
Supporting Computational Data Model Representation with High-performance I/O
in Parallel netCDF

Kui Gao, Chen Jin, Alok Choudhary, and Wei-keng Liao
Electrical Engineering and Computer Science Department, Northwestern University

{kgao, cji970, choudhar, wkliao}@eecs.northwestern.edu

Abstract—Parallel computational scientific applications have
been described by their computation and communication
patterns. From a storage and I/O perspective, these applications
can also be grouped into separate data models based on
the way data is organized and accessed during simulation,
analysis, and visualization. Parallel netCDF is a popular library
used in many scientific applications to store scientific datasets
and provides high-performance parallel I/O. Although the
metadata-rich netCDF file format can effectively store and
describe regular multi-dimensional array datasets, it does not
address the full range of current and future computational
science data models. In this paper, we present a new storage
scheme in Parallel netCDF to represent a broad variety of data
models used in modern computational scientific applications.
This scheme also allows concurrent metadata construction for
different data objects from multiple groups of application
processes, an important feature in obtaining a high degree
of I/O parallelism for data models exhibiting irregular data
distribution. Furthermore, we employ non-blocking I/O func-
tions to aggregate irregularly distributed data requests into
large, contiguous data requests, to achieve high-performance
I/O. Using an example of adaptive mesh refinement data model,
we demonstrate the proposed scheme can produce scalable
performance results for both data and metadata creation and
access.

Keywords-Parallel I/O, Parallel netCDF, Data Model

I. INTRODUCTION

Modern parallel computers are increasingly used to solve
large, data-intensive scientific applications, such as climate
modeling, fusion, fluid dynamics, and computational biol-
ogy. Parallel computational scientific applications have been
described by their computation and communication patterns.
The taxonomy consists of 13 data models [1], [2]. Each data
model has a particular pattern of computation and communi-
cation. High I/O performance is critical from a performance
and productivity perspective, to support interpretation of
computational results and operation of these codes at fideli-
ties enabled by extreme-scale computers. Codes across the
range of computational data models are finding it difficult
to perform efficient I/O on todays petascale architectures.
The I/O inefficiency problem may limit the ability of these
applications to achieve exascale performance.

The Network Common Data Format (netCDF) [3], [4]
defines a set of I/O functions and a machine-independent
file format to support the creation, access, and sharing of

array-oriented scientific data. Data stored in netCDF format
is defined as array variables with well-defined attributes,
such as dimensions, data types, and annotations. NetCDF is
widely used by many scientific applications to store data in
a portable file format with the related metadata. To support
parallel I/O, Parallel netCDF (PnetCDF) [5], a popular
parallel I/O library in many scientific applications, defines a
set of parallel functions of which implementation is built on
top of MPI-IO [6] to provide high performance. Although
the metadata-rich netCDF file format can effectively store
and describe regular multi-dimensional datasets, it does not
address the full range of current and future computational
science data models.

Existing parallel I/O methods in PnetCDF concentrate on
optimizing the process collaboration under a fairly evenly-
distributed request pattern. However, these parallel I/O meth-
ods are not suitable for an irregular data set, because the
underlying data distribution is highly irregular and dynamic.
Process synchronization in the existing parallel I/O methods,
such as MPI-IO, can penalize the I/O parallelism if the
process collaboration is not carefully coordinated. Due to
the irregularity of data distribution in some data models, the
I/O workload can vary widely depending on computational
region of interest during the runtime. This intensive and
dynamic I/O behavior imposes a big challenge to achieve
scalable and sustainable I/O performance when applications
run on high-performance computing (HPC) systems.

Currently, there is no existing parallel I/O library that
supports complex data models, i.e. arbitrary data relation-
ships among data objects. Only HDF5 [7] supports a tree-
structured model through group, but not for arbitrary graphs.
PnetCDF and netCDF do not address the issue of irregular
data sets. What this paper proposes is to allow applications
to systematically store complex data relationships in files.
We believe this paper is the first to propose a data model
to support an arbitrary relationship in the high-level I/O
libraries.

