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Abstract—We propose a simulation-based approach for per-
formance modeling of parallel applications on high-performance
computing platforms. Our approach enables full-system perfor-
mance modeling: (1) the hardware platform is represented by
an abstract yet high-fidelity model; (2) the computation and
communication components are simulated at a functional level,
where the simulator allows the use of the components native
interface; this results in a (3) fast and accurate simulation
of full HPC applications with minimal modifications to the
application source code. This hardware/software hybrid modeling
methodology allows for low overhead, fast, and accurate exascale
simulation and can be easily carried out on a standard client
platform (desktop or laptop). We demonstrate the capability and
scalability of our approach with High Performance LINPACK
(HPL), the benchmark used to rank supercomputers in the
TOP500 list. Our results show that our modeling approach can
accurately and efficiently predict the performance of HPL at
the scale of the TOP500 list supercomputers. For instance, the
simulation of HPL on Frontera takes less than five hours with
an error rate of four percent.

Index Terms—performance modeling, exascale systems, HPL

I. INTRODUCTION

Currently, there are many efforts to evaluate the hardware
and software bottlenecks of exascale designs to enable the
development of applications that exploit the full performance
of exascale computing platforms. However, the increasing
complexity of modern computing architectures along with
the exponentially growing configuration space and complex
interactions among configuration options often make it difficult
to develop accurate performance models. In recent years there
have been several efforts to model the performance of HPC
applications using simulation-based approaches. However, sev-
eral challenges must be addressed to enable these approaches.

The full system stack consists of three layers: hardware
infrastructure, middle layer libraries, and the application itself.
Each layer can have a huge impact on the overall performance,
which means that all layers should be modeled to acheive
an acceptable accuracy. One of the main challenges is to
determine which aspects are the most important to simulate
when modeling each layer for large scale HPC applications.
In terms of the hardware infrastructure layer, computation
components, such as CPU, GPU, and memory, should be
modeled. Similarly, the interconnect network is one of the
essential parts. The computation and communication platforms
are the most important to take into consideration for the
distributed system.

Choosing which libraries to simulate is another important
aspect. The basic principle is to choose the most widely used
libraries. Science and engineering computations have been
the dominant category of the applications running on HPC
systems. In this area, Basic Linear Algebra Subprograms [1]
(BLAS) is the most widely used mathematical library that
forms the computational core of many HPC applications.
BLAS operations very time-consuming as well as compute-
intensive. Additionally, Message Passing Interface (MPI) has
now emerged as the de-facto standard for node-to-node com-
munication on supercomputers. MPI standards are used on
all leading supercomputers of the TOP500 list [2]. Taking
the charactaristics of the software libraries is an essential
requirement for accurate simulation-based modeling.

With the hardware infrastructure and software libraries
models, our goal is to enable the modeling of HPC appli-
cations with minimal modification to the application source
code. Among all HPC applications, the High-Performance
LINPACK (HPL) Benchmark is the most widely recognized
metric for ranking HPC systems, although other benchmarks
such as HPGMG [3] and HPCG [4] have been proposed as
either alternative or complementary benchmarks.

In this paper, we propose a simulation framework that
employs a layered architecture to simulate HPC systems on
standard client computers (desktop or laptop). We use HPL
to demonstrate the capability and scalability of the simulation
framework. The key contributions of this paper are as follows:

• We present a hardware platform model that includes
the processing nodes and the interconnection network.
The model employs a stream-level network model that
balances the simulation speed and accuracy.

• We present abstracted library models for BLAS compu-
tations and MPI communications.

• We model HPL benchmark to demonstrate the capability
and scalability of our simulation framework.

• We demonstrate that our modeling approach can accu-
rately and efficiently predict the performance of HPL at
the scale of the TOP500 list supercomputers.

