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Abstract— In this study, we develop a simple daily assistive
robot that controls its own vision according to linguistic instruc-
tions. The robot performs several daily tasks such as recording a
user’s face, hands, or screen, and remotely capturing images of
desired locations. To construct such a robot, we combine a pre-
trained large-scale vision-language model with a low-cost low-
rigidity robot arm. The correlation between the robot’s physical
and visual information is learned probabilistically using a
neural network, and changes in the probability distribution
based on changes in time and environment are considered by
parametric bias, which is a learnable network input variable.
We demonstrate the effectiveness of this learning method by
open-vocabulary view control experiments with an actual robot
arm, MyCobot.

I. Introduction

Robots for daily assistive tasks have been developed in
various forms [1]. They can perform tasks such as cooking
[2] to cleaning [3] and serving [4]. In this study, we consider
a simple daily assistive robot that controls its own vision ac-
cording to linguistic instructions (Fig. 1). The robot performs
several daily assistive tasks such as recording images of the
user’s face, hands, and screen, remotely capturing images of
desired locations, illuminating the user’s hands, and so on.

Several studies have been conducted on robotic view con-
trol. The most common one is on the planning task of “Next-
Best-View” for autonomous 3D exploration of objects and
environments [5], [6]. There are also studies on endoscope
control in surgery [7] and gaze control in social robots [8].
In recent years, robots exploring a 3D space to find answers
to linguistic questions have been studied [9]. There is a study
on constructing 3D maps that include language information
for the navigation of mobile robots [10]. There are also
some examples of pick and place tasks based on linguistic
instructions [11]–[13]. On the other hand, this study differs
from previous tasks in that it controls the robot’s view in a
direction appropriate to the linguistic instructions. While it
is true that some existing methods may perform view control
implicitly, this study aims to develop a system that explicitly
links linguistic instructions with physical information in
order to achieve more precise and intentional view control.

In this study, we develop an open-vocabulary view control
system using a low-cost low-rigidity robot arm. A web
camera is attached to the arm-tip of MyCobot, a low-cost
low-rigidity robot arm suitable for daily assistive tasks. The
robot can perform actions based on linguistic instructions

1 The authors are with the Department of Mechano-Informatics, Grad-
uate School of Information Science and Technology, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. [kawaharazuka,
kanazawa, obinata, k-okada, inaba]@jsk.t.u-tokyo.ac.jp

Record my face. Check the bookshelf. Light up my hand.

Fig. 1. Open-vocabulary view control of a low-cost low-rigidity robot arm
for daily assistive tasks. The lower figures show the image from the web
camera attached to the arm-tip.

utilizing a pre-trained large-scale vision-language model
that has been remarkably developed in recent years [14]–
[16]. In addition, to ensure the performance of the low-
cost low-rigidity robot, we introduce an experience-based
learning mechanism using a neural network. The correla-
tion between the visual information based on the vision-
language model and the physical information of the low-
cost low-rigidity robot is trained. In order to consider the
stochastic correlation due to small changes in the visual
field and the low-rigidity body, we construct a predictive
model that outputs the mean and variance of sensor values.
In addition, changes in the probability distribution of the
visual information due to changes in time and environment
are considered by parametric bias (PB) [17], which is a
learnable network input variable. It is also possible to simply
continue to collect and search images, but this would increase
the cost of data management and memory, and would not
capture its stochastic nature and changes in its probability
distribution. Several experiments on actual robots show that
the robot can respond to a variety of linguistic instructions
and environments.

The structure of this study is as follows. In Section II, we
describe the construction of the probabilistic model between
physical and visual information, data collection and network
training, update of parametric bias representing the changes
in probability distribution, and open-vocabulary view control.
In Section III, we describe simple quantitative evaluation
experiments and more practical advanced experiments. In
Section IV, we discuss the experimental results and some
limitations of this study, and conclude in Section V.
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Fig. 2. The system overview including Vision-Language Model CLIP, Data Collector, Network Trainer, PB Updater, and Controller.