This paper’s two main contributions are 1) a new metadata
representation scheme in PnetCDF for supporting a broad
variety of data models, and 2) new metadata and I/O
methods that achieve high degrees of I/O parallelism and
performance. In the new metadata representation scheme,
we use a graph data structure that consists of a set of

vertices and edges connecting the vertices to depict the
relationship of multiple data objects in a data model. A
metadata format similar to the netCDF file header is also
developed to describe the graphs. We store each graph as
a regular netCDF variable, so the files created under the
new scheme will conform with the netCDF file format.
To improve metadata I/O parallelism for irregular data
distribution exhibited in some data models, we make all
metadata functions non-collective, which allows different
data variables to be defined by different groups of processes
concurrently. In the current form of PnetCDF, defining
variables is a collective operation, even if the variable is
only partitioned among a subset of processes. In the new
scheme, a process will only include the define functions for
the variables it accesses. We use the AMR (Adaptive mesh
refinement) example to illustrate the complex relationship
among data objects. These complex relationships are not
addressed sufficiently or supported by existing parallel I/O
libraries, such as PnetCDF and HDF5. Because different
data models can potentially have different relationships, we
propose the use of a general graph representation to store the
relationship information in netCDF files. This general graph
approach supports AMR but is not limited to AMR and
tree-type data models. Representing irregular data models
is more challenging than representing regular models which
has already been addressed by PnetCDF and HDF5. To
provide high-performance I/O for irregular distributed data,
we use non-blocking I/O functions to aggregate the I/O
requests into large, contiguous I/O requests. We evaluate this
work by using the Chombo I/O benchmark, an example of
the adaptive mesh refinement data model, and demonstrate
scalable performance results achievable from the proposed
scheme. The proposed non-collective I/O for metadata ac-
cess also works for regular data models becaue the regular
data models are special cases of the irregular data models.

The rest of this paper is organized as follows. The related
work is discussed in Section II. Section III presents the
design of new storage scheme. Section IV describes the
implementation issues. Section V presents the performance
evaluation and the conclusions are presented in Section VI.

II. RELATED WORK

As described in [1], [2], there are thirteen popular data
models in the computational scientific application field.
The data model is a key part of HPC codes and strongly
influences the efficiency of both computation and communi-
cation. At their core, scientific codes usually store the data
model as multi-dimensional arrays bacause these structures
are usually allocated and processed most efficiently on
modern computer architectures. Scientific applications have
begun to rely heavily on high-level I/O application program-
ming interfaces (APIs) such as HDF5 [7] and PnetCDF [5]
for their storage needs. These APIs allow scientists to de-
scribe their data in meaningful scientific terms as structured,

typed data, and to store and retrieve this data in a manner
that is portable across all the platforms. Because scientists
have a richer language with which to describe their data, I/O
for an application as a whole can be described in terms of
the datatypes and organizations that the scientist is really
using, rather than posing I/O operations in terms of the
independent reads or writes of bytes on many processors.
Recently, the computing community has focused a great
deal of effort on describing the data models in high-level
I/O libraries. The H5hut library [8] implement several data
models for particle-based simulations on HDF5. The F5
library [9] supports a range of grids, meshes, and user-
defined compound data types in HDF5. The Silo Library [10]
also provides data model abstractions for representing many
mesh types, variable types, parallel decompositions, on top
of the HDF5 and NetCDF libraries.

