
Robust Thread-Level Speculation

Álvaro Garcı́a-Yágüez, Diego R. Llanos, Arturo González-Escribano
Dpto. de Informática

Univ. de Valladolid, Spain
Email: alvarga87@gmail.com, diego@infor.uva.es, arturo@infor.uva.es

Abstract

Robustness is a key issue on any runtime system that
aims to speed up the execution of a program. However,
robustness considerations are commonly overlooked when
new software-based, thread-level speculation (STLS) sys-
tems are proposed. This paper highlights the relevance of
the problem, showing different situations when the use of
incorrect data can irreversibly alter the speculative execu-
tion of an algorithm, despite the efforts of a given STLS
system to maintain sequential consistency. We show that
the management of speculative exceptions is a common
factor to these problems. Based on this fact, we propose a
novel solution to handle speculative exceptions. Our solution
eagerly tries to solve the issue before the non-speculative
thread arrives to the instruction that rose the exception. We
compare our solution to a more conservative approach found
in the bibliography. The comparison is done both qualita-
tively, through a detailed analysis of the tradeoffs involved,
and quantitatively, evaluating the effects of both solutions
in the execution of three different benchmarks on a real
system. Both studies conclude that our solution handles the
occurrence of speculative exceptions more efficiently. Under
heavy loads intended to push to its limits a STLS system, our
solution leads to execution times reduced by up to 52.02%
with respect to earlier proposals. Our solution does not
affect the performance when speculative exceptions do not
appear. We believe that our proposal makes STLS systems
robust enough to be used in production environments.

1. Introduction

Software Thread-Level Speculation (STLS) has empir-
ically demonstrated that it is a suitable solution for the
parallelization of applications that cannot be analyzed at
compile time. Several research groups are committed to get
results using speculative approaches in order to parallelize
benchmarks applications taken from SPEC2000 (see e.g. [1],
[2], [3]), SPEC2006 (see [2]) and others irregular applica-
tions [4], [5], [6].

In essence, STLS consists in the optimistic, parallel
execution of tasks originally intended to be carried out
sequentially. These tasks are usually iterations within a loop,
although there are mechanisms that allow the parallelization

of other parts of sequential code as well (see e.g. [2]).
Without loss of generality, we will focus our discussion in
loop-level speculative parallelization. With STLS, tasks are
composed by several, consecutive iterations, called “blocks”.
These blocks are optimistically executed in parallel, as-
suming that no dependencies will occur among them. If
a dependence violation appears, affected tasks should be
restarted to ensure that they are running with correct data.
Therefore, results calculated so far will either be discarded
if a separately memory storage space is employed [4], [5],
[3], [2] or rolled back, recovering the values stored before
running these tasks [6].

STLS solutions are steadily becoming more mature. This
makes possible the use of these techniques in complex appli-
cations and environments, even in the presence of dynamic
data structures [7]. But despite all the work made so far in
the field, it is a far path yet to consider STLS as a global
solution to the problem of automatic parallelization. Unfor-
tunately, most of the proposed solutions does not consider
all of the implications of dealing with potentially-incorrect,
speculative data. Suppose that a speculative thread consumes
a datum incorrectly set to zero. Before the software-based
monitor that controls the speculative execution detects the
dependence violation and performs the corrective actions,
the offending thread can use this datum as a divisor in an
arithmetic operation, leading to a segmentation fault that
makes the entire application to crash. We will call polluted
data these incorrect, speculative data. Other real-world prob-
lems that may arise include the use of polluted pointers or
polluted indexes to access shared data, unexpected breaks
that suddenly stop the parallel execution, or even endless
loops.

This work examines in detail such situations, identifying
a common factor to all of them and proposing a solution
that is tested in a real environment. The contributions of
this paper are the following:

• We study in detail some problems that current, still-
experimental STLS systems should solve before STLS
could be used in a productive environment. These
problems include the management of speculative ex-
ceptions, how to prevent the incorrect modification of
shared-memory locations that can not be undone, the
unexpected end of speculative sections, and the fall
into endless loops due to the use of polluted data. We

978-1-4577-1950-9/11/$26.00 ©2011 IEEE

isolate the management of speculative exceptions as
responsible of several of these problems.

• We compare two different alternatives to handle specu-
lative exceptions: A more conservative approach pro-
posed in [7], with a new, “eager” approach based
on immediate corrective actions. We also examine the
tradeoffs involved from a qualitative point of view, con-
cluding that our proposal overcomes earlier approaches
in terms of performance.

• We extend a software-based speculative engine [8] in
order to apply both solutions to solve the occurrence
of speculative exceptions on a real system. Our ex-
perimental results shows that our solution leads to up
a 52.02% reduction of the running time over a more
conservative attempt to solve this problem.

The result is a more robust scheme for software-based
speculative parallelization, that can not only be used to
execute a handful of benchmarks in laboratory conditions,
but also to be used in a production environment.

The rest of this paper is organized as follows. Section 2
introduces STLS. Section 3 explains some problems that
parallel speculation should take into account to broaden
the number of applications to deal with, and shows that
the management of speculative exceptions is behind several
of them. Section 4 describes the solution space to the
speculative exceptions problem. Section 5 analyzes in detail
the tradeoffs of two solution to this problem. Section 6
shows experimental results on a real system to compare both
approaches. Section 7 discusses some related work, while
while Section 8 concludes the paper.