II. View Control Learning of Low-Cost Low-Rigidity
Robot via Large-Scale Vision-LanguageModel

The overall system of this study is shown in Fig. 2. We call
our network Stochastic Predictive Network with Parametric
Bias (SPNPB). Information from the Vision-Language Model
(VLM) and the robot’s physical information are collected
by Data Collector. SPNPB is trained by Network Trainer,
and the Parametric Bias (PB) is updated online by Network
Updater. SPNPB is used by Controller for open-vocabulary
view control. Based on the network of [18], time-series
information is removed and a large-scale vision-language
model is applied.

The setup of MyCobot, a low-cost low-rigidity robot used
in this study, is shown in the right figure of Fig. 2. A web
camera is attached at the end of the arm to obtain an image
V . From the arm, the joint angle θ can be obtained (the
arm has six degrees of freedom, but only the first four are
used in this study with limited angle ranges: {[-165, 165],
[-45, 45], [-22.5, 0], [-22.5, 0]} [deg]). Although MyCobot
cannot measure the joint torque, the necessary torque τ can
be calculated from the current joint angle θ through its
geometric model.

A. Stochastic Neural Network with Parametric Bias

SPNPB can be expressed by the following formula,

(s,σ) = h(u,p) (1)

where s is the sensor state, σ is the variance of s under the
assumption of Gaussian distribution, u is the control input,
p is the parametric bias [17], and h expresses SPNPB. In
this study, s denotes

(
vT τ T

)T
with a vector v (∈ R512)

where the current image V is transformed by a vision-
language model CLIP [19], and τ denotes the joint torque
required for the gravity compensation (∈ R4). For u, the
target joint angle θ (∈ R4) is used. Note that the values
of s and u are normalized using all obtained data points.
Since σ represents the variance and must always be positive,
the network outputs σ through exponential function. p is
responsible for representing the change in the probabilistic
distribution due to changes in time and environment, and
is assumed to be two-dimensional in this study. SPNPB
consists of four fully-connected layers. The number of units
is set to {Nu + Np, 100, 300, 500, 2Ns} (N{u,s,p} is the

number of dimensions of {u, s,p}). The activation function
is hyperbolic tangent, and the update rule is Adam [20].

B. Training of SPNPB

We collect a dataset of s and u by random robot motions.
By collecting data at different times of the day and in differ-
ent environments, these differences can be embedded in the
parametric bias as implicit information so that various data
points with different distributions can be represented in a sin-
gle model. In a series of motions in a trial k in the same envi-
ronment, the dataset Dk = {(sk

1,u
k
1), (sk

2,u
k
2), · · · , (sk

Nk
,uk

Nk
)}

is collected (1 ≤ k ≤ K, where K is the total number of trials
and Nk is the number of data points for the trial k). Then, we
create the dataset Dtrain = {(D1,p1), (D2,p2), · · · , (DK ,pK)}
for training. pk (1 ≤ k ≤ K) is the parametric bias for the
trial k, which is a variable with a common value during the
trial but a different value for other trials. The dataset Dtrain

and the following loss function are used to train SPNPB,

P(sk
i,n|Dk,n,W,pk) =

1√
2πσ̂i,n

exp

− (ŝk
i,n − sk

i,n)2

2σ̂i,n

 (2)

Llikelihood(W,p1:K |Dtrain) =
K∏

k=1

Nk∏
n=1

Ns∏
i=1

P(sk
i,n|Dk,n,W,pk) (3)

Ltrain = − log(Llikelihood) (4)

where P is the probability density function, {s, σ}i is {s, σ}
of the i-th sensor, Dk,n is the n-th data point in Dk, W is
the network weight of SPNPB, {ŝ, σ̂} is the value of {s, σ}
predicted from SPNPB using the dataset Dk,n, the current
weight W, and the current parametric bias pk for the trial
k, and p1:K is a vector of pk within 1 ≤ k ≤ K. Llikelihood

denotes the likelihood function for W and p given Dtrain,
and we consider the problem of maximizing it. This function
is a modification of the loss function in [21]. We simplify
the computation to the summation of log(P) by performing
the transformation as in Eq. 4, making it the problem of
minimizing Ltrain. In the usual training, only the network
weight W is updated, but in this study, W and pk are updated
at the same time. Note that each pk is optimized with an
initial value of 0.

C. Update of Parametric Bias

By continuously updating the parametric bias p, the robot
can always adapt to changes in time and environment. While
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Fig. 3. The setup of the basic experiment. The upper figures show the
changes in physical state (two changes in the angle of the web camera
attached to the tip of the robot arm) and the lower figure shows the changes
in environmental state (three changes in the arrangement of the five target
objects).

the robot is moving, we always collect the dataset Dupdate of
s and u. The update of p starts when the number of the
collected data Nupdate

data exceeds the threshold Nupdate
thre . Data

exceeding Nupdate
max is discarded from the oldest ones. We

use Eq. 2 – Eq. 4 as a loss function, and train SPNPB
with Nupdate

batch and Nupdate
epoch as the number of batches and

epochs, respectively. Here, the network weight W is fixed
and only p is updated. By updating only p, we can avoid
catastrophic forgetting and overfitting while adapting to the
current environment. In this study, we set Nupdate

batch = Nupdate
data ,

Nupdate
thre = 100, Nupdate

max = 200, and Nupdate
epoch = 3, and use

Momentum SGD [22] as the update rule.

D. Open-Vocabulary View Control

By using the trained SPNPB, it is possible to control the
robot view from linguistic instructions. First, we prepare a
linguistic instruction Q, and this is transformed into a latent
vector q by using CLIP which is in the same latent space
as v. Next, the initial value uinit of the control input uopt

to be optimized is determined, and the control input uopt is
updated by repeating the following process,

Lcontrol = −q · v̂ +Cτ||τ̂ ||2 (5)

uopt ← uopt − γ
∂Lcontrol

∂uopt (6)

where {v̂, τ̂ } is the mean of {v, τ } predicted from the current
SPNPB and uopt, Cτ is the weight of the loss function, and
γ is the learning rate. The first term on the right-hand side
of Eq. 5 is the loss to obtain the control input closest to
the given linguistic instruction, and the second term on the
right-hand side is the loss to reduce the required torque
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Fig. 4. The arrangement of the trained parametric bias and its trajectory
during the online update of parametric bias regarding three environmental
and physical states in the basic experiment.

of the posture. Eq. 6 updates uopt using backpropagation
technique and the gradient descent method. Here, the initial
value uinit uses Ncontrol

init number of random u. By starting the
optimization from various uinit, we can avoid the solution
from falling into the local minima. Although γ can be a fixed
value, in this study, each uopt is updated by using Ncontrol

batch
number of γ which are the logarithmically divided values in
[0, γmax], and then uopt with the smallest loss when running
Eq. 5 is used repeatedly to obtain faster convergence. Eq. 5
– Eq. 6 are performed Ncontrol

epoch times, and the obtained uopt

is sent to the actual robot.
In this study, we set Ncontrol

init = 30000, Ncontrol
batch = 100,

Ncontrol
epoch = 2, γmax = 0.1, and Cτ = 0.0001.

III. Experiments

First, we conduct a basic quantitative experiment in a small
area surrounded by objects and walls. Next, we conduct
an advanced experiment in a wider and more cluttered
environment to demonstrate the effectiveness of the method.

A. Basic Experiment

The setup of the basic experiment is shown in Fig. 3.
Five objects – 1. mug, 2. headphones, 3. bottle, 4. tissue
box, and 5. clock – are arranged in front of the robot on
a desk. By surrounding the desk with walls, the robot can
uniquely determine the direction in which it should look at to
face the object corresponding to each linguistic instruction.
Parametric bias can embed not only environmental changes
but also the physical changes of a low-rigidity robot. In this
study, the angle of the web camera attached to the tip of the
robot arm is changed to 0 degrees (state B0) and 30 degrees
(state B1). Also, we prepare three environments, E0, E1, and
E2, in which the positions of the five objects are shifted one
by one as shown in the lower right figure of Fig. 3.



Check the clock. Where are the headphones? See the tissue box. Find the mug. Look at the bottle.

1 2 3 4 5

Fig. 5. The open-vocabulary view control of the basic experiment. The lower figures show the images from the web camera attached to the arm-tip.
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Fig. 6. The comparison of view control errors among various neural network models: PB+ST - the proposed SPNPB, ST - stochastic predictive model
without parametric bias, PB -the normal predictive model with parametric bias, and None - the general neural network without parametric bias, under
three different environmental and physical states.

A dataset is collected for 100 seconds for each of the
six states, which are combinations of two physical changes
and three environmental changes. The joint angles are fed
randomly, and data collection is performed at 10 Hz, ob-
taining a total of 6000 data points. SPNPB is trained based
on this dataset. The arrangement of the trained parametric
bias when applying Principle Component Analysis (PCA) is
shown in Fig. 4. Note that the parametric bias for each state
is expressed as E{0, 1, 2}-B{0, 1}. It can be seen that each PB
is regularly arranged along the environmental and physical
changes. Since no information on environmental and physical
changes is given during the training, various state changes
can be implicitly self-organized in the space of PB.

Next, we conducted an experiment in which parametric
bias is updated online for three states, E0-B1, E1-B0, and
E2-B1. The trajectories “-traj” when updating the parametric
bias from random motions are shown in Fig. 4. The initial
value of p is 0, and it can be seen that the parametric
bias gradually approaches the appropriate value trained for
the current physical and environmental conditions. In other
words, the robot can gradually recognize the current state
correctly even if its body and surrounding environment
change.

Finally, we conducted an experiment of view control
using the trained SPNPB. The experiment is performed for
the state E1-B0 after the correct PB is recognized. Here,
linguistic instructions of “Check the clock.”, “Where are the
headphones?”, “See the tissue box.”, “Find the mug.”, and
“Look at the bottle.” are given in that order. The result of
open-vocabulary view control is shown in Fig. 5. It can be
seen that the robot’s view is correctly controlled so that
the object mentioned in the linguistic instruction fits into

the camera image. The results of comparative experiments
of this view control for various physical and environmental
conditions of E0-B1, E1-B0, and E2-B1, while changing the
neural network model used, are shown in Fig. 6. The models
used are SPNPB of this study (PB+ST), SPNPB without
parametric bias (ST), SPNPB with the loss function Eq. 4
changed to a general mean squared error (PB), and a general
neural network model excluding parametric bias and setting
the loss function as mean squared error (None). For five
target objects O, five linguistic instructions, “Look at the O.”,
“See the O.”, “Find the O.”, “Check the O.”, and “Where is
the O?” are used. The mean and variance of the distance
between the camera’s line-of-sight vector and the predefined
location of the target object (the distance from a point to a
line) in the 25 experiments are shown in Fig. 6. From the
results, it is found that the error of view control in PB+ST
is the lowest, while the accuracy in ST, PB, and None is
much lower. In particular, the errors for E0-B1 and E1-B0
when using ST, PB, and None, are more than twice as large
as those when using PB+ST.

B. Advanced Experiment
We conducted an advanced experiment in a setting closer

resembling our living space. A monitor, a keyboard, a mug, a
bottle, a tissue case, and various other objects were placed on
the desk. We obtained data from random motions in various
environments at different times of the day. The environments
are divided into combinations of two states: one with or
without a person sitting at a desk (Human or None), and
one with all lights on (Bright) or some lights on (Dark). Data
collection is performed at 10 Hz for 100 seconds for each of
eight different time periods E0–E7, obtaining a total of 8000
data points. E0, E2, and E3 are Human/Bright cases, E1, E4,
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during the online update of parametric bias in the advanced experiment.

and E5 are None/Bright cases, E6 is a Human/Dark case,
and E7 is a None/Dark case. SPNPB is trained based on this
dataset. The arrangement of the trained parametric bias when
applying PCA, and the corresponding environmental states
are shown in Fig. 7. It is found that each PB is regularly
arranged along the environmental changes, and the space of
PB is implicitly self-organized.

Next, we conducted an experiment to update the paramet-
ric bias online. The trajectories “-traj” when updating para-
metric bias from random motion for a new Human/Bright
environment E8 and a new None/Dark environment E9 are
shown in Fig. 7. For both cases, we can see that pk is
gradually updated toward that of the same previously trained
environment: in case of E8, toward pk of Human/Bright
environment E0, E2, and E3, and in case of E9, toward pk

of None/Dark environment E7. The same performance as
that of Section III-A can be achieved even in a cluttered
environment.