A. Parallel netCDF

Dataset storage, exchange, and access play a critical
role in scientific applications. NetCDF serves as a software
library and self-describing machine independent data format
that support the creation, access, and sharing of array-
oriented scientific data. NetCDF stores data in an array-
oriented dataset which contains dimensions, array variables,
and attributes [4]. A netCDF file format, as show in Fig-
ure 1, is divided into three parts: file header, non-record
array variables and record array variables. The netCDF file
header stores metadata, such as array dimensions, names
and sizes of dimensions, data types, and character strings
for annotations. The dimension metadata are used to define
the shapes and attributes of array variables. Non-record
variables are arrays of fixed sizes in all dimensions. Record
variables allow the most significant dimension to be defined
as ”unlimited”, which means the arrays can grow along that
dimension. Non-record variables are stored in the file prior
to all the record variables.

Parallel netCDF (PnetCDF) defines a set of APIs for
creating array objects, adding attributes, and accessing them
in parallel. The APIs breaks file access into two modes,
define and data modes. The define mode is used to define the
data structure of array variables and the data mode is used
for accessing the variables. The file header is read/written
only by the root process, although a copy is cached in
the local memory on each process. Header modifications
are made in define mode. The root process fetches the
file header, broadcasts it to all processes when opening a
file, and writes the file header at the end of the define
mode if any modifications occur in the header. The define
mode functions, attribute functions, and inquiry functions all
work on the local copy of the file header. All define mode
and attribute functions are made collectively and require all
the processes to provide the same arguments when adding,
removing, or changing definitions so the local copies of
the file header are guaranteed to be consistent across all

2

1st non−record variable

nth non−record variable

2nd non−record variable

 netCDF header

2nd record for 1st record variable

1st record for 1st record variable
1st record for 2nd record variable

2nd record for 2nd record variable

th

Interleaved records grow

for 1st, 2nd, ..., m variablesth
in the UNLIMITED dimensions

th

1st record for m record variable

2nd record for m record variable

Figure 1. The netCDF file structure.

processes from the time the file is collectively opened until
it is closed.

B. HDF5

Hierarchical Data Format 5 (HDF5) [7] is a data model,
library, and file format for storing and managing data. It
supports an unlimited variety of datatypes, and is designed
for flexible and efficient I/O and for high volume and
complex data. HDF5 is portable and is extensible, allowing
applications to evolve in their use of HDF5. The HDF5
Technology suite includes tools and applications for manag-
ing, manipulating, viewing, and analyzing data in the HDF5
format. HDF5 can store large numbers of large data objects,
such as multidimensional arrays, tables, and computational
meshes, and these can be mixed together in any way that
suits a particular application. An HDF5 file is a container
for storing a variety of scientific data is composed of two
primary types of objects: groups and datasets [11]:

1) HDF5 group: a grouping structure containing HDF5
objects, together with supporting metadata;

2) HDF5 dataset: a multidimensional array, together with
supporting metadata.

Any HDF5 group or dataset may have an associated attribute
list. An HDF5 attribute is a user-defined structure that
provides extra information about an HDF5 object. Working
with groups and datasets is similar in many ways to working
with directories and files in UNIX. HDF5 supports cross
platform portability of the interface and corresponding file
format, as well as ease of access for scientists and software
developers.

3.2

1.8

9.1

4.7
12.1

1.9

5.5

0 1 2

3 4 5

Figure 2. An example of directed graph that can be represented in the
proposed scheme. The directed graph contains six vertices and seven edges.
Each directed edge can have a different weight.

C. MPI-IO

MPI [12] is the building foundation of PnetCDF and
HDF5 for parallel I/O operations. MPI-IO is an important
feature of the MPI-2 standard [6], which allows multiple
processes of a parallel program to access data in a shared file
simultaneously. MPI-IO inherits two important MPI features:
MPI communicators defining a set of processes for group
operations, and MPI derived datatypes describing complex
memory layouts. A communicator specifies the processes
that participate in a collective operation for both inter-
process communication and file I/O. When opening a file,
the MPI communicator is a required argument to indicate the
group of processes accessing the file. There are generally
two types of functions defined in MPI-IO: collective and
independent. The collective functions require participation
of all processes that collectively open the file. Many collab-
oration strategies have been proposed and demonstrated their
successes with significant performance improvements over
uncoordinated I/O, such as two-phase I/O [13], [14], disk
directed I/O [15], server-directed I/O [16], persistent file
domain [17], [18], active buffering [19], and collaborative
caching [20], [21]. However, there has not been much effort
or demonstration in using MPI-IO for accessing hierarchical
and irregularly distributed data sets in high performance.
Ironically, the performance obstacle for such I/O patterns is
mostly caused by the exact collectiveness requirement that
enables process collaboration. Independent I/O functions, in
contrast, require no coordination but make any collaborative
optimization very difficult.