The rest of the paper is organized as follows. In section II,
we present a background on simulation-based approaches.
We also describe related work in hardware infrastructure
simulation and MPI modeling. In section III, we present an
overview of our simulation framework and describe the design
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of each of its layers. In section IV, we conduct extensive
validation and performance studies. In section V we present
some use cases. Finally, conclusions and future directions are
presented in section VI.

II. BACKGROUND AND RELATED WORK

In recent years there have been several efforts to model
the performance of HPC applications using simulation-based
approaches.

SimGrid [5] is an open-source simulation framework for
large-scale distributed systems. It was originally designed to
study the behavior of Grids but has been extended and applied
to a wide range of distributed computing platforms, including
Clouds and High Performance Computing systems. SimGrid
uses a flow-level approach that approximates the behavior
of TCP networks. Due to its use of a flow-level network
simulation approach along with a coarse-grained CPU model
for the computation, SimGrid can perform large numbers of
statistically significant experiments on large TCP networks.
However, SimGrid might result in an unacceptable accuracy
when compared to packet-level simulators when the data sizes
are small or when networks are highly contended [6]. In addi-
tion, the lack of detailed models for the processing components
makes SimGrid unsuitable for several HPC applications.

The Structural Simulation Toolkit (SST) [7] enables the co-
design of highly concurrent systems by allowing simulation
of diverse aspects of the hardware and software. SST aims
to simulate full-scale machines using a coarse-grained simu-
lation approach for the processing and network components
through the use of skeleton applications that replicate the full
application control flow.

The work presented in this paper builds on our previous
work, CSMethod [8]. CSMethod enables full-system perfor-
mance modeling and prediction of big data clusters by simu-
lating both the software stack (e.g. HDFS, OS, and JVM) and
the hardware components (CPU, storage, and network). With
CSMethod, the computation and communication behaviors of
the application are abstracted and simulated at a functional
level. Software functions are then dynamically mapped onto
hardware components. To achieve fast and accurate perfor-
mance simulation, CSMethod supports fine-grained analytical
models for processor, memory, and storage. The timing of the
hardware components is modeled according to payload and
activities as perceived by the software. CSMethod capabilities
and accuracy have been demonstrated in [9]–[12]. However,
CSMethod is focused on big data applications and has not
been applied to simulate HPC systems.

Cycle-accurate simulators are commonly used to evaluate
next generation processors and system architectures. Tradi-
tionally, these simulators trade speed for accuracy. Simi-
larly, packet-level or flit-level network simulators aim for
a highly accurate representation of actual network behavior.
Thus, large-scale simulations may be too time-consuming with
packet-level simulation.

There are several different approaches to model MPI, rang-
ing from analytical models to trace-based simulations. Some

Fig. 1: Simulation framework architecture.

MPI modeling frameworks rely on the use of test environments
based on “artificial communications” to perform synthetic tests
of MPI performance. For example, LogGOPSim [13] replaces
MPI collective operations by a set of point-to-point algo-
rithms. While this approach is accurate on smaller systems,
LogGOPSim ignores congestion in the network and assumes
full effective bisection bandwidth, which may decrease the
accuracy of the simulations on emerging large-scale systems.
SMPI [14] simulates unmodified MPI applications on top of
the SimGrid simulator. SMPI supports different performance
modes through a generalization of the LogGPS model.

III. SIMULATION FRAMEWORK

Our simulation framework employs a layered and config-
urable architecture to simulate the full stack of supercom-
puting systems, as shown in Figure 1. The top layer is the
HPC application, where the application behavior is modeled.
Underneath the top layer, computation and communication
libraries are abstracted and simulated at a functional level.
The library layer receives function calls from the top later
and dynamically connects to the hardware components. The
hardware infrastructure layer beneath the library layer aims at
defining the hardware components (processor, network, and
storage) of the HPC system. In this framework, software
behavior and hardware infrastructure are loosely coupled,
which provides the flexibility to change the hardware platform
without the need to modify the software behavior model and
vice versa.

This paper discusses several techniques: (1) the hardware
platform is modeled by an abstract yet high-fidelity model;
(2) computation and communication components are simulated
at a functional level, where the simulator allows the use of
the component native interface; this results in a (3) fast and
accurate simulation of HPC applications with minimal mod-
ifications to the application source code; and, at the bottom
of these layers, (4) a simulation engine for SystemC-based
discrete events. This is a low-overhead engine that enables
fast simulations with good scalability. This hardware/software



hybrid modeling methodology allows for low overhead, fast,
and accurate Exascale systems simulation and can be easily
carried out on a standard client platform.

A. HPC hardware infrastructure simulation

The hardware model builds on our previous work,
CSMethod [8]. Here, we extend CSMethod to enable the
modeling of HPC applications. In particular, we implement an
efficient CPU model for the computation operations as well
as a GPU model. Moreover, a stream-level network model
is implemented as an alternative to the original packet-level
network model.

The hardware model simulates all the main components
of the HPC platform, which includes the processing nodes
and the interconnection network. In particular, the hardware
infrastructure layer consists of models for the CPU, GPU,
memory, and NIC. This section describes these models.

1) Node architecture: CPU, GPU, and memory: In this
work, we extend [8] to support heterogeneous architectures.
This new feature enables the simulation of accelerator-based
architectures, such as CPU–GPGPU combinations. Our frame-
work also utilizes analytical models to model compute-bound
and bandwidth-bound operations, such as BLAS DGEMM
operation and DSWAP described in section III-B1. Tradition-
ally, compute-bound operations are modeled using an actual
single-core execution time on real hardware scaled to the
simulated processor core speed. In this work, we model the
computation time of these operations analytically based on
the theoretical peak performance and the efficiency of these
operations on the CPU and GPU. The efficiency can be directly
measured without complex computations. Similarly, modeling
bandwidth-bound operations is based on the peak bandwidth
and bandwidth efficiency.

2) Interconnection network: As discussed earlier, packet-
level network models are not suitable for all scenarios. In
this work, a stream-level network model is implemented as
an alternative that offers latency and bandwidth restrictions.
This work extends the capabilities of [8] network model
in two ways. First, we include more network architectures,
such as fat-tree and dragonfly, which are the most widely
used networks in HPC systems. Second, traditionally, the
implementation of routing policies calculates and stores all
the routing paths during the initialization phase which uses a
large amount of memory when simulating large-scale systems.
Several routing algorithms, such D-mod-K for fat-tree [15]
and minimal/non-minimal routing for dragonfly topology [16]
can be dynamically calculated which reduces the memory
consumption significantly.

To model the network communication, we divide large mes-
sages into smaller chunks and calculate the transmission time
according to the currently allocated bandwidth. In addition,
the network model supports communication primitives, such
as send data and receive data, which enables the integration
of external network simulators into our framework.

B. Computation and communication libraries simulation

When developing simulation models for large scale complex
systems, it is important to consider which components to
model. In HPC applications, computation and communica-
tion libraries are commonly utilized and tuned for optimal
performance. In this work, BLAS and MPI libraries are
simulated as modules on top of the infrastructure layer by
leveraging dedicated APIs to access the hardware resources.
These modules allow the use of the libraries native interface,
thus easing the development of the simulation APIs.

In this section, a detailed discussion of the computation and
communication libraries is presented.

1) Performance modeling of BLAS library: Many HPC
applications rely heavily on BLAS kernels. The BLAS library
implements fundamental dense vector and matrix operations,
such as various types of multiplications and triangular linear
system solvers. Since these kinds of kernels do not influ-
ence the control flow, the simulation time can be reduced
by substituting the BLAS function calls with an analytical
performance model for the respective kernel. The BLAS
operation is data-independent, i.e., the data content does not
affect the computation time. This means that all multiplications
with zeros are explicitly performed no matter how sparse an
operand is (i.e., how few non-zero entries it has).

