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ABSTRACT
Depression is a major debilitating disorder which can af-
fect people from all ages. With a continuous increase in
the number of annual cases of depression, there is a need to
develop automatic techniques for the detection of the pres-
ence and extent of depression. In this AVEC challenge we
explore different modalities (speech, language and visual fea-
tures extracted from face) to design and develop automatic
methods for the detection of depression. In psychology lit-
erature, the PHQ-8 questionnaire is well established as a
tool for measuring the severity of depression. In this paper
we aim to automatically predict the PHQ-8 scores from fea-
tures extracted from the different modalities. We show that
visual features extracted from facial landmarks obtain the
best performance in terms of estimating the PHQ-8 results
with a mean absolute error (MAE) of 4.66 on the develop-
ment set. Behavioral characteristics from speech provide an
MAE of 4.73. Language features yield a slightly higher MAE
of 5.17. When switching to the test set, our Turn Features
derived from audio transcriptions achieve the best perfor-
mance, scoring an MAE of 4.11 (corresponding to an RMSE
of 4.94), which makes our system the winner of the AVEC
2017 depression sub-challenge.

Keywords
Affective Computing; Depression Detection; Machine Learn-
ing; Speech; Natural Language Processing; Facial Expres-
sions

1. INTRODUCTION
According to the World Health Organization (WHO), de-

pression is a major mental disorder with about 300 million
people of all ages affected worldwide. As per the Global Bur-
den of Disease Study [17], depression is the second leading
cause of disability worldwide and is on the rise. Depression
affects every aspect of a person’s life. People affected from
depression often suffer from a certain extent of physical and
social impairment. Side effects of depression include sleep
disruptions or insomnia, drug or alcohol abuse, and over-
all loss of quality of life. If left untreated it can lead to
complications such as reductions in the volume of the hip-
pocampus [47]. Major clinical depression may even lead to

suicide and annually the burden of death due to depression
is on the rise. There is growing evidence that depression can
cause impairment of the immune function by affecting dif-
ferent immunological pathways such as the central nervous
system (CNS), the endocrine system, and the cardiovascu-
lar system. This can lead to the development or aggravation
of co-morbidities and worsen health conditions in other dis-
eases. Nicholson et al [36], through a meta-analysis of 54
cohort studies which performed follow up analysis of coro-
nary heart diseases (CHD) showed that patients with major
depression had an increased risk of developing fatal CHD.

Diagnosis of depression still remains a challenge. Some
symptoms of depression are not readily visible to others.
Since depressed people often have decreased social contact,
detection of the disease becomes difficult. Current diagnosis
of depression is dependent on an evaluation by a psychiatrist
supported by standard questionnaires to screen for depres-
sion. The Personal Health Questionnaire Depression Scale
(PHQ-8) Scoring and the Hamilton Depression Rating Scale
are two well established tools for the diagnosis of depression.
However, these questionnaires need to be administered and
interpreted by a therapist. The stigma around the disease
and lack of understanding often prevents patients from seek-
ing early psychiatric help.

The growing burden of this disease suggests that there is
a need to develop technologies which can aid in automatic
detection and effective care of patients suffering from depres-
sion. Affective computing focuses on the sensing, detection,
and interpretation of affective states of people from inter-
actions with computers or machines. Research on affective
computing uses modalities ranging from overt signals such
as speech, language and video to covert signals such as heart
rate, skin temperature, galvanic skin response to understand
the mental and affective states of humans. While the initial
goal of affective computing research was to build better com-
puters which could understand and empathize with humans,
the same techniques have been applied to turn computers
into tools for automatically identifying psychological states
and mental health.

Therefore, the motivation of the study, is to explore dif-
ferent sources of information, such as audio, video, language
and behavioral cues, to predict the severity of depression.
While doing so, we also investigate different feature repre-
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sentation and modeling techniques corresponding to each
modality for improving the performance of automatic pre-
diction.

The paper is organized as follows. In Section 2, we present
the literature review and the state of the art experiments
performed for the detection of depression and affective dis-
orders from speech, language, and facial expressions. This is
followed by a brief description of the multi-modal data used
for the study in Section 3. An overview of the features and
experimental methodology used in this study are given in
Section 4 and then we provide a conclusion in Section 5.

2. STATE OF THE ART - SPEECH, LAN-
GUAGE AND FACIAL EXPRESSIONS

Speech, language and facial expressions are three of the
major overt signals which have been widely used for inter-
preting human psychological states. Automatic analysis of
speech has been used for emotion recognition [50, 37], stress
detection [24, 55], and mood state characterisation [52, 8].
Natural language and speech processing from diaries and
recordings have been used to detect the onset of dementia,
alzheimers, and aphasia [49, 19]. Analysis of facial expres-
sions have shown to be highly effective in tracking the pro-
gressive degeneration of cognitive health in patients suffering
from schizophrenia and bipolar disorder [6].

2.1 Speech and Language
Several psychological conditions clearly manifest them-

selves through changes in speech patterns and language us-
age. Computational and automatic screening methods have
the power to detect micro-changes in speech and language
patterns which would otherwise have gone unnoticed. Prop-
erties such as speech rate, pause duration and usage of fillers
can be indicative of cognitive decline in individuals. Changes
in prosody, and fluency can also be useful is detecting mental
health changes of depressive patients.

Research on the diagnosis of mental health from speech
and language was pioneered by the German psychiatrist
Zwirner [57] in early 1930. He designed a device capable of
tracking fundamental frequency for the detection of mental
health of patients suffering from depression. Newman and
Mather [35] in 1938 carried out similar experiments to sys-
tematically record patient’s speech as they read pre-defined
text and interacted with a psychiatrist. This data was anal-
ysed to show that there were distinct speech features such
as speech tempo, prosodic pauses, absence of glottal rasping
associated with patients suffering from affective disorders.

France et. al [18] performed multivariate feature and dis-
criminant analyses on the speech data from 67 male and
48 female subjects to show that formant and power spec-
tral density (PSD) based features demonstrated the high-
est discriminative powers for classification in both genders.
Pope et al [40] investigated the relationship between anxi-
ety and depression and speech patterns to show that anxiety
was positively correlated with speech disturbances and re-
sistivity in speech. He also found that silent pauses were
positively correlated with depression [40].

Kaya et al [28] demonstrated that feature selection tech-
niques based on canonical correlation analysis (CCA) can
be effective in detecting depression from speech signals.

Wang et al [53] applied data mining techniques to build
models which achieved a precision of 80% for detecting de-

pression based on sentiment analysis of users on a Chinese
micro-blogging platform. Rumshisky et al [42] demonstrated
through a study on 4687 patients that NLP techniques such
as topic modeling can be used to improve prediction of psy-
chiatric readmission.

2.2 Face Analysis
Facial expressions can be an extremely powerful medium

used to convey human overt emotional feedback. In re-
cent times, there has been significant progress in developing
methods for facial feature tracking for the analysis of fa-
cial expressions and the detection of emotions. Studies have
shown that it is possible to effectively detect the presence of
pain shown on faces.

Machine learning techniques have been shown to be effec-
tive for the automatic detection of pain and mental state
from facial expressions. Littleworth et al. [31] used a two-
stage system to train machine learning algorithms to detect
expressions of real and fake pain. Their classifier obtained
an accuracy of 88% compared to an accuracy of 49% demon-
strated by naive human subjects used in their study. Am-
badar et al [4] demonstrated that analysis of facial expression
can be used to classify smiles into three distinct categories -
amused, polite and nervous.

One of the most popular technique used for capturing the
subtlety and fine-grained variations in facial expression is
the Facial Action Coding System (FACS) developed by Ek-
man and Freisen. The FACS is based on the consensus of
the judgment human experts who observe pre-recorded facial
expressions and perform manual annotation of FACS codes
for each frame. These annotations, which are called action
units (AUs) can belong to one of 44 different classes. FACS
has been widely used in the field of psychology for measur-
ing emotions, affect, and behavior [12, 5, 43]. More recently
[20], FACS have been shown to be correlated with depres-
sion severity. Specifically, [20] found that severely depressed
subjects are more likely to show fewer affiliative facial ac-
tion units (AU12 and AU15) and more non-affiliative ones
(AU14).

Head pose and eye gaze have also been shown to encode
information about depression. For instance [20] observes
that an increase in the severity of depression comes with
a diminished head motion. Other works [3, 27, 45] have
also investigated the link between head pose, eye gaze and
depression, all evidence that such a link exists and it is all
worth considering.

2.3 Combination
Combination of facial expressions, speech and multimodal

information can be used to enhance the recognition of hu-
man mental state. Busso et al. [7] demonstrated that both
feature fusion (early fusion) and decision fusion (late fu-
sion) from the different modalities outperformed individual
features-based classification.

Dibeklioglu et al [13] combined speech, facial movement
and head movement to achieve an accuracy of 88.9% for the
detection of depression from clinical interviews. The accu-
racy of the combined signal streams exceeded the accuracy
of single modalities to show that multimodal measures can
be powerful for detection of depression. Alghowinem et al [2]
also demonstrated similar findings in their research to show
that a combination of head pose, eye gaze and paralinguistic
features yielded better performance than unimodal schemes.



Table 1: Distribution of the AVEC data set into
training and development sets for depressed (D) and
non-depressed (ND) classes, and overall (ALL).

ND D ALL
Training 77 (72%) 30 (28%) 107
Developement 23 (66%) 13 (34%) 35

3. AVEC AUDIO VIDEO DATABASE
The 2017 Audio/Video Emotion Challenge and Workshop

(AVEC 2017) “Real-life depression” provides a corpus com-
prising of audio and video recordings and transcribed speech
from the Distress Analysis Interview Corpus (DAIC) [21].

The dataset comprises of recordings from 189 sessions of
human agent interaction where each subject was interviewed
by a virtual psychologist (see Table 1 for the distribution
of labels in the training and development sets). The audio
files, transcripts and continuous facial features of the human
subject is provided as part of the challenge. The Personal
Health Questionnaire Depression Scale (PHQ-8) score of the
subjects is also provided in the dataset. The PHQ-8 [30] is
a set of 8 short multiple choice questions which has been
established as a diagnostic tool for the measurement of the
severity of depressive disorders. Automatic estimation of
the PHQ-8 score from different modalities such as speech
and video can aid in the early detection of depression and
monitoring of depressive states. In the AVEC challenge, the
goal is to look at different streams of data recorded during
a session with the subject to predict the PHQ-8 scores, and
to classify the subject as depressed or not.

4. EXPERIMENTS
In this section we describe the experiments conducted for

the feature extraction and regression experiments conducted
on the speech, behavioral, language and

4.1 Speech and Behavioral Characteristic Fea-
tures

4.1.1 Acoustic Features
To understand the predictive characteristics of low-level

acoustic feature groups to assess the depression severity of
the participant, we extracted low-level descriptors (LLDs)
from the participant’s turns in each conversation. For this,
we have extracted different groups of low-level features us-
ing openSMILE [16], motivated by their successful utiliza-
tion in several paralinguistic tasks [46, 1, 10, 9]. These sets
of acoustic features were extracted with approximately 100
overlapping frames per second and with 25 milliseconds of
window. The low-level features are extracted as three groups
including:

• Spectral features (S) such as energy in spectral bands
(0-250Hz, 0-650Hz, 250-650Hz, 1-4kHz), roll-off points
(25%, 50%, 70%, 90%), centroid, flux, max-position
and min-position.

• Prosodic features (P) such as pitch (Fundamental fre-
quency f0, f0-envelope), loudness, voice-probability.

• Voice Quality features (VQ) such as jitter, shimmer,
logarithmic harmonics-to-noise ratio (logHNR).

These low-level features are then projected on 24 statisti-
cal functionals, which include range, absolute position of
max and min, linear and quadratic regression coefficients
and their corresponding approximation errors, zero cross-
ing rate, peaks, mean peak distance, mean peak, geometric
mean of non-zero values, number of non-zeros and moments-
centroid, variance, standard deviation, skewness, and kurto-
sis.

4.1.2 Behavioral Characteristics Features
Apart from extracting low-level features from raw speech

signals, we also explored the transcription.
We crafted features that can capture information regard-

ing the participant’s non-vocal behavior (NB) along with
their turn-taking behaviors (TB) and participants’ Previ-
ous Diagnosed Information (PDI) features. The non-vocal
behavior (|NB| = 3) includes:

• frequency of laughter in participant’s turns.

• percentage of disfluencies in the participant’s turns,
which might indicate hesitations.

• counts of cues that might suggest inconvenience like
whistling, mumbling, whispering or taking deep breaths
among others.

The features that are used to describe the turn-taking
behaviors, (|TB| = 6) are the first and third quartiles and
the median duration of respond time (in seconds) of the
participants. Similarly we also extracted statistics for the
with-in speaker silence (pause). The respond time represents
how long the participants took to respond to the previous
turn of the agent.

The PDI feature set (|PDI| = 3) contained numerical
representations of the response of the participants to queries
such as having any Post-traumatic Stress Disorder (PTSD),
p
¯
tsd, depression d

¯
ep, even having any military backgrounds

m
¯

b. Each individual feature is encoded into three values
(-1,0,1) where -1 represents the query is not present in the
session, 0 presents a disconfirmation (e.g ptsd=0 means the
participant responded as “no” to the previous turn query)
and 1 presents confirmation of the query.

4.1.3 Methodology and Results
For the regression task, we studied the performance of

acoustic and behavioral characteristics features. For model-
ing individual acoustic feature groups and their linear com-
bination we used support vector machine for regression, im-
plemented in weka [23] using Radial Basis Function (RBF)
kernel with γ = 0.01 and C = 1.0.

As for the linear combination of different acoustic feature
groups, we first merged all the feature vectors linearly to
obtain vector M , as shown in Equation 1

M = P ∪ S ∪ V Q = {p1, .., pm, s1.., sn, v1, .., vl} (1)

where feature vectors P, S and VQ stands for prosody, spec-
tral and voice quality as presented in Equations 2-4.

P = {p1, p2, ..., pm} (2)

S = {s1, s2, ..., sn} (3)

V Q = {v1, v2, ..., vl} (4)

From the merged feature vector we selected relevant fea-
ture subset Fs − M using training set only. For the au-
tomatic feature selection, we used Relief feature selection



Table 2: Results of individual acoustic feature
groups with linearly merged feature groups and with
Relief feature selection for depression severity esti-
mation on the development set. ? represents results
tuned using 3-fold cross validation on the training
set. |F | represent feature set dimension.

Feature set, F |F| RMSE MAE

Spectral 864 6.32 4.96
Voice Quality 288 7.05 5.70

Prosody 288 7.10 5.75

Merged 1440 6.43 5.40

Merged+Feat.Selection? 20 6.70 5.20

Table 3: Result for depression severity estimation
using behavioral characteristic features on develop-
ment set. |F | represent feature set dimension.

Feature set, F |F| RMSE MAE

Behavioral characteristic 12 5.54 4.73

technique [29, 41], successfully used in paralinguistic tasks
[1, 11]. The technique calculates the weight of the features
based on the nearest k instances (k = 20, used for this study)
of the same and different classes to rank each features. Then
by using a threshold, th = 0.02, we selected top 20 features
to use for the regression task. These parameters (th=0.02,
0, -0.02 and k=5,10,15,20) are tuned using 3-fold cross vali-
dation of the training set.

As for predictor using behavioral characteristic feature
group, we used Reduced Error Pruning Tree (“REPT”) im-
plemented in weka [23], which is a fast regression tree learner
that uses information of variance reduction and prunes it us-
ing reduced error pruning.

The results are presented in Table 2 for individual feature
set and their combinations. The result indicated that spec-
tral features are a good predictor of PHQ score compared
to all other settings presented in the table. It is observed
that even feature selection on the merged vector also per-
formed better than other sets except spectral and is above
the baseline, i.e., MAE = 5.36 and RMSE = 6.74 on the
same development set. The selected features include fea-
tures from spectral group (75%), prosodic group (20%) and
voice quality (5%) group.

It is also observed that using behavioral characteristic fea-
tures, we obtained a decrease of both MAE and RMSE by
a magnitude of 0.63 and 1.20 respectively compared to all
the results reported in the AVEC2017 baseline manuscript.
Further analysis using feature ranking technique, Relief, in-
dicated that the PDI features especially dep and ptsd are the
top ranked features followed by the median of the response
time, the quartiles of the within-speaker silence duration and
laughter frequency.

4.2 Language
Additional to the speech-based features, we explore text-

based representations to predict depression severity estimates.
The widely used representation of a document in NLP is
bag-of-words, where a document is represented by word oc-
curences ignoring the order in which they appear. We exper-
iment both with binary (BOOL) and tf-idf (TFIDF) weighted
representations. While the binary representation encodes

Table 4: Root mean square error (RMSE) and mean
absolute error (MAE) for depression severity regres-
sion using lexical features and Support Vector re-
gression with linear kernel on the development set
for the mean baseline (BL: mean), binary (BOOL),
tf-idf weighted (TFIDF) bag-of-words representa-
tions, and averaged word embedding vectors (WE).
We also provide the audio and audio-video feature-
based baselines (BL: Audio and BL: Audio-Video)
using Random Forests.

RMSE MAE
BL: mean 6.57 5.50
BL: Audio 6.74 5.36
BL: Audio-Video 6.62 5.52
BOOL 6.31 5.17
TFIDF 6.78 5.40
WE 6.84 5.41

words that are present in the document regardless of their
frequency, tf-idf weighted representation considers both the
frequency of the term (tf ) in a document and the inverse
document frequency (idf ) – which lowers the weight of the
very frequent terms in a collection and increases the weight
of the rare terms with respect to the equations 5-6.

tf − idf(t, d) = tf(t, d) ∗ idf(t) (5)

idf(t) = log
nd

df(d, t)
+ 1 (6)

Where tf(t, d) is the term frequency, nd is the total number
of documents, and df(d, t) is the frequency of documents
containing the term.

Besides bag-of-words representation, we also experiment
with the word embedding representation (WE) [34], where
pre-trained per-word embedding vectors are averaged for a
document. We make use of the SKIPGRAM embedding
vectors pre-trained on GoogleNews with a embedding di-
mension 300 and window 10.

Since the provided speech transcripts are of human-machine
conversations, we first extract human turns and convert them
into bag-of-words representation. The transcripts contain
annotations for the speech phenomena such as laughter, sigh,
etc., which were treated as any other token. Thus, the rep-
resentation implicitly encodes the presence of these phenom-
ena in the conversation; and also its frequency in the case of
tf-idf based representations. For the word embedding rep-
resentation, however, this is not the case, as there are no
pre-trained vectors for these.

The algorithm of our choice for text-based representations
is Support Vector Regression (SVR) with linear kernel, im-
plemented in scikit-learn [38]. The regression results for
each of the document representations are given in Table 4
in terms of RMSE and MAE. We also provide a mean base-
line (BL:mean) and the audio and audio-video feature-based
baselines1. As it can be observed, the only representation
that outperforms all the baselines is the binary bag-of-word
representation that yields RMSE=6.31 and MAE=5.17.

4.3 Visual Features
1Cite the baseline paper



Inspired by [51] and the success reported in [54], we use
the 68 3D facial keypoints and compute geometric features
as follows: for every facial representation, we first remove
the 3D bias (equal to a translation in the Euclidean space
by subtracting the mean value in 3D), then we normalize the
resulting representation so that the average distance to the
center (origin) is equal to 1. Finally, we compute Euclidean
distances between all possible pairs of 3D normalized points
and add them to the normalized representation. This results
in a feature vector of size 2482. Consequently, we reduce
this dimension by applying PCA and keeping over 99.5% of
variance, resulting in a feature vector of size 33.

Since we are dealing with video sequences, we propose to
regress depression using models naturally designed for tem-
poral data. Specifically, we propose the use of LSTMs [25]
for this task. LSTMs have emerged as an effective and scal-
able model for several learning problems related to sequen-
tial data, such as handwriting recognition [39, 14], genera-
tion of handwritten characters [22], language modeling and
translation [56, 32], audio [33] and video [15] signal anal-
ysis, acoustic speech modeling [44] and others. They have
proved effective at capturing long-term temporal dependen-
cies without suffering from the optimization hurdles that
plague simple recurrent neural networks (RNNs).

In order to build our training set, we apply a sliding win-
dow approach to the video sequences, using windows of size
W , overlapped by O samples. We use the success flag pro-
vided by the dataset creators which models the tracking con-
fidence for each frame. We adopt a 0-tolerance strategy and
discard all windows for which at least one failed tracking
is present. We do this to exclude the risk of introducing
artifacts into the feature space, that the model might mis-
leadingly exploit for solving the task. We set the values for
W and O empirically to 60 and 30, respectively. We down-
sample the data to 1 second, which makes our windows 1
minute long, with an overlap of 30 seconds. During test-
ing, we apply the same window-ing scheme and average the
window-level predictions over the length of the test sequence.

Next, we train a double layered LSTM model on regress-
ing depression at window level on the training set. The
model is composed of two stacked layers of size 16, followed
by a Dense layer with a linear activation function. We use
dropout [48] equal to 0.5 to control overfitting and batch
normalization [26] to limit internal covariance shift. As loss
function, we use the mean squared error. In order to val-
idate our LSTM model, we perform a leave-one-sequence-
out cross-validation scheme on the training set. After 100
epochs, our models achieve an MAE of 4.97 and an RMSE
of 6.26, which we find encouraging. We further retrain the
model on the full training set and monitor the performance
on the development partition.

Figure 1 shows the learning plots of the loss function dur-
ing training for both training (black) and validation (red)
sets. We observe a monotonic decrease of the loss function
on the training set, while on the validation, the behavior is
a typical decrease, followed by an increase of the same loss.
We use the validation set to early stop the training, thus
resulting in a model (lstm opt) with the best performance
on this set.

Following the baseline manuscript, we report in Table 5 as
performance measures the RMSE and MAE of lstm opt on
both train as well as test sets. In addition to the requested
quantities, we also report the explained variation regression

Figure 1: LSTM learning curves: trainset (black)
and development set (red). We note the existence
of a turning point in the validation loss, typically
used as a good compromise between underfitting
and overfitting

Table 5: Performance measures obtained using our
LSTM model on the training set as well as on the
development set. We also report the explained vari-
ance regression score (EVS), which measures the de-
gree to which the model ”explains” the variation of
the ground truth labels using the predictions (see
Equation 7 for a formal definition)

RMSE MAE EVS
train set 3.17 2.32 0.66
dev set 6.09 4.66 0.15

score (EVS), defined as:

evs(y, ŷ) = 1− V ar(y − ŷ)

V ar(y)
(7)

where V ar represents the statistical variance. EVS mea-
sures the degree to which a model (in our case lstm opt)
accounts for the variance of a given set of labels through
the predictions it makes. The upper bound of EVS is 1 and
corresponds to a perfect modeling.

As can be observed from Table 5, our LSTM model fits
well the training set and manages to score a promising MAE
on the development partition, better than all reported values
in the AVEC2017 baseline manuscript as well as in the last
year’s winning paper [54].

4.4 Results on the test set
We submitted four trials for evaluation on the held out

test set. Results are depicted in Tab. 6. The behavioral
characteristic features extracted from audio transcriptions
achieve the lowest errors on the test partition, which is un-
surprising considering the promising cross-validation results
obtained on the the development set (i.e. RMSE of 5.54
and MAE of 4.73). What is slightly surprising though is the
performance of the visual features. Despite achieving an en-
couraging MAE on the development set, our LSTM model
failed to generalize well enough to unseen data.



Table 6: Results on the test set
RMSE MAE

Spectral features (speech) 6.63 5.08
Turn features (speech) 4.94 4.11

Text features 5.83 4.88
Video features 6.72 5.36

5. CONCLUSIONS
In this paper we address the depression sub-challenge prob-

lem formulated in AVEC2017, i.e. regressing PHQ-8 de-
pression scores from multi-modal data. We process different
modalities (audio, language, visual) accompanying the cor-
pus and developed regression systems separately. In the au-
dio domain, we find the spectral features to be most suited
for this task, achieving an MAE score of 4.96 on the devel-
opment set (RMSE = 6.32) while lexical features score no
lower than 5.17 (MAE) and 6.31 (RMSE). Despite being the
worst performing modality in the baseline manuscript, vi-
sual features achieve the smallest errors on the development
set in our experiments. Using a sliding window approach
and temporal modeling, we obtain an MAE of 4.66 (RMSE
= 6.09). We also observed that behavioral cues extracted
from transcripts achieve smaller errors (MAE = 4.73, RMSE
= 5.54) compared to audio and language features and are
good predictor of the depression severity scores. When stud-
ied further, we found that previous diagnosed information
cues, participants’ response time to the agent among others
are one of the most informed feature to predict the depres-
sion PHQ-8 scores. This is indeed confirmed by the results
obtained on the test set, where behavioral cues scored the
smallest MAE values among all other feature sets.

In this paper, we have studied each modality individu-
ally to understand its strength in estimating the depression
severity. In future work, we plan investigating how we can
combine individual modalities to improve the overall perfor-
mance.
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