III. DESIGN

A data model describes how simulation data is represented
and accessed. From the application (or end-user) perspective,
the spatial domain in the data model can be represented
as a mesh, grid or tree, where each cell also includes all
its lower-dimensional sub-cells. Fields are defined over d-
dimensional cells, with multiple values for different time or
other independent variable discretization points. The netCDF
file format is designed for dense, multi-dimensional arrays.
Describing complex relationships among multiple variables,

3

int ncmpi_add_var(int ncid,

 const char *name,

 int *graphid);

int ncmpi_def_vertex(int ncid,

 const char *name

 int *vertexid);

 const char *name,

int ncmpi_def_edge(int ncid,

 double weight,

 int direction,

 int *edgeid);

int ncmpi_add_vertex(int ncid,

 int graphid,

 int vertexid).

 int vertexid,

 int edgeid,

 int adj_vertexid);

int ncmpi_add_edge(int ncid,

 int vertexid,

 int varid);

int ncmpi_def_graph(int ncid,

Figure 3. A list of APIs for constructing graph objects.

such as a tree, is not supported in the current format. In
order to augment PnetCDF with such capability, our new
metadata scheme uses the graph representation to describe
the data models.

A. New data objects

We add graphs as new data objects in PnetCDF. A graph G
= (V, E) consists of vertices V and directed edges E [22]. A
vertex, also a new data object, is a container of variables
and edges. Similar to the HDF5 group objects, vertices
can contain multiple netCDF variables and have directed or
undirected links to other vertices. An edge is also a new data
object that connects two vertices as directed or undirected
link. Edges can have associated real number weights. Figure
2 is just to illustrate a data model can have an arbitrary
relationship among the data objects. Through the graph
representation, netCDF variables can be grouped together
and linked to different variables. Therefore, complex data
models, such as trees, can be described. This paper proposes
to store the relationship information in PnetCDF in a more
systematic way.

B. Metadata format

Because the netCDF file format does not have the flex-
ibility to add new user-defined data objects, we create a
metadata format, shown in Figure 4, for describing the new
data objects and their relationships. This metadata is saved
as a regular netCDF non-record variable in text data type,

which is treated like the file header. The new metadata for-
mat includes the information about graph, vertex, and edge
objects, such as the number of these objects, their individual
attributes, such as directions and weights for the edges,
the number of vertices, and their connected relationships.
A vertex’s metadata contains a list of variable IDs, a list
of edge IDs, and the corresponding vertex IDs connected
by the edges. The strategy of saving the new metadata
in a regular netCDF variable ensures the conformation of
the conventional netCDF file format and hence the files
created with this new data model feature can still be accessed
through the netCDF and PnetCDF programs.

The graph idea proposed in this paper is to describe the re-
lationships among multiple data objects (eg. variables). One
netCDF file can have more than one graph. For example,
two graph objects can be defined and the same variable can
be added to both of the graphs.

C. Application programming interfaces

We add several PnetCDF APIs for accessing the new
data objects. Figure 3 lists the new APIs for creating graph
objects, connecting edges between vertices, and adding vari-
ables into vertices. The APIs for deleting or disassociating
objects are similar, but not shown in the figure. The APIs
that change the graph structures are required to be in the
define mode. We also make the following requirements:

1) A vertex must be associated to at least one graph;
2) A netCDF variