designed at the Italian Institute of Technology [25].
Its lower body consists of four 6 DoF legs. The first 5
leg joints can be controlled in joint position or impedance
control mode while the last one is an actuated wheel, which
is controlled in velocity mode. Although in this work no
wheeled motion is studied, wheels are considered in the
OCP so that the formulation can be easily extended by
just imposing different contact constraints. The robot at its
current version is equipped with two 6 DoF arms (one DoF
less with respect to (wrt) the initial 7 DoF prototype). Finally,
the robot has a torso yaw joint that connects the upper body
with the base of the platform. The above make up a total 37
actuated DoF platform with weight 118 kg.

B. Robot model

In this paper, the approach of [15] is adopted where the full
kinematics and the centroidal dynamics [27] are considered
while the use of Single Rigid Body Dynamics (SRBD) model
[13] is, also, evaluated. The target is to demonstrate how
whole-body MPC scales to such a highly redundant robot
and not a comparison of the two dynamic models (which
has been already presented in [15]). We briefly revisit the
modeling approach; the reader is advised to the original work
for detailed presentation. The dynamic model considered for
CENTAURO robot assumes that the robot has six possible
contact points, four at the leg and two at the arm EEs. The
Newton-Euler equations can be, therefore, expressed wrt the
center of mass (CoM) as shown in Eq. (1), where hcom ∈ R6

is the centroidal momentum about a reference frame attached
to the robot’s center of mass and aligned with the world
frame. rcom,ci is defined as the position of the contact ci
wrt the center of mass, fci is the corresponding contact
force vector and nc = 6 the number of EEs. Additionally,
centroidal momentum can be expressed wrt to the joint posi-
tion and velocity vectors, through the centroidal momentum
matrix (CMM) A(q) ∈ R6×(6+na) with na = 37, as shown
in Eq. (2). The CMM A(q) = [Ab(q) Aj(q)] consists of
the base part Ab(q) and the actuated joints part Aj(q). Full



Fig. 2. The motion planning and control framework for the dual-arm quadruped CENTAURO platform. The whole-body MPC, considering the centroidal
dynamics, computes optimal state and control input trajectories at 10-22 Hz which are then mapped to references for the joint impedance controllers
through an inverse dynamics-based low-level reference generator module. Each MPC iteration is updated with the latest available state estimate.

kinematics are considered since the base pose qb ∈ R6 and
actuated joint positions vector qj ∈ Rna emerge in Eq. (2).

ḣcom =

 mg +
nc∑
i=1

fci

nc∑
i=1

rcom,ci × fci

 (1)

q̇b = A−1
b (hcom −Aj q̇j) (2)

Eq. (1) and Eq. (2) describe the robot model that is con-
sidered in the MPC. By selecting the state vector of the
model x = (hcom, qb, qj) ∈ R12+na and control input vec-
tor u = (fc1 , ..., fcnc

, q̇j) ∈ R3nc+na the robot model can
be expressed in the state space as ẋ(t) = f(x(t),u(t), t). As
mentioned above, CENTAURO robot consists of 37 actuated
joints which leads to a model with state dimension nx = 49
and control input dimension nu = 55.

III. WHOLE-BODY MODEL PREDICTIVE CONTROL

Model Predictive Control has been a popular strategy
for generating robot motions through iteratively solving an
OCP. Solving the OCP at each MPC iteration consists of
computing the control input that minimizes an objective
function over a finite-time horizon while satisfying a number
of constraints (equality, inequality, dynamics). The optimized
control input is applied on the robot until the OCP of the next
MPC iteration is solved and a new optimal control policy is
available to be used. In mathematic terms each MPC iteration
can be formulated as the optimization problem in Eq. (3).

min
u(.)

Φ(x(T )) +

∫ T

0

l(x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t)

g1(x(t),u(t), t) = 0

g2(x(t), t) = 0

h(x(t),u(t), t) ≥ 0

x(0) = x0,

(3)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the state
and control input vectors, respectively, and ẋ(t) =
f(x(t),u(t), t) is the dynamics model described in Sec-
tion II-B. The terms l(x,u, t) and Φ(x(T )) are the
stage and terminal cost, respectively. The terminal cost
is a common practice used to mimic the ”tail” of the

cost of the original infinite horizon problem. The terms
g1(x(t),u(t), t), g2(x(t), t), h(x(t),u(t), t), x0 in Eq. (3)
form state-input equality, state-only equality, state-input in-
equality and initial state constraints, respectively. In this work
the Sequential Linear Quadratic (SLQ) solver, detailed in
[28], [29] and available in [20] is used with selected time
horizon of 1 sec. The SLQ algorithm is a DDP variation
in the continuous-time domain. As common practise in real-
time MPC iteration schemes [30], at each MPC iteration only
the solution of the first SLQ iteration is obtained.

A. Constraints

A shown in Eq. (3), the MPC formulation considers the
robot dynamics and a number of equality and inequality
constraints that are handled through a projection and an
augmented-Lagrangian method [31], respectively. These con-
straints are summarized in Table I. For the rest of this paper
time dependency is omitted for simplicity.

1) Contact-related constraints: Given a user desired gait
(i.e. the contact state of all EEs along the time horizon), fric-
tion cone (inequality) and contact complementarity (equality)
constraints are imposed for the EEs. Differently from leg EEs
the velocity of the arm EEs in contact is not constrained
to zero in order to include potential interaction with mov-
able objects. It is worth mentioning that the friction cone
constraint includes a regularization term which provides as
well a level of stability robustness by imposing a positive
lower bound at the forces along the normal direction of
the contact surface. Detailed mathematical description of the
contact-related constraints is omitted, since they currently
consist textbook knowledge for legged planning and control,
however the reader can refer to [15] for the details.

2) Swing leg EE normal velocity: For each leg EE motion
tracking along the normal direction is achieved through
a state-input equality constraint, shown in Eq. (4). The
horizontal components of the motion are not constrained.

vzee(x,u)− vref,zee + αp · (pzee(x)− pref,zee ) = 0 (4)

where pzee(x) and vzee(x,u) are the corresponding normal
components of the state-dependent and state-input-dependent
position and velocity of the leg EE, respectively. The su-
perscript (.)ref indicates the desired values at each time
according to the desired trajectory and αp is a tuned gain that
is multiplied by the position error. Feedback on the position



is necessary since a velocity-only constraint would result in
drifting. A constraint of this type can be as well used for
tracking the motion of the arm EEs, as well. Due to the
limited space only one of the showcased arm EE motions in
Section V is evaluated using such kind of constraints while
for the rest the MPC formulation makes use of cost terms to
track the arm EE motion, as described in Section III-B.

B. Cost function

The cost function for the OCP is selected to be:

l(x,u) = ||x− xref ||2Q + ||u− uref ||2Rj+Rts
+

+||pee(x)− pref
ee ||2QeP

+ ||eO(x)||2QeO
+ lsc(x) (5)

where ||˙||2H denotes the weighted (with weight matrix H)
squared L2 norm. The state is regularized with weight matrix
Q while the weight matrix related with the control input
consists of a positive definite sum of two terms Rj +Rts.
The matrix Rj ∈ Rnu×nu is a positive definite weight matrix
for regularizing all the control inputs while Rts ∈ Rnu×nu

is related with task specifications, as described below.
1) Leg end-effector velocity: Rts is selected such that the

task space (cartesian) velocity of the leg EEs wrt the base
link are penalized. This is achieved by mapping a weight
matrix Rleg,ee ∈ R3nc,leg×3nc,leg from the cartesian space
into the joint space through the stacked Jacobians of the leg
EEs wrt the base Jc,leg ∈ R3nc,leg×(nc,leg·na,leg), as shown in
Eq. (6). This input cost affects only the leg joints, hence the
zero submatrices corresponding to the forces and upper body
joints. The number of leg EEs is nc,leg = 4 with na,leg = 6
actuated joints per leg. The jacobians are computed at the
nominal joint configuration which is included in xref .

Rts =

0 0 0
0 Jc,leg(x

ref )TRleg,eeJc,leg(x
ref ) 0

0 0 0

 (6)

The cost term related with the leg EE cartesian velocities
is particularly important for stepping motions, since large
velocities can create large impacts at leg touch-down. The
horizontal components are as well penalized since they can
produce lateral disturbance to the robot. This is demonstrated
in Fig. 3 with data from a dynamic trotting motion in
simulation. In this simulation the robot was not able to
continue stepping without the proposed cost term.

TABLE I
CONSTRAINTS INCLUDED IN THE MPC FORMULATION

constraint Type Complexity
robot dynamics state-input equality nonlinear

friction cone input inequality nonlinear
zero force at free-motion input equality linear

contact leg EE zero velocity state-input equality nonlinear
swing leg EE normal velocity state-input equality nonlinear

arm joint position limits state inequality linear

Fig. 3. Cartesian velocity of a leg EE (rear right) with (red) and
without (blue) the proposed cost term during a dynamic trotting motion in
simulation. Penalizing cartesian leg EE velocities results in reducing impacts
during leg touch-down. The shaded regions correspond to leg in contact.

2) Arm EE pose tracking: The weights QeP , QeO ∈
R3×3 penalize the position and orientation error between the
arm EE frame and the desired pose at each time instant,
pee(x)−pref

ee and eO(x) respectively. The orientation error
is computed as follows [32]:

eO(x) = ηe(x)ϵref − ηrefϵe(x)− S(ϵref )ϵe(x) (7)

where Qe(x) = {ηe(x), ϵe(x)}, Qref = {ηref , ϵref} are
unit quaternions of the achieved and desired orientation,
respectively, and S(·) the skew-symmetric matrix operator.

3) Self-collision avoidance: The term lsc(x) in Eq. (5) is
a state cost for self-collision avoidance which is particularly
important for robots with multiple kinematic chains. The
advantage of such a consideration within a MPC, in contrast
to instantaneous approaches, is that collision-free motions
are optimized along the receding horizon thus self-collision
distances are predicted. In this work, the approach of [33]
is used where the cost is the sum of relaxed barrier function
evaluations, one for each pair of links to be considered. This
way the cost is acting as a soft constraint; more details can
be found in the corresponding publication. For CENTAURO
multiple link pairs are considered, mainly between the arm
links and the robot’s torso, base link as well as the front leg
on the same side (e.g. between left arm and left leg). The
MPC formulation considers 22 link pairs for each arm and
the rest of the robot body, as well as the EE links of the two
arms. This makes up a total number of 45 link pairs.

The terminal cost Φ(x(T )) of Eq. (3) includes only a
term related to arm EE tracking (similar to the one described
above) to make sure that the MPC does not continuously
postpone tracking until after the end of the receding horizon.

IV. FROM MPC TO MOTOR CONTROL

This section describes how the optimal MPC state and
control input policy is interfaced with the low-level joint
impedance controllers of the joint actuators.

A. Low-level reference generator

The whole-body MPC of Section III is interfaced with the
joint impedance controllers of the robot through a low-level
reference generator. The reference generator is responsible
for sampling the latest optimal MPC policy at 500 Hz (using
linear interpolation where needed along the time horizon)
and mapping the optimal state and control input vectors to



joint impedance controller references for the actuated joints,
namely feedforward torque τ ff

j ∈ Rna , joint position qref
j ∈

Rna and joint velocity q̇ref
j ∈ Rna references, respectively.

These are then sent to the controller of Section IV-B.
The position and velocity references qref

j , q̇ref
j can be

directly accessed as part of the sampled optimal state and
control input vectors, respectively. The feedforward torque
vector τ ff

j , differently from previous works that use an
instantaneous WBC [15], is computed by solving the un-
constrained inverse dynamics. This is efficiently done using
the Recursive Newton-Euler Algorithm (RNEA), an imple-
mentation of which is available in Pinocchio library [18]. In
practise, this consists a simple mapping of the MPC policies
to torques without any additional feedback as in WBC.
Given the generalized reference configuration qref ∈ R6+na ,
velocity q̇ref ∈ R6+na , acceleration q̈ref ∈ R6+na and
external forces fc ∈ R3nc the RNEA computes the actuation
torques τ ff

j that satisfy Eq. (8). M(q) ∈ R(6+na)×(6+na)

is the inertia matrix, h(qref , q̇ref ) ∈ R6+na is the vector of
centrifugal, Coriolis and gravity forces, Sa ∈ Rna×(6+na)

the actuated joint selection matrix and Jc ∈ R3nc×(6+na)

includes the Jacobians mapping external forces to general-
ized coordinates. The generalized acceleration vector is not
available at the MPC and joint acceleration is not measurable
on the actuators, thus zero generalized accelerations q̈ref =
0 are assumed in Eq. (8). This assumption is compensated
by the feedback part of the control law in Eq. (9).

ST
a τ

ff
j = M(qref )q̈ref + h(qref , q̇ref )− JT

c fc (8)

B. Joint Impedance Control

In contrast to previous optimization-based work on CEN-
TAURO [21], the actuated joints are controlled in joint
impedance mode, described by Eq. (9) in a vector form.

τ ref
j = τ ff

j +Kp · (qref
j − qm

j ) +Kd · (q̇ref
j − q̇m

j ) (9)

where qm
j , q̇m

j ∈ Rna consist the vectors of measured
joint positions and velocities. These controllers are run-
ning at 2 kHz. The feedback gain matrices Kp, Kd ∈
Rna×na express stiffness and damping, respectively, at the
joint level. Stiffness was tuned by trial and error to be
30, 120, 200 Nm/rad and damping 30, 60, 60 Nm·s/rad
for the small, medium and large-size motors of CENTAURO,
respectively. Stiffness is set at relatively low levels since the
reference joint positions and velocities have been already
considered for the generation of the feedforward torque in
Eq. (8). For what concerns the velocity controlled wheel
joints, only velocity references q̇refj are passed to them
which are tracked using a proportional feedback at the
velocity level. Thus, the control law of each wheel motor
can be still described by a scalar version of Eq. (9) with
τffj = 0 Nm, Kp = 0 Nm/rad with selected damping
Kd = 10 Nm · s/rad.

C. State Estimation

The state estimation module consists of an algorithm
which estimates the robot base pose and twist using IMU,

joint position and velocity measurements. Upon estimating
the base pose and twist, an estimate of the OCP state x̂ ∈
Rnx is computed which includes the centroidal momentum.
The computed state estimate is then passed to the whole-
body MPC to be used as an initial condition in case a new
MPC iteration is about to start. The state estimator needs to
be aware of the contact state of the EEs and so the user-
selected gait command sent to the whole-body MPC is as
well passed to the state estimator module.

V. EXPERIMENTS & EVALUATION

A. Implementation

The MPC is developed using the OCS2 toolbox [20] which
provides an implementation of the used SLQ algorithm and
automatic differentiation capabilities based on CppADCode-
Gen for the derivatives of the dynamics, cost and constraints.
The toolbox relies on Pinocchio [18] for the dynamics
and kinematics. Synchronization mechanisms regarding the
different processes that an MPC-based pipeline requires (e.g.
running the solver, policy sampling, observation update) are
provided. To enable deploying with Gazebo simulator and the
real platform the MPC is interfaced through ROS with the
XBot2 middleware [34] used for controlling CENTAURO.

B. Experiments

In this section the conducted experiments are described,
which can be found in the accompanying video. These
are evaluated in Section V-C. The OCP problem of each
experiment is different due to the different constraints/costs
of the executed task.

1) Arm end-effector free motion : The performance of
the framework is firstly evaluated with a whole-body motion
where the left arm EE of the robot is tracking a cartesian
linear motion while all leg EEs are in contact with the
ground. Position tracking for the arm EE is achieved using
using two different approaches: the cost term in Eq. (5) and
equality constraints similar to Eq. (4). The cost term related
with EE orientation tracking is not included. The resulted
motion highlights the advantage of whole-body coordination
for increasing the robot’s workspace since the robot reaches
poses close to the ground and up to 2 m height (see Fig. 1b).

Fig. 4. Snapshots of the heavy object retrieval from ground experiment
described in Section V-B.2



2) Heavy object retrieval from ground: The second exper-
iment involves a manipulation task where the robot reaches
a 5 kg object on the ground with its arm EE, grasps it (using
a suitable gripper) and places it on top of a table, as shown
in Fig. 4. This task is challenging since the object has a
significant mass and, thus, the force exerted from the object
to the arm EE has to be considered in the MPC. Moreover,
both arm EE position and orientation tracking costs are
included in Eq. (5). In terms of tuning, position tracking
errors are assigned with a slightly higher cost wrt orientation.
The used gripper has a rather large aperture and, thus, can
achieve grasping of the object despite any small angular
misalignment while this way the MPC can take advantage
of a less stiff orientation tracking for avoiding self-collision
when needed. For EE tracking equality constraints similar
to Eq. (4) can be used instead of the cost terms, however
this is omitted due to lack of space. The video demonstrates
how the arm fastly moves towards the object and close to
the robot legs without self-colliding. This natural behavior
of the MPC emerges from the corresponding self-collision
related state cost term while the user only sends a desired
trajectory (linear interpolation between the current and target
pose) without worrying for potential self-collisions.

3) Dynamic stepping: A number of dynamic stepping
experiments are also presented where the robot is performing
crawling and trotting without including any arm EE motion
tracking. Self-collision avoidance and arm joint position
limits are, also, not included to simplify the OCP. The arms
remain always close to the reference configuration due to
the state regularization cost. The stepping motions mainly
include leg swings of 0.3 sec duration. For a CENTAURO
robot, where leg distal mass is significant, this is quite chal-
lenging and is achieved for first time on the real hardware.

4) Loco-manipulation in simulation: A highly demanding
motion where the robot is dynamically trotting and at the
same time following a reference position trajectory with its
arm EE is presented in a full-physics numerical simulator
(Gazebo). This motion uses the centroidal dynamics formu-
lation with self-collision and position tracking cost terms.
Such an experiment is not presented on the real hardware
but consists a straightforward extension of this work towards
combining legged mobility with whole-body manipulation.

C. Evaluation

1) Computational efficiency: The MPC is first evaluated
in simulation on a machine with an Intel Core i7-10700 CPU
@ 2.90GHz using the same dynamics for both planning and
rollout. The achieved MPC frequencies (mean values) are
shown in Table II. Simulations of the arm EE free motion
experiment are performed using two different approaches for
tracking the arm EE position: through the position cost in
Eq. (5) and three equality constraints similar to Eq. (4). For
both cases the SRBD and the centroidal dynamics models
as well as the computational overhead of including self-
collision avoidance and joint position limits are evaluated.
Dynamic stepping motions are, as well, included in the table.
As expected, including additional costs/constraints and/or

TABLE II
MPC ACHIEVED FREQUENCY (HZ) IN SIMULATION - SAME DYNAMICS

MODEL USED FOR BOTH PLANNING AND AS ROLLOUT INSTANCE

(SRBD / CENTROIDAL DYNAMICS)

arm EE
free motion
with position
tracking cost

arm EE
free motion
with position
tracking
constraint

crawl trot

full formulation 38.3 / 28.3 48.5 / 27.7
lsc = 0 44.9 / 35.0 58.0 / 34.3
w/o arm joint
position limits 40.8 / 31.8 51.0 / 30.3

34.9 /
21.8

25.9 /
17.3

TABLE III
MPC ACHIEVED FREQUENCY (HZ) ON THE REAL ROBOT

arm EE
free motion
with position
tracking
constraint

arm EE
free motion
with position
tracking cost

crawl trot
heavy object
retrieval

10.0 22.4 18.0 44.0 10.0

more complex dynamics in the formulation decelerates the
SLQ solver which, however, manages to achieve frequencies
more than 17 Hz in all cases. Difference in the achieved
performance (especially for the SRBD model) can be noticed
between the tracking cost and constraint cases which may be,
also, explained by the fact that different tunings were needed
to render the motion successful.

Next, the computational efficiency with the real robot in
the loop is evaluated in real experiments. The focus in on
using centroidal dynamics since it is a higher fidelity model
that considers the updated inertia on each robot configuration
as well as the momentum due to the joint velocities. The
achieved frequencies on CENTAURO’s Intel Core i9-10900K
CPU @ 3.70 GHz are shown in Table III. As seen, the whole-
body MPC achieves replanning at 10 Hz in the most complex
scenario of heavy object retrieval (where arm EE position and
orientation is controlled). For other motions this frequency
can increase up to 22.4 Hz. It is noted that from all the
included motions, trotting is the only one for which the MPC
considers the SRBD and not the centroidal dynamics. By the
time of writing this paper these have been the best results
we have managed to record.

2) Low-level reference generation & joint impedance con-
trol: The low-level reference generator and joint impedance
controller consist an important part of the pipeline rendering
the MPC optimal policy useful for the torque controlled
joints. To understand their behavior, for each joint the mod-
ulus of each torque term in Eq. (9) (i.e. torque term based on
position feedback, velocity feedack and torque feedforward,
respectively) is calculated as a percentage αi of the sum of
the modulus of all terms, as shown in Eq. (10).

αi =
100 % · |i|∑

k∈S |k|
(10)



where i ∈ S = {τffj , Kp · (qrefj − qmj ), Kd · (q̇refj −
q̇mj )}. In Fig. 5 data from a single joint (the front left
leg hip pitch joint) of the robot are included. The top part
of the Fig. 5 shows that during an arm EE motion the
feedforward torque originated from the RNEA algorithm
contributes most on the total reference that is the output of
the joint impedance control law. The velocity-based torque
term has a significant contribution at some parts of the
motion where the joints need to accelerate significantly.
Since generalized accelerations are neglected at the low-
level reference generator, the feedback terms, and mainly
the velocity-related term, of the joint impedance control are
compensating for them whenever high acceleration has to
be achieved. The bottom part of the figure demonstrates that
during a dynamic stepping motion the feedback part becomes
significantly important. In particular, during the swing phases
of the leg, the feedforward contribution is diminished and
most of the torque reference is due to the feedback part. This
is explained due to the need for achieving high acceleration
on the swinging leg joints. Another reason for the significant
contribution of the velocity-related term is due to the velocity
jumps that characterize the lift off and touch down events.

3) Joint level tracking: Joint torque and velocity tracking
of a single leg during the trotting motion, which consists the
most dynamic motion achieved on the hardware, is shown in
Fig. 6. Joint velocities are part of the MPC control input and,
in a sense, have to be tracked adequately. The torque tracking
plots demonstrate how the overall framework explores the
large torque capacity of the actuators when a dynamic motion
requires it, especially at the pitch joints since these are
highly contributing to leg lifting and landing. Leveraging
this range of joint torque capacity for dynamic stepping has
not been possible using the framework of previous work
[21] since, in practice, the robot was losing stability at the
very first dynamic steps. Although torque limits are not
explicitly satisfied at the MPC, it is worth mentioning that
during the presented motions all references are within the
actuation limits. Despite this, there are significant torque
tracking errors at the hip pitch joint, probably due to limited
torque controller bandwidth at high torque amplitudes.

4) Arm EE motion tracking: In Fig. 7 the arm EE motion
tracking during the heavy object retrieval experiment is

Fig. 5. Contribution of the different torque terms (position-based feedback,
velocity based feedback and feedforward torque) to the generated torque
reference during free motion experiment (top) and the dynamic crawl
stepping (bottom). The shaded regions denote leg in contact. Only data
from the front left hip pitch joint are presented.

Fig. 6. Joint torque and velocity tracking for the front left (FL) leg joints
during a trotting motion. The ankle yaw and wheel joints are omitted since
they exhibit minimal motions during stepping, as can be easily understood
by the leg kinematics. Shaded regions correspond to leg in contact.

Fig. 7. Reference (red) and achieved (blue) arm EE pose during the heavy
object retrieval task. The shaded region denotes arm in contact with the
object. The reference frame is shown in Fig. 4.

shown. The references sent to the MPC (red color) consist a
linear interpolation and spherical linear interpolation (for the
position and quaternion orientation, respectively) between
discrete target poses defined for this task. Notice that ori-
entation in Fig. 7 is depicted in roll-pitch-yaw angles where
any rapid variation does not imply non-smooth reference. As
specified in Section III, the MPC formulation was on purpose
designed for slightly stricter position wrt orientation tracking,
which results in larger steady state errors in orientation.
Another interesting observation is that the tracking capability
degrades while the robot is carrying the 5 kg object. This is,
partially, expected since the model of the object is unknown.
Succeeding the task only relies on the limited ability of
the MPC to predict the external force exerted at the arm
EE through continuously receiving state observations and
replanning. However, there are significant errors in the X and
Y directions and orientations since the MPC compromises
tracking in this directions to avoid self-collision with the
leg. Finally, there is an impact at the time of releasing the
object which causes tracking errors. At the last part, the user



disturbs the robot body and arm EE, as can be seen in the
accompanying video. Since low stiffness gains were used at
the joint impedance controller the robot behaves relatively
compliant. Most importantly the plot demonstrates that the
achieved MPC frequency, which has an order magnitude of
tens of Hz, provides the necessary feedback for achieving
EE motion tracking and constraint satisfaction.

VI. CONCLUSION AND FUTURE WORK

This work presents the experimental results of controlling
the highly redundant dual-arm quadruped CENTAURO with
whole-body MPC. This is the highest DoF robot that has
been controlled in real-time with whole-body MPC so far.
At the lower-level, the MPC plans are interfaced with the
joint impedance controllers without the need of a WBC.
The results indicate that the approach can be successfully
applied to control the motion of highly complex robots which
are, traditionally, teleoperated or controlled with simplified
techniques. Real-time performance and replanning frequency
of tens of Hz are achieved for a variety of complex tasks i.e.
dynamic stepping and heavy object manipulation.

For future work, deploying the Riccati-like feedback gains
provided by the solver could potentially increase the state
feedback frequency [9], [13], [26]. In terms of targeted
tasks, using MPC for manipulation of unknown environments
remains an open challenge, which few works have tried to
address [17], [35]. Another direction is to investigate how
joint torque sensing can be considered within the proposed
MPC where joint torques are not explicitly available.
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