2. Software Thread Level Speculation

Software Thread-Level Speculation (STLS) aims to spec-
ulatively execute in parallel fragments of code without the
need of a prior, compile-time analysis to detect potential
dependence violations. The code (typically loop iterations)
are divided into blocks and assigned to threads. The sequen-
tial semantics impose a total order among these blocks. At
a given moment, there is a non-speculative thread that is
executing the earlier block, and speculative threads execut-
ing the remaining blocks. Note that only speculative threads
might consume an incorrect, speculative datum generated by
a predecessor. Thus, only speculative threads might need to
be squashed if a dependence violation appears.

There are two different approaches to handle speculative
data. The first one is the use of version copies, one per
thread. With this approach, if a thread successfully finishes
the execution of its block of iterations, its version copy is
committed to the main copy of the shared data. Note that,
to maintain sequential semantics, commits should be done
in order, from the non-speculative to the most-speculative
thread. If a dependence violation appear, incorrect version
data is simply discarded. This technique is used in several

solutions found in the literature (such as [4], [5], [3],
[2]). The second solution to handle speculative data is to
perform changes directly in the main copy of the shared
data speculatively accessed. In this case, it is necessary to
keep track of the changes being made in order to roll them
back if a dependence violation appear [6]. The speculative
scheme used in this paper is based on [4], that uses the
former solution.

In order to track potential dependence violations, there
are again two different solutions. The first one, adopted by
the speculative scheme used, defines a set of flags to mark
each datum as speculatively accessed. With this solution,
in the case of a speculative load, a given thread searches
the most up-to-date version of the datum needed by simply
accessing to the version copies owned by its predecessors
and checking the corresponding flags to see if the datum is
present there. On the other hand, in the case of an speculative
store, the thread should check if any successor has already
consumed an incorrect value of this datum. Again, this check
can simply be done by accessing to the corresponding flags
of the versions owned by each successor. Note that these
operations can be carried out without other threads were
aware of the situation.

The second solution to track dependence violations is to
use signals to synchronize the access of each thread to data
owned by other threads [9]. Note that, unlike the previous
approach, this solution needs the cooperation of several
threads to solve a particular request, while in the previous
solution both the forwarding operation and the search for
violations can be done without any explicit synchronization
mechanism.

3. Weaknesses of current STLS proposals

In TLS systems, the access to speculative data should be
monitorized in order to avoid inconsistencies with respect
to sequential semantics. In software-based TLS, this task is
carried out by a software monitor, responsible of ensuring
that all threads consuming polluted data are eventually
squashed and restarted with correct values. Nevertheless,
as we will see below, there are several situations where
this corrective action may happen too late. These situations,
that were mostly overlooked by the research community,
prevent in fact the use of existent software-based speculative
schemas in production runs.

• Speculative exceptions. The use of a polluted datum as
an operand in arithmetic operations can produce Float
Point Exceptions (FPE), as well as Segmentation Fault
Exceptions (SFE) when used in memory operations.
Note that exceptions due to the use of polluted data
would not have happened in a sequential execution
of the algorithm. We believe that the possibility of
occurrence of such a situation is a reason strong enough

1 x = z * mainCopy[20];
2 i=0;
3 while(x < 100)
4 {
5 x = x * z;
6 i++;
7 }

1 x = z * specload(mainCopy,20);
2 i=0;
3 while(x < 100)
4 {
5 x = x * z;
6 i++;
7 }

(a) (b)

Figure 1. Endless loop due to a polluted data. (a) Original code. (b) Speculative code.

to adding speculative exceptions support to any STLS
system.

• Out-of-bound accesses to shared memory. The use
by a thread of a polluted datum as an index or pointer
to store data may lead to the incorrect modification
of the thread’s version copy of shared data. Such
changes can be reverted discarding this version copy
and re-starting the thread with correct values. However,
if no bound checking is performed, data could be
incorrectly written to version copies owned by other
threads, a write operation that could not be reverted.
Note that this problem may arise without leading to a
Segmentation Fault exception, because languages such
as C/C++ allows the program to access data beyond the
boundaries of the original structure (the “buffer over-
flow” problem). This problem is particularly relevant in
shared-memory STLS implementations, where accesses
beyond speculative data boundaries should be con-
trolled, even at the cost of a performance degradation.
Although distributed memory implementations of STLS
can ignore this problem, most STLS solutions proposed
so far relies on shared memory. If the STLS system
supports speculative exceptions, one possible solution
to this problem is use this mechanism to artificially
raise an exception if the boundaries of the structure
intended to be updated are crossed.

• Unexpected end of speculative sections. Instructions
such as break, return, or exit calls can appear in the
body of a speculative loop. The execution of these
statements affects to the parallel execution of the entire
loop and can not be easily undone. The use of polluted
data may lead a speculative task to an incorrect state,
executing one of these statements before being notified
about the dependence violation. Such statements would
finish the speculative execution, thus violating sequen-
tial semantics. We have discovered that, if the STLS
system used support speculative exceptions, statements
that lead the parallel execution to a non-reversible state
may be instrumented, in order to raise an exception that
either freezes the speculative thread until it becomes
non-speculative or re-start the task in the hope that
updated values will not lead to such a situation.

• Falling into endless loops. Figure 1 shows an ex-
ample of this problem. Suppose that x and z are
private variables of a speculative task and specData
is a shared structure being speculatively accessed.
Figure 1(a) shows the original code, while Fig. 1(b)
shows the code after replacing the original read to the
structure with a specload() call. If this function
call speculatively returns a value equal to 0, the task
will enter into an endless loop. Recall that speculative
tasks do not monitor continuously their own state, but
only when speculative functions such as specload()
or specstore() are called. Therefore, our task will
have no way to attend the squash operation that the
predecessor task will issue as soon as the dependence
violation is discovered. There are two possible solutions
to this problem: To insert additional speculative calls
inside the while loop to make the task continuously
monitor its own execution status, with the subsequent
performance degradation, or to find a way to stop and
restart the task from outside.

These four situations have several factors in common. All
of them take place when a polluted datum is used before
the dependence violation could be notified to the consumer
task. This use of a polluted datum changes the execution
flow and/or the state of the entire application without any
possible recovery. Such situations have been overlooked by
the research community, mostly because these situations are
hard to find, particularly when only a handful of benchmarks
is used to test speculative parallelization solutions. However,
a STLS scheme intended to be used for production purposes
should take all of them into account.

As we saw before, some of these situations may be man-
aged if the STLS system incorporates support to speculative
exceptions. In the following section we will study how to
solve this problem.

4. The Speculative Exceptions problem

As we stated in the previous section, as soon as a
dependence violation is detected, the offending tasks will
be squashed and restarted. However, until the violation is
discovered, tasks that have consumed polluted data could
have executed operations that leads to situations that would

a)

end do

 end if

 v[i] = i

 else

 v[i] = i / (v[i−3] − i)

 if (i == k) then

do i=1,8

k= 7

 v[i] = i + 3

end do

do i=1,8

ORIGINAL CODE

v[1] =4; v[2] = 5; v[3] =6: v[4]=7; v[5] =8; v[6]=9; v[7]=10; v[8]=11

(iterations 5 to 8)

THREAD 1

v[5] = 5

v[6] = 6

v[7] = 7/ (v[4] − 7)

FLOAT POINT EXCEPTION
v[4] = 4

t

v[3] = 3

v[2] = 2

v[1] = 1

(iterations 1 to 4)

THREAD 0

v[5] = 15

t

b)

end do

 end if

 v[i] = i + 10

 else

 v[k] = v[i]

 k = v[i−3] − 10

 if (i == k) then

do i=1,8

k= 7

end do

 v[i] = i

do i=1,8

ORIGINAL CODE

v[1] =1; v[2] = 2; v[3] =3: v[4]=4; v[5] =5; v[6]=6; v[7]=7; v[8]=8

(iterations 1 to 4)

THREAD 0

v[1] = 11

v[2] = 12

v[3] = 13

v[4] = 14

SEGV EXCEPTION

v[k] = v[i]

k = v[4] −10 k = −6

v[6] = 16

(iterations 5 to 8)

THREAD 1

Figure 2. Code examples that produce exceptions when they are speculatively parallelized. Floating Point Exception
(a) and Segmentation Fault Exception (b).

not have happen in the original, sequential code. From
here on, we will focus on the management of speculative
exceptions, a problem that is in the core of most of the
situations described in the previous section.

Figure 2 shows two situations that can raise an exception
in a speculative, parallel execution. Code a) produces an
arithmetic exception, while code b) generates a segmentation
fault caused for an access outside the boundaries of array v.
For each situation, the original code is depicted at the left of
the figure. In both cases, the code shown first initializes the
vector to be speculatively accessed, and then a loop operates
with that vector. This second vector is the one that will be
speculatively parallelized. For simplicity, only the sequential
version of these loops are shown.

Suppose that two threads cooperate executing the second
loop. Each thread receives a block of four consecutive
iterations: Thread 0 executes iterations 1 to 4, while Thread
1 executes iterations 5 to 8. Therefore, Thread 0 is the non-
speculative thread, while Thread 1 is the most speculative
one. The evolution is similar for both examples. When
Thread 1 runs iteration 7, it speculatively reads v[4]. At that
moment, and supposing a perfect synchronization without
loss of generality, Thread 0 have not yet updated v[4].
Therefore, the most up-to-date value for v[4] is fetched from
the vector main copy. Before Thread 0 speculatively writes a
new datum on v[4] and detects that Thread 1 has consumed
an outdated value, Thread 1 has executed an operation that
raises an exception (a division by zero in the left figure, and
an access to element with index -6 in the right figure).

Let us highlight the importance of the problem. If no
action is taken and an exception is raised, the entire ap-
plication will crash, not only the speculative section. Even
worse, if the incorrect index being accessed in Fig. 2,
right, is a positive value instead of -6 that lies outside the
boundaries of the version copy owned by Thread 1, the
segmentation violation exception might not raise, but the
result of the speculative execution would differ with respect
to the sequential results.

It is not easy to handle such situations, but any speculative

scheme that aims to be used in a production environment
should give an answer to this problem. To ignore this
possibility in the hope that it is a very uncommon situation
may be acceptable for prototyping speculative schemes,
where a handful of well-known benchmarks does not lead
to such behaviors, but not if STLS is aimed to be integrated
into existent parallelization compilers and runtime support.

We can distinguish four different solutions to this prob-
lem, from the most conservative to the most aggressive one.

1) To avoid the use of STLS in loops that contain
operations that can potentially produce exceptions.
This solution restricts the code that can benefit from
this technique. Moreover, it is not clear whether such
an analysis could be carried out only with compile-
time information.

2) To allow the use of STLS in these cases, but instru-
menting the code with functions that stall a speculative
thread before executing an operation that could pro-
duce an exception. The execution will be stalled until
the thread is transformed into non-speculative. This
solution prevents the occurrence of speculative excep-
tions, at the cost of highly reduce the performance
of applications. Moreover, the difficulties of detecting
such potentially dangerous operations at compile time
still remains.

3) The third solution is to handle the exception, and
make the signal handler to stall the thread until it
has become the non-speculative one. This solution
has been recently proposed by C. Tian et al. [7].
Once reached the non-speculative state, this solution
allows to distinguish between exceptions due to the
speculative execution and those due to an error in the
original code. However, as we will see, it comes at the
cost of a noticeable performance degradation.

4) Finally, the most eager solution is to handle the
exception and take corrective actions as soon as it
arises. As far as we know, such a solution has not
been proposed in the literature. Our proposal is to
squash the offending thread (and it successors) in order

transferring
control

 RESTART TASK RESTART TASK

 SQUASH SQUASH

MOST−SPECULATIVE

PROC 3PROC 2PROC 1PROC 0

NON−SPECULATIVE

EXCEPTION

 HANDLER

 RESTART TASK

Figure 3. The “InclusiveSquash” solution: Squashing
tasks when an exceptions arises on a speculative
thread.

to restart them with updated values. As we will see
in the following sections, this behavior is simpler to
describe than to implement, because runtime excep-
tions are handled by the same processor that raises the
exception. If the exception raises again, the squashing
and restarting process is carried out again. This leads
to two different scenarios: (a) the dependence violation
that was producing the exception is finally solved, or
(b) the thread becomes non-speculative. In this last
case, if the exception raises again, then the problem is
due to the original code and not to the STLS system.

As we will see in Sect. 6, our proposal noticeably
improves the performance of Tian et al. solution, cutting
the execution time to one-half in some extreme cases. In
the following sections we will describe how to deal with
the distributed management of speculative exceptions in the
context of a state-of-the-art STLS system.

5. Handling speculative exceptions

As we stated in the previous section, there are two
different possibilities to be considered in order to manage
speculative exceptions. The first one, that we will call
“SpinWait”, stalls the execution of the thread until it be-
comes non-speculative. The second one, that we will call
“InclusiveSquash”, takes corrective actions as soon as the
exception arises, by means of a handler that decides the
next action to be taken. If the handler decides to squash the
task, the offending thread that have risen the exception is
squashed and restarted, together with all its successors (see
Fig. 3). This behavior gives the solution its name.

5.1. Exceptions due to the use of polluted data:
Tradeoffs

We will now briefly consider the tradeoffs of both so-
lutions in terms of performance. Suppose we have two
processors, P0 and P1, speculatively executing a loop in
parallel. The loop is divided into four blocks of iterations,
that we will call tasks T0, T1, T2 and T3. Figure 4 describes

ms: Most speculative

ns: Non speculative Px: Processor X

Tx: Task X

rt: restart

cx: commit Task x

T3

c3

P0 P1

c0

ns

ms

ex

T0

T2
ms

T1

ns

c2

rt

T1

c1

idle

TIME

 SpinWait(A)

P0 P1

c0

ns

ms

ex
rt

T0

T2
ms

T1

T1
ns

c1

c2

c3

T3

TIME

or is caused for the normal sequence execution.

exception is due to a dependence violation

Restarting without knowing whetherIdling until ms processor turns the ns

or discovers that a violation arises.

InclusiveSquash(B)

tb

ta

Figure 4. Exceptions due to the use of polluted data.

both possible behaviors when dealing with a speculative
exception that raise due to polluted data. Suppose that P0
starts the execution of T0, therefore acting as the non-
speculative thread, while P1 starts with the execution of T1.
At a given moment, labeled ta in the figure, P1 raises an
exception.

The “SpinWait” solution (see Fig. 4, left) stalls P1 until
the dependence violation is notified. If dependence violation
checks are done at commit time, P1 will be idle until P0
has (a) finished task T0, (b) committed results (c) notified
P1 about the dependence violation, and (d) started task T2.
Note that this notification arrives to P1 at the same time
than the non-speculative label for task T1 (instant tb). On
the other hand, if the speculative scheme being used notifies
the dependence violation when performing speculative stores
(default behavior in [8]), the restart might be produced
slightly earlier. In both cases, after some time devoted to
restart the task (labeled as rt), processor P1 starts the re-
execution of T1. If the exception was due to the use of
polluted data, the problem will not appear again, since T1
has no running predecessors that might update data values.
Finally, after executing task T2, P0 would start the execution
of T3, the task that had not been assigned yet.

We now briefly discuss how the “InclusiveSquash” solu-
tion (Fig. 4, right) would act in this case. Once the spec-
ulative exception has been risen, this solution immediately
stops task T1, restarting it after some time needed to clean
the corresponding data structures (rt). If we suppose all tasks
of equal duration, T2 would then be assigned to P0. As can
be seen, this second solution would lead to a performance
improvement over the previous scheme. Our experimental
results, shown in Sect. 6, confirm this forecast.

ms: Most speculative

ns: Non speculative Px: Processor X

Tx: Task X

rt: restart

cx: commit Task x

P0 P1

c0

ns

ms
T0

T2
ms

T1

ns
ex

T1

ex

TIME

rt
ta

te

tc
tb

td

P0 P1

c0

ns

ms

ex

T0

T2
ms

T1

ns

idle

TIME

 (A) InclusiveSquash (A) SpinWait

Figure 5. Exceptions due to the original application.

5.2. Exceptions due to the original code: Tradeoffs

After reviewing how both solutions deal with exceptions
due to polluted data, let us examine what would happen if the
exception is produced by a failure in the original application.

The “SpinWait” solution (Fig. 5, left) will stall task T1,
deferring its re-execution until either a dependence viola-
tion is notified or T1 becomes non speculative. Since the
speculative execution has nothing to do with the exception,
the dependence violation notification never arrives. When T1
becomes non speculative (time td), the task is re-started and
the application crashes, reporting the error to the operating
system.

On the other hand, the “InclusiveSquash” solution imme-
diately restarts the execution of the speculative task (fig. 5,
right). The exception will raise again, one or several times,
until T1 has become the non-speculative task. Interestingly,
the first time the exception raises being T1 the non specu-
lative task (instant te), the reason may still be a dependence
violation produced in the “speculative phase” of task T1
(time elapsed between tb and td or an exception due to
the original code. In the first case, T1 has already been
marked as squashed, so the task will be restarted once again.
Otherwise, the application is allowed to crash. Note that the
extra time needed by the “InclusiveSquash” approach is not
relevant in this case, since the application will crash only
once.

Taking everything into account, we can conclude that
“SpinWait” informs faster about an error when an exception
is produced because of the original sequence, whereas
“InclusiveSquash” obtains better results when the excep-
tion is due to a dependence violation. Since ensuring a
consistent parallel execution is far more important than
spending some more time when an application crashes due
to an exception, we can conclude from this qualitative study
that the best mechanism to control exceptions in STLS
is “InclusiveSquash”. As we will see, experimental results
confirm this fact.

6. Experimental evaluation

In this section we perform an experimental evaluation
of the two proposed solutions to the speculative exceptions
problem.

6.1. Implementation details and OpenMP issues

In order to quantitatively evaluate the design space of the
solutions to the speculative exception problem, we have aug-
mented a state-of-the-art speculative scheme first presented
in [4] with support to handle speculative exceptions. The
entire STLS scheme has been implemented using C and
OpenMP 3.0.

Figure 6 shows a flow diagram describing what actions
should be carried out to handle exceptions using the “Inclu-
siveSquash” scheme. The diagram is based on [10] patent
which explains how to handle exceptions in ILP processors
with speculative operations. As can be seen, exceptions
are reported only if the task is non speculative and no
dependence violations have appeared. Otherwise the system
assumes that the exception is produced by a dependence
violation and therefore will be processed according to the
behavior taken when a violation appears as Figure 3 depicts.

To understand how we handle speculative exceptions with
this STLS scheme, it is necessary to take a look at the
OpenMP standard. OpenMP v3.0 specifications (p. 45) [11]
states that “A throw executed inside a loop region must
cause execution to resume within the same parallel region,
and the same thread that threw the exception must catch
it.” According to this statement, when an exception appears,
the execution control is transferred to an exception handler
that will be executed by the same thread that provoked
the exception. We have implemented two different versions
of this handler. The first one simply stalls the execution
until the task become non-speculative, and then restarts the
task. If the exception arises again, the application finishes
with an error code. The second version implements “Inclu-
siveSquash”. In this case, this handler checks the state of
the tasks as it was explained in Fig. 6. According with this
checking, the handler may decide to squash all successors,
returning the control within the parallel region for restarting
the same task. Since each thread should be able to handle
its own exceptions, it is necessary to indicate precisely what
exceptions each thread will handle. To do so, when threads
are spawned they initialize their own handler tables.

6.2. Benchmarks considered

To test both schemes, we have considered three applica-
tions that present a high number of dependence violations.
These applications, widely used in Computational Geometry,
are the construction of the two-dimensional Delaunay Trian-
gulation (2D-DT), the construction of the two-dimensional

Figure 6. Flow diagram of sequence of actions taken
when a exception arises.

Convex Hull (2D-Hull), and the construction of the two-
dimensional Minimum Enclosing Circle (2D-MEC).

The first application is the randomized incremental con-
struction of the Delaunay Triangulation using the Jump-and-
Walk strategy, introduced by Mücke, Zhu et al. [12], [13].
This strategy proceeds in an incremental way. The Jump-
and-Walk strategy uses a number of points, called anchors,
whose containing triangles are known. The algorithm finds
the closest anchor to the point to be inserted (the jump
phase), and then traverses the current triangulation until the
triangle that contains the point to be inserted is found (the
walk phase). After this location step, the algorithm divides
this triangle into three new triangles, and then updates the
surrounding edges to keep the Delaunay properties. This
local modification to the current Delaunay solution may
lead to dependence violations, since other threads may have
traversed the old solution while trying to add new points. The
expected amount of dependence violations that may arise
depends both on the number of processors and the length of
the traversing path.

The 2D-Hull randomized incremental algorithm, due to
Clarkson et al. [14], computes the convex hull (smallest
enclosing polygon) of a set of points in the plane. The input
to Clarkson’s algorithm is a set of (x, y) point coordinates.
The algorithm starts with the triangle composed by the
first three points and adds points in an incremental way.
If the point lies inside the current solution, it will be
discarded. Otherwise, the new convex hull is computed,

an operation that generates a dependence violation because
other successor threads will be using the old solution. The
probability of a dependence violation depends on the shape
of the input set. If N points are distributed uniformly on
a disk, the i-th iteration will present a dependence with
probability in θ(

√
i/i). If points lie uniformly on a square,

the probability of a dependence will be in θ(log(i)/i). When
a dependence is found, the convex hull has to be updated.
The amount of work needed to do this is in θ(log(i)) in both
cases.

Finally, the two-dimensional Minimum Enclosing Circle
algorithm [15] computes the minimum enclosing circle of a
two-dimensional, randomly-ordered point set. We have used
a iterative version composed of three nested loops. Each
loop fixes one of the two or three points that define the
solution. We have speculatively parallelized the inner loop.
This loop receives two candidates that define the limits of
the enclosing circle and tries to find a third limit. Like
the other benchmarks considered, this algorithm proceeds
incrementally, discarding the third candidate if it discovers
that a given point of the input set lies outside the proposed
solution. This discard operation may to a dependence vio-
lation, since successors may have used the discarded points
to test if other points lie inside the current solution.

6.3. Design of experimentation

The three benchmarks considered generate many depen-
dence violations during their execution, posing a significant
challenge to any STLS scheme. However, none of the bench-
marks considered generate any speculative exception during
their execution1. At this point we had two options: to develop
a synthetic benchmark that artificially generates exceptions,
or to augment the code of these well-known benchmarks
to generate exceptions from time to time. We finally chose
this second option, because to use real benchmarks avoids
the need of choosing “adequate” workloads for a synthetic
benchmarks in order to simulate real-world conditions.

To test both solutions to the speculative exceptions prob-
lem, we have slightly modified each benchmark, adding
operations that lead to exceptions. We decided to develop
two modified versions. One of them raises exactly one
exception per each block of iterations being processed, while
the second one raises two exceptions per block. Since the
optimum block size is different for each application (20
iterations for 2D-DT, 2500 for 2D-HULL and 5000 for 2D-
SEC), these choices in the design of experiments allow us
to test both solution to the problems under very different
execution conditions.

We have evaluated three aspects of parallel execution: The
total wall-clock time needed for the speculative loop, the

1. Note that it is extremely unlikely that a widely-used benchmark allows
the possibility of a runtime exception.

total number of dependence violations that arise, and the
total number of squashes generated.

6.4. Experimental results

Figure 7 shows results for the Delaunay Triangulation,
Fig. 8 shows the results for the Convex Hull problem, and
Fig. 9 shows the results for the MEC problem. Results
are consistent for all three applications, showing that it is
preferable to handle exceptions immediately than to delay its
processing until the non-speculative state reaches the thread
that generates the exception. From these results we can draw
the following observations:

• Due to the extraordinary heavy workload that repre-
sents the occurrence of an exception per each block
of iterations being processed, execution time shown
(leftmost plots) tend to increase with the number of
processors. To mitigate this effect we might choose to
raise a smaller number of exceptions, but in this case
differences between both solutions are far less visible.

• The execution time is consistently smaller for the
“InclusiveSquash” solution. In the case of the Delaunay
Triangulation, our experimental results show a perfor-
mance improving up to 13.44% when one exception
per block arises, and up to 39.38% with two exceptions.
The use of “InclusiveSquash” also lead to better results
for 2D-HULL (43.77% for one exception and 41.09%
for two), and for 2D-MEC (42.72% for one exception
and 52.02% for two).

• As expected, the number of squashes generated by
the “InclusiveSquash” solution is greater than those
generated by the “SpinWait” solution (see center plots
of Fig. 7, Fig. 8 and Fig. 9). The reason is that the ex-
periments using the former solution have two source of
squashes: Those generated by the normal execution of
the application, and those generated by the speculative
exceptions. Regarding the “SpinWait” solution, it does
not generate other squashes than those produced by the
original application’s behavior. Interestingly, despite the
higher number of squashes, the experiments that use the
“InclusiveSquash” solution are consistently faster.

• Also as expected, the total number of exceptions risen
is greater for the “InclusiveSquash” solution than those
generated by the “SpinWait” solution (see rightmost
plots of Fig. 7, Fig. 8 and Fig. 9). The reason is that the
former solution executes several times the same block
until the exception disappears.

• It is interesting to note the apparently strange behav-
ior of the 2D-DT benchmark when running with 2
threads and one exception per block. The number of
squashes (Fig. 7, first row, center) is extraordinary low
(595 for “InclusiveSquash” and 591 for “SpinWait”.
This is about 1% of the squashes generated with four
processors. The exceptions raised are also very low,

being 118 and 117 respectively (Fig. 7, first row, right).
Recall that, with two threads, one acts as the non-
speculative and the other will be speculative. With the
sliding window mechanism used by the STLS scheme
used (see [4] and [8] for a detailed description), each
time the non speculative thread finishes, it passes the
“non speculative token” to the following thread. Since
the workload generated by the Delaunay Triangulation
algorithm is extremely regular, by the time the (ini-
tially) speculative thread generates the exception, its
predecessor has already finished, and our thread has in
fact become non speculative. Since only exceptions that
are generated when the thread is still speculative count
in our study, the exception is discarded, leading to the
low number of exceptions shown and to an identical
behavior for both solutions in terms of performance
(Fig. 7, first row, left).

Finally, it is worthwhile to say that none of the studied
solutions to the speculative exceptions problem lead to any
performance degradation when exceptions are not produced.
The only additional time needed for both solutions compared
with a STLS system that does not use any of them is the
time needed to register the handler, an operation that it is
only carried out once per running thread.

6.5. Execution environment

Experiments were carried out on an Intel S7000FC4URE
server, equipped with four quad-core Intel Xeon MPE7310
processors at 1.6GHz and 32GB of RAM. The system runs
Ubuntu Linux operating system. All threads had exclusive
access to the processors during the execution of the experi-
ments, and we used wall-clock times in our measurements.
The compilation flags for the sequential versions were -O3
-m32 -march=native. Times shown in the following
sections represent the time spent in the execution of the
main loop of the application. The time needed to read the
input set and the time needed to output the results have not
been taken into account.

7. Related work

Since parallel speculative execution exploits the use of
data that could be incorrect to boost the speedup, polluted
data can potential alter the original execution flow, thus
producing unexpected results. These situations need to be
kept under control to ensure a robust behavior. However, to
the best of our knowledge little work has been carried out
regarding robustness on software-based speculation so far.
We will briefly mention the more relevant contributions.