Finally, we conducted a view control experiment for the
environment of E8 using the trained SPNPB and updated
PB. Here, linguistic instructions of “Find the bottles.”, “See
the red chair.”, “Where are my mugs?”, “Check the book-
shelf.”, “See my hands.”, “Watch my monitor.”, “Look at the
keyboard and mouse.” are given in that order. The result of
open-vocabulary view control is shown in Fig. 8. Similar to
Section III-A, it is possible for the robot to view the objects
and environments as indicated.

IV. Discussion

The obtained experimental results are discussed. First, we
conducted basic quantitative experiments in a controlled en-
vironment where the direction of the target object is uniquely
determined. The changes in the probability distribution of the
network based on changes in the body and the environment
can be regularly self-organized in the space of parametric

bias. By updating PB online, the current state of the body
and the environment can be appropriately identified. The
obtained SPNPB can then be used to direct the robot’s gaze
in the direction of appropriate objects based on linguistic
instructions. It is found that this performance is achieved only
when both the probabilistic predictive model and parametric
bias are used, and when either one of them is not used,
the control performance is reduced to about half. Next, we
conducted advanced view control experiments in a cluttered
environment that is more similar to that of daily life. By
collecting and learning data at various times of the day with
different parameters such as the presence of a human and
the brightness of the room, these environmental changes
become self-organized in the space of parametric bias. As
in the basic experiment, the current environment is able
to be understood appropriately, and the robot can perform
view control for various objects and environments based on
linguistic instructions. These results indicate that even with a
low-cost low-rigidity body structure, and even with a large-
scale vision-language model whose output changes with
slight changes in the image, appropriate and adaptive view
control is possible by considering the relationship between
vision and body in a stochastic form, and by incorporating
large changes in the form of parametric bias.

Limitations and future prospects of this study are de-
scribed. First, this study mainly deals with view control,
and it does not actually perform a task such as recording
the image in response to the command “please record”.
Of course, such a command can be easily implemented by
recognizing the word “record”, but there is no limit to the
variety of commands, such as “send an image via chat”,
“read the sentence out loud”, or “turn on the lights”. In the
future, we would like to develop this system into a more
practical system that automatically uses multiple APIs and
view control according to linguistic instructions, using large-
scale language models. Second, the system currently does
not accept commands such as “a little more to the right” or
“look at the back”. This is because there is no embodiment
in the large-scale vision-language model itself, which is an
interesting issue to be addressed in the future. In addition,
we would like to construct a system that can always keep
moving by regularly collecting data and learning networks.
For a more practical system, it is also necessary to consider
obstacle avoidance and motion planning. Finally, although
this study has dealt mainly with the two modalities of vision
and body, we would like to extend these modalities in the
future. We believe that if it becomes possible to handle not
only images but also videos, sounds, and tactile sensations in
the same way, it will be possible to perform a wider variety
of tasks based on linguistic instructions. We would like to
develop a system that acquires correlations among various
sensors and grows autonomously.

V. Conclusion

This study has described the development of a low-cost
low-rigidity robot system that performs daily assistive tasks
through view control based on linguistic instructions. A
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Fig. 8. The open-vocabulary view control of the advanced experiment. The lower figures show the images from the camera.

neural network is used to learn the correlation between the
visual information from CLIP, one of the large-scale vision-
language models, and the physical information including
target joint angles and necessary joint torques of a low-
rigidity robot. Here, its probabilistic correlations caused by
small changes in the visual field and the low-rigidity body
are considered by a predictive model with mean and variance
network outputs. Changes in the correlations due to changes
in time and environment are considered by parametric bias,
which is a learnable network input variable. The actual
robot experiments show that the robot can control its vision
from appropriate motion commands according to linguistic
instructions, and that open-vocabulary view control is pos-
sible even with a low-cost low-rigidity robot. In the future,
we would like to consider the correlation among language,
sound, image, tactile sensation, etc., to enable more advanced
robot body control based on linguistic instructions.
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