BLAS functionality is categorized into three sets of levels
according to the arithmetic density. Level 1 BLAS operations
typically take linear time, O(N), Level 2 operations quadratic
time, and Level 3 operations cubic time. Thus, we employ
the same modeling approach but with different analytical
performance models that are based on the Roofline model [17].
The Roofline model provides a simple way to estimate the
performance based on the computation kernel and hardware
characteristics. It relies on the concept of Arithmetic Inten-
sity (in FLOPs/byte) and provides performance bounds for
compute-bound and memory bandwidth-bound computations.

Modeling Level-3 BLAS Kernels: Here we describe in
detail the methodology used to model the DGEMM operation.
A similar approachis used to model the DTRSM kernel.

GEMM performs a matrix-matrix multiplication and an add
operation

C ← αAB + βC, (1)

where C is m× n, A is m× k, B is k× n, and α and β are
scalars.

For dense matrices, the total number of operations per-
formed by GEMM is

OGEMM = 2mnk + 2mn. (2)

As the GEMM kernel is compute-bound, we use the fol-
lowing analytical model to estimate its compute time

E = µOGEMM + θ, (3)

where µ represents the computation cost of a single operation
and θ represents the overhead of each DGEMM function call.
The Roofline model sets an upper bound on performance of
a kernel depending on its arithmetic intensity. For a more
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Fig. 2: Execution time of DGEMM kernel.

realistic estimates, we take into account the kernel efficiency
on a given hardware. Let e be the GEMM efficiency on a
given hardware, then µ can be calculated as the inverse of the
multiplication of e by the theoretical peak performance.

Both µ and θ in (3) are obtained through profiling and
calibration. To calibrate and validate our model, we conduct a
micro-test using MKL DGEMM kernel on a single core. The
values of m, n, and k range from 128 to 2048. Each case is
executed 1000 times and then the average time is calculated.
Figure 2 shows the impact of the total number of operations
on the execution time along with the estimation model. The
validation results show that the R-squared value is 0.9998.
Here, the values of µ and θ are implementation and hardware
dependent. This kind of analytical modeling speeds up the
simulation by orders of magnitude, especially as the matrix
size grows.

Modeling Level-1 and Level-2 BLAS Kernels: A similar
approach is employed to model Level-1 and Level-2 BLAS
kernels. On most architectures, Level-1 BLAS vector-vector
operations, and Level-2 BLAS matrix-vector operations are
memory-bound. As mentioned previously, we calibrate the
models to take into account the memory efficiency of these
operations.

Based on the methodology discussed, we present Sim-
BLAS, a library to simulate and predict the performance of
BLAS operations. Figure 3 shows a code snippet of Level-3
and Level-1 SimBLAS operations. There are different imple-
mentations of the BLAS library, for example, cuBLAS for
GPUs, OpenBLAS, and Intel BLAS. Each implementation
has different efficiency. Furthermore, these implementations
can run on a single thread or with multi-threading. Hence,
predicting efficiency analytically is a complicated task. In
our simulations, we employ a microbenchmark to profile the
efficiency and then use it as an input to SimBLAS.

SimBLAS library is coupled with the underlying hardware
models, specifically, CPU, GPU, and memory models. As dis-
cussed earlier in this section, the execution time is determined
by the operation complexity and hardware characteristics. The
operation complexity is the operations count of a compute-
bound operation or the memory access size of a bandwidth-
bound operation. The hardware characteristics are obtained
from the underlying hardware models.

1 void simblas_dgemm(const SIMBLAS_ORDER Layout,
2 const SIMBLAS_TRANSPOSE TransA,
3 const SIMBLAS_TRANSPOSE TransB,
4 const int M, const int N,
5 const int K, const double alpha,
6 const double *A, const int lda,
7 const double *B, const int ldb,
8 const double beta,
9 double *C, const int ldc) {

10 // Number of FLOPS
11 double op_count = M * N * (2 * K + 2);
12 // Achieved performance
13 double perf = getDgemmPerf();
14 waitns(op_count/getDgemmPerf() + getBlasLat());
15 return;
16 }
17

18 void simblas_dswap(const int N,
19 double *X, const int incX,
20 double *Y, const int incY) {
21 // Message size
22 double data_movement = 4.0 * N;
23 // Achieved performance
24 double perf = getDswapPerf();
25 waitns(data_movement/perf + getBlasLat());
26 return;
27 }

Fig. 3: Implementation of SimBLAS operations.

In summary, these performance models, in principle, bal-
ance simulation speed and accuracy to predict the performance
of HPC systems.

2) Performance modeling of MPI library: In our previous
work, a set of socket-like APIs are implemented to support
TCP network transmission in big data environments. On HPC
platforms, MPI is the de-facto standard for inter-node commu-
nication. This section details the MPI model in two aspects:
peer-to-peer communication and collective communication.

First, all the peer-to-peer communication APIs, both syn-
chronous and asynchronous operations, are implemented in the
network model. The execution time of the MPI communication
operations is independent of the message content. Hence, we
model the performance based on the message size and the un-
derlying network. Different communication protocols are used
for different message sizes, such as “eager” or “rendezvous”.
Many state-of-the-art MPI simulators, such as SMPI [14], have
depicted this design methodology and proven good simulation
accuracy for a wide range of settings without any application-
specific tuning. Our approach is similar, a linear model is used
to predict the MPI communication performance. This model is
built on top of the hardware model discussed in section III-A.
The network contention is simulated using the underlying
network model. Figure 4 illustrates the implementation of MPI
send operation. At first, the global server IDs of the sender and
receiver are obtained. Then, a network function SendData
is called to pass the communication request to the network
model.

Second, we model collective communications. Previous
studies show that the performance and scalability of MPI col-
lective communication operations are critical to HPC applica-



1 extern "C" int MPI_Send(const void *buf, int count,
2 MPI_Datatype datatype,
3 int dest, int tag,
4 MPI_Comm comm) {
5 int src_id, dest_id;
6 // Global ID of source and dest processes
7 MPI_Comm_globalID(dest, comm, dest_id, src_id);
8 double data_size = count * datatype;
9 // This function returns after the data is sent

10 SendData(src_id, dest_id, data_size);
11 return MPI_SUCCESS;
12 }

Fig. 4: Implementation of MPI Send.

tions. In major MPI implementations, each collective operation
has several different algorithms to chose from depending on
several factors, such as the message size and network topology.
In some algorithms, collective communication is broken into a
set of peer-to-peer operations. In our model, several algorithms
for each operation are simulated mimicking the behavior of
real implementations of OpenMPI and IntelMPI. In addition,
optimized algorithms for specific network topologies, such as
torus and dragonfly networks, are also available.

C. Modeling applications behavior

In a previous section, we discussed several approaches to
model application behavior. One traditional approach is to
study and analyze the application source code, mimic its be-
havior at an abstract level, and model its critical components.
While this method offers a high modeling accuracy, it is time-
consuming and requires frequent follow-up model refinements.

With the hardware infrastructure and libraries models, our
goal is to enable the modeling of HPC applications with
few modifications to the application source code instead of
mimicking applications behavior. To achieve this goal, several
challenges need to be addressed. We use HPL as an example
in this section.

Parallel processes: Our framework employs Intel CoFluent
Studio (CoFluent) [18] which provides an easy to use graphical
modeling tool in a SystemC simulation environment. Since
SystemC is a sequential simulation engine, every MPI process
of the application needs to be mapped onto a SystemC
thread. [8] describes how to mimic an application parallel
behavior in detail. As the native application source code is
used in our approach, each MPI process is bound with a
SystemC virtual thread. Using this approach, all the HPL
processes are simulated with low overheads.

Integration of SimBLAS and SimMPI libraries: The
original HPL source code supports several BLAS interfaces,
for example, CBLAS and FBLAS. Here, we enable SimBLAS
interfaces in HPL source code. Only three modifications to the
HPL source code are needed, defining SimBLAS and including
the new header file. SimMPI supports the same APIs as the
standard MPI library. Hence, enabling SimMPI in HPL source
code is simply achieved by including a header file.

Simulation of other components: In addition to the BLAS
computations and MPI communications, HPL spends signif-

TABLE I: Hardware and Software configurations.

Category Details
Node# 4
CPU# Intel Xeon Broadwell E5-2699 v4 @ 2.2GHz

Socket# 2
Cores#/Socket 22
Memory/node DDR4 256GB @ 2400MHz

Network 1 Port Intel OPA 100Gb
HPL version Open HPL v2.3, Intel HPL v2.2
MPI version Intel MPI 2019

icant time performing local copy and swap operations. In
order to model HPL accurately, these HPL kernels, such as
HPL dlaswp∗, are simulated using the same approach used
for BLAS Level-1 operations. Furthermore, min and max
functions are simulated with random numbers as the content
has no impact on HPL behavior.

Privatization of global variables: As the CoFluent kernels
are implemented in SystemC, which uses a single process
to simulate parallel MPI processes, global variables in the
application code are shared between all MPI processes. In
our framework, a private copy of the global variables is
stored for each parallel process. CoFluent offers a simple API,
get container(), which can be used by a virtual thread to get
the corresponding MPI rank. A global array is used to store
the privatized variables and can be accessed using a dedicated
index.

The last challenge is to identify which components of
the source code to modify. In this work, optimizations for
simulation speed are used to identify the modifications. The
two largest data structures in HPL are matrix A and the panel
which stores the workplace. The total space allocated by the
MPI processes on each node typically consumes most of the
node memory while the content of A is irrelevant for the
simulation. This memory allocation is removed with small
modifications to code. The simulation results also indicate no
impact on the execution flow and simulation accuracy.

Even though the matrix A can be removed, panel is used in
every iteration of the factorization and, hence, must be stored.
A possible workaround is to allocate and free panel structure
at every iteration. However, this option is time-consuming.
Alternatively, we use a global array to store panel structures
for all MPI processes and panel init/free functions are
reimplemented to map/demap corresponding spaces to private
addresses.

IV. PERFORMANCE VALIDATION AND SCALABILITY
EVALUATION

In this section, we first discuss the accuracy of our frame-
work. Then, we examine its scalability by performing sim-
ulations while changing the number of MPI processes from
2, 000 to 10, 000. Lastly, we demonstrate the fast simulation
speed with different problem sizes and various configuration
settings.



Fig. 5: OpenHPL performance.

Fig. 6: Intel HPL performance.

A. Simulation accuracy

To validate the simulation accuracy, we conduct experiments
on our local environment. Table I shows the configurations
details of the environment. The cluster has 4 nodes, each node
has a dual-socket of Intel Xeon CPU with 22 cores per socket.
Each node has 256GB DDR4 memory operating at frequency
2.4GHz. All nodes are connected to the same switch with
a single port of Intel 100Gb OPA. Software configurations
are also shown in Table I. Two HPL versions, OpenHPL 2.3
and Intel HPL 2.2 are installed. We choose the two versions
since they are both widely used in supercomputing systems
as demonstrated in the TOP500 list. OpenHPL is compiled
with Intel MKL 2019 and Intel MPI 2019. Intel HPL is based
on Open HPL 2.2 and is available as a part of the Intel MKL
library. Both HPL implementations use the same hardware and
same Intel MPI library.

OpenHPL uses one core per MPI process while Intel HPL
uses all cores per node for each MPI process. Hence, the
optimal P × Q combination for each HPL implementation is
different, where P and Q are the rows and columns of the
MPI process grid in the benchmark. This allows for more
validation scenarios while having no impact on the validation
process as we are not comparing the variance of the two
HPL implementations. For the given architecture, the HPL
block size used is nb = 192. The efficiency of the BLAS
operations is evaluated using the methodology discussed in
section III-B1. The theoretical CPU peak performance and
memory bandwidth are given as inputs to the simulator.

Figure 5 compares the simulated performance of OpenHPL
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Fig. 7: HPL simulation time and memory footprint.

against the measured performance on 1 core to 4 nodes.
Figure 6 shows the validation results of Intel HPL with node
numbers scaling from 1 to 4. The performance on 8 and 16
nodes is predicted using the simulator. Overall, our framework
achieves high accuracy at varying concurrency with an average
of 3.7% discrepancy between the simulated and measured
performance.

B. Simulation scalability

To evaluate the scalability of our framework, we simulate
an HPC system consisting of 10,008 nodes. These nodes are
connected using a two-level fat-tree topology. In total, 556
36-port switches are used at the edge level and 18 556-port
switches are used at the core level. Each of the edge switches
has 18 ports dedicated to connecting servers. The other 18
ports of each edge switch are connected to the core layer. In
this scenario, the network of this hypothetical system may not
be fully optimized as our goal is to evaluate the scalability
of the simulator. The other hardware components are kept the
same as those used for the experiments in the previous section.

The number of MPI processes and the matrix size are
the two key factors impacting the HPL simulation time and
memory consumption. In this section, we conduct a series
of simulations where the matrix size is fixed to 2 × 107

while the number of MPI processes varies from 2, 000 to
10, 000 with a step size of 2, 000. The simulation results
are shown in Figure 7. The bars in the figure represent the
execution time. The largest simulation time is 21.8 hours
which simulates 10, 000 MPI processes with a matrix size of
2×107. The line in Figure 7 represents the memory footprint.
The memory consumption grows linearly with the number of
MPI processes. Simulating 10, 000 MPI processes consumes
about 720MB.

C. TOP500 HPC systems simulation

The TOP500 list ranks the most powerful supercomputing
systems according to their performance on the HPL bench-
mark. Frontera [19] and PupMaya [20] supercomputers, which
rank #5 and #25 on the TOP500 list, respectively, provide
enough public information to allow the use of our simulator
to predict their HPL performance.



TABLE II: TOP500 systems simulation.

Real environment Simulation
Fr

on
te

ra

Node# 8,808 1
Core# 448,448 1
Memory 1,537,536 GB 550 MB
Nmax 9,282,848 9,282,848
Rmax 23,516 TFLOP/s 22,566 TFLOP/s

Execute time 6.5 h (Estimated) 4.8 h

Pu
pM

ay
a

Node# 4,248 1
Core# 169,920 1
Memory 815,616 GB 300 MB
Nmax 4,748,928 4,748,928
Rmax 7,484 TFLOP/s 7,558 TFLOP/s

Execute time 2.7 h (Estimated) 1.7 h

Table II shows the hardware configurations along with the
performance reported in the TOP500 list. Frontera consists of
8, 008 compute nodes, each node consists of a 2 socket Intel
Xeon Platinum 8280 2.7GHz CPU with 28 cores per socket,
and a 192GB DDR4 memory operating at frequency 2933
MHZ. One thing to note here is that the Cascade Lake pro-
cessor cannot operate at 2.7GHz continuously when running
512-bit Advanced Vector Extensions (AVX-512) unit and the
actual running frequency is around 1.8 GHz. The peak CPU
performance, memory bandwidth, and kernels efficiency are
given as inputs to the simulator. Furthermore, we configure the
simulator to use Frontera’s network topology which consists
of six core switches, 182 leaf switches, and Mellanox HDR
InfiniBand technology with 100Gbps and 90ns latency per
routing hop [21], connected in a two-level fat-tree topology
(Half of the nodes in a rack (44) connect to 22 downlinks
of a leaf switch as pairs of HDR100 (100 Gb/s) links into
HDR200 (200 Gb/s) ports of the leaf switch. The other 18
ports are uplinks to the six core switches). We assume that
the routing algorithm is a non-blocking D-mod-K as it is
commonly used in fat-tree networks [15]. We also assume
default MPI configurations.

The simulation results are shown in Table II. The simulated
performance of Frontera is 22, 566 TFLOPs, while the Rmax
performance reported in the TOP500 list is 23, 516 TFLOPs.
The error rate is around 4%. The simulator execution time
is 4.8 hours with about 550MB memory consumption, which
is faster than the actual running time of more than 6.5 hours
on the full-system (we estimate the actual time based on the
problem size).

PupMaya consists of 4, 248 nodes, almost half the size
of the Frontera supercomputer. We simulate the HPL perfor-
mance on PupMaya using our framework and achieve good
accuracy. Simulation results are shown in Table II.

V. USE CASES

In this section, we use HPL as an example to demonstrate
the simulation framework capabilities to perform what-if anal-
ysis.

In the previous section, the HPL performance on Frontera
and PupMaya supercomputers is simulated. These two systems

use Mellanox InfiniBand 100Gbps as their interconnect. Here,
we use the simulator to predict the HPL performance on a
200Gbps network. Our simulation results show that the per-
formance of Frontera increases from 22, 566 TFLOP to 23, 143
TFLOPs, and that of PupMaya increases from 7, 558 TFLOPs
to 7, 854 TFLOPs. The performance improvement rates are
2.6% and 3.9% for Frontera and PupMaya, respectively, which
are very low. A closer look at the simulation results shows that
network congestion occurs due to the non-blocking routing
algorithm used in the fat-tree network. Therefore, in this
scenario, the high cost of updating the network does not lead
to significant performance improvement.

A large portion of HPC systems on the TOP500 list are
equipped with accelerators, such as GPGPU. It is therefore
of interest to simulate heterogeneous systems to predict and
optimize the performance of scientific applications on emerg-
ing large scale systems. HPL CUDA [22] is an open-source
HPL implementation for NVIDIA GPU. However, the code
was last updated in 2011 and is based on HPL version 2.0.
On our local server, this implementation achieved performance
is about half the theoretical peak while both Summit [23] and
Sierra [24] supercomputers achieve more than 75% efficiency.
Unfortunately, although we can correlate the simulator with
local measurements, the low compute efficiency is far from
practical use for predicting the performance of modern HPC
systems.

VI. CONCLUSION

The exponential increase in core counts expected at exascale
will lead to increases in the number of switches, interconnects,
and memory systems. For this reason, modeling application
performance at these scales and understanding what changes
need to be made to ensure continued scalability on future
exascale architectures is necessary.

This paper proposes a simulation approach to facilitate
this process. Our approach enables full-system performance
modeling: (1) the hardware platform is represented by an
abstract yet high-fidelity model; (2) the computation and
communication components are simulated at a functional level,
where the simulator allows the use of the components native
interface; this results in a (3) fast and accurate simulation
of full HPC applications with minimal modifications to the
application source code. This hardware/software hybrid mod-
eling methodology allows for low overhead, fast, and accurate
exascale simulation and can be easily carried out on a standard
client platform (desktop or laptop). HPL is used to demonstrate
the capability and scalability of the simulator. Two supercom-
puters from the TOP500, Frontera and PupMaya, are simulated
with good simulation speed and accuracy. Specifically, the
simulation of the HPL benchmark on Frontera takes less than
5 hours with an error rate of four percent.

We are extending our simulation framework in several
ways to build a more comprehensive solution for modeling
and exploiting the full performance of exascale computing
platforms. Multithreading is widely used in HPC applications.
In the current implementation, threads are extracted manually.



We are working on automating this process in CoFluent Virtual
Thread by enabling the simulation of Linux Pthreads and C++
threads. We also plan to support an automatic privatizing of
the global variables when mapping applications processes into
virtual threads. Finally, power is a major challenge for exascale
systems. We are planning to incorporate power models into the
simulation framework to enable the design of energy-efficient
hardware and software.
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