Kulkarni et al. [5] focus their work on irregular ap-
plications written in object-oriented languages, exploiting
speculative parallelism in objects instead of data. In their
scheme, programmers are responsible of using programming

 0

 20

 40

 60

 0 2 4 6 8 10 12 14 16

T
im

e

Processors

2D-DT, 1 exception per block, time

InclusiveSquash
SpinWait

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 2 4 6 8 10 12 14 16

S
q
u
a
s
h
e
s

Processors

2D-DT, 1 exception per block, squashes

InclusiveSquash
SpinWait

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2 4 6 8 10 12 14 16

E
x
c
e
p
ti
o
n
s

Processors

2D-DT, 1 exception per block, exceptions

InclusiveSquash
SpinWait

 0

 25

 50

 75

 0 2 4 6 8 10 12 14 16

T
im

e

Processors

2D-DT, 2 exception per block, time

InclusiveSquash
SpinWait

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 2 4 6 8 10 12 14 16

S
q
u
a
s
h
e
s

Processors

2D-DT, 2 exception per block, squashes

InclusiveSquash
SpinWait

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2 4 6 8 10 12 14 16

E
x
c
e
p
ti
o
n
s

Processors

2D-DT, 2 exception per block, exceptions

InclusiveSquash
SpinWait

Figure 7. Experimental evaluation of speculative exception management using the Delaunay Triangulation.

 0

 2

 4

 6

 0 2 4 6 8 10 12 14 16

T
im

e

Processors

2D-HULL, 1 exception per block, time

InclusiveSquash
SpinWait

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10 12 14 16

S
q
u
a
s
h
e
s

Processors

2D-HULL, 1 exception per block, squashes

InclusiveSquash
SpinWait

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

E
x
c
e
p
ti
o
n
s

Processors

2D-HULL, 1 exception per block, exceptions

InclusiveSquash
SpinWait

 0

 2

 4

 6

 0 2 4 6 8 10 12 14 16

T
im

e

Processors

2D-HULL, 2 exception per block, time

InclusiveSquash
SpinWait

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10 12 14 16

S
q
u
a
s
h
e
s

Processors

2D-HULL, 2 exception per block, squashes

InclusiveSquash
SpinWait

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

E
x
c
e
p
ti
o
n
s

Processors

2D-HULL, 2 exception per block, exceptions

InclusiveSquash
SpinWait

Figure 8. Experimental evaluation of speculative exception management using the 2-dimensional Convex Hull
problem.

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 2 4 6 8 10 12 14 16

T
im

e

Processors

2D-MEC, 1 exception per block, time

InclusiveSquash
SpinWait

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14 16

S
q
u
a
s
h
e
s

Processors

2D-MEC, 1 exception per block, squashes

InclusiveSquash
SpinWait

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16

E
x
c
e
p
ti
o
n
s

Processors

2D-MEC, 1 exception per block, exceptions

InclusiveSquash
SpinWait

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 2 4 6 8 10 12 14 16

T
im

e

Processors

2D-MEC, 2 exception per block, time

InclusiveSquash
SpinWait

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14 16

S
q
u
a
s
h
e
s

Processors

2D-MEC, 2 exception per block, squashes

InclusiveSquash
SpinWait

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16

E
x
c
e
p
ti
o
n
s

Processors

2D-MEC, 2 exception per block, exceptions

InclusiveSquash
SpinWait

Figure 9. Experimental evaluation of speculative exception management using the 2-dimensional Minimum
Enclosing Circle problem.

abstractions to highlight opportunities for exploiting paral-
lelism in sequential programs, while a runtime system uses
these hints to execute and monitorize the program in parallel.
This mechanism needs to undo the results in shared objects
when a dependence violations arises. No reference is given
about robustness issues.

In [2], [16], a speculative software based on processes
instead of threads is proposed. Programmers mark Potential
Parallel Regions (PPR) that can be not only loop sections but
also inherently sequential code. Several PPR are executed
both sequentially and speculatively. At the end of a PPR
execution, sequential and parallel results are compared in
terms of memory pages and if they have made identical
changes to the same memory locations speculative execution
is considered to be correct. Otherwise the work by follow-
ing PPRs is discarded. Since the proposed solution uses
processes, memory pages are naturally protected to avoid
segmentation faults. Moreover, as they not only execute the
speculative code but also the sequential code, their scheme
avoids in practice the problems mentioned in our work.

In [6], [17], a C++ library that contains different models
of STLS is presented. Models from read, store and commit
operations defers of each other. Using this scheme, depen-
dency violations, task ends, and exceptions are handled in a
similar way, with speculative threads waiting until becoming
non speculative.

In [9], the proposed scheme captures all exceptions. A
special handler activates a single flag that is used to denote
all kinds of failure, both due to exceptions and dependence

violations. A main thread is responsible of the management
of all finished tasks in order. Therefore, the handling of any
exception produced will be delayed until the associated task
can be re-started as non speculative task. A previous work of
the same group [3] pointed out that bzip2 application from
SPEC2000 benchmark indeed produce exceptions when it
was speculatively executed, but no further details are given.
From our experience we deduce that the exceptions reported
depend on the input set used to run the experiment.

In [18] STLS Java system is described. This system
modifies bytecode instructions to provide speculation sup-
port. In this case, each time an exception arises the system
returns to the statement that have produced the exception
and the scheme waits until the main thread arrives to that
execution point, in order to decide whether the data should
be committed or discarded.

8. Conclusions

Robustness is a key issue for any software-based, thread-
level speculation scheme that aims to be used in production
runs. However, little work has been carried out to ensure
that speculative, incorrect data do not alter irreversibly the
sequential semantics of the original code in STLS systems.
In this work we have identified the management of specu-
lative exceptions as a key issue to ensure correct execution.
We have proposed a new, eager mechanism that restarts the
execution of speculative code as soon as an exception arises.
We have compared our solution with a more conservative ap-

proach recently proposed, that waits until the thread becomes
non speculative to solve the situation. Our experimental
results on a real system with a state-of-the-art STLS scheme
and three different benchmarks show that our solution leads
to a performance improvement up to 52.02% in the total
execution time. Our system has immediate applicability and,
by its nature, does not lead to any performance degradation
when speculative exceptions do not occur.

Acknowledgments

The authors would like to thank the anonymous ref-
erees for their detailed comments, and Álvaro Estébanez,
David Orden, and Belén Palop for their help with the
2D-MEC benchmark and for many fruitful discussions.
This research is partly supported by the Spanish Govern-
ment (TIN2007-62302, TIN2011-25639, TIN2010-12011-
E (CAPAP-H), CENIT MARTA, CENIT OASIS, CENIT
OCEANLIDER). Part of this work was carried out under
the HPC-EUROPA2 project (project number: 228398), with
the support of the European Community - Research Infras-
tructure Action of the FP7.

References

[1] M. K. Prabhu and K. Olukotun, “Exposing speculative thread
parallelism in SPEC2000,” in Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, ser. PPoPP ’05. New York, NY, USA: ACM,
2005, p. 142–152, ACM ID: 1065964.

[2] K. Kelsey, T. Bai, C. Ding, and C. Zhang, “Fast track:
A software system for speculative program optimization,”
in Proceedings of the 7th annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser.
CGO ’09. Washington, DC, USA: IEEE Computer Society,
2009, p. 157–168, ACM ID: 1545066. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2009.18

[3] C. Tian, M. Feng, V. Nagarajan, and R. Gupta, “Copy or
discard execution model for speculative parallelization on
multicores,” in Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO
41. Washington, DC, USA: IEEE Computer Society,
2008, p. 330–341, ACM ID: 1521785. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2008.4771802

[4] M. Cintra and D. R. Llanos, “Toward efficient and robust
software speculative parallelization on multiprocessors,” in
Proc. of the SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), June 2003, pp. 13–24.

[5] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew, “Optimistic parallelism requires
abstractions,” Communications of the ACM, vol. 52, p. 89–97,
Sep. 2009, ACM ID: 1562188.

[6] C. E. Oancea, A. Mycroft, and T. Harris, “A lightweight in-
place implementation for software thread-level speculation,”
in Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures, ser. SPAA ’09.
New York, NY, USA: ACM, 2009, p. 223–232, ACM ID:
1584050.

[7] C. Tian, M. Feng, and R. Gupta, “Supporting speculative
parallelization in the presence of dynamic data structures,”
in ACM SIGPLAN Notices, ser. PLDI ’10. New York, NY,
USA: ACM, 2010, p. 62–73, ACM ID: 1806604.

[8] M. Cintra and D. R. Llanos, “Design space exploration of a
software speculative parallelization scheme,” IEEE Trans. on
Paral. and Distr. Systems, vol. 16, no. 6, pp. 562–576, June
2005.

[9] C. Tian, C. Lin, M. Feng, and R. Gupta, “Enhanced specula-
tive parallelization via incremental recovery,” in Proceedings
of the 16th ACM symposium on Principles and practice of
parallel programming, ser. PPoPP ’11. New York, NY, USA:
ACM, 2011, p. 189–200, ACM ID: 1941580.

[10] F. Amerson, R. Gupta, V. Kathail, B. Rau, M. Schlansker, and
W. Worley Jr, “Method and system for propagating exception
status in data registers and for detecting exceptions from
speculative operations with non-speculative operations,” Jul. 7
1998, US Patent 5,778,219.

[11] “Openmp version 3.0 complete specifications,” May 2008,
http://www.openmp.org/mp-documents/spec30.pdf.

[12] L. Devroye, E. P. Mücke, and B. Zhu, “A note on point
location in Delaunay triangulations of random points,” Al-
gorithmica, vol. 22, pp. 477–482, 1998.

[13] E. P. Mücke, I. Saias, and B. Zhu, “Fast randomized point
location without preprocessing in two- and three-dimensional
Delaunay triangulations,” in Proceedings of the 12th ACM
Symposium on Computational Geometry, 1996, pp. 274–283.

[14] K. L. Clarkson, K. Mehlhorn, and R. Seidel, “Four results
on randomized incremental constructions,” Comput. Geom.
Theory Appl., vol. 3, no. 4, pp. 185–212, 1993.

[15] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in
New results and new trends in computer science, vol. LNCS
(555), 1991, pp. 359–370.

[16] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and
C. Zhang, “Software behavior oriented parallelization,” ACM
SIGPLAN Notices, vol. 42, p. 223–234, Jun. 2007, ACM ID:
1250760.

[17] C. E. Oancea and A. Mycroft, “Software thread-level specu-
lation: an optimistic library implementation,” in Proceedings
of the 1st international workshop on Multicore software
engineering, ser. IWMSE ’08. New York, NY, USA: ACM,
2008, p. 23–32, ACM ID: 1370090.

[18] C. J. F. Pickett and C. Verbrugge, “Software thread level
speculation for the java language and virtual machine environ-
ment,” IN LCPC’05: Proceedings of the 18th intl. Workshop
on Languages and compilers for parallel computing, vol.
LNCS 4339, pp. 304—318, 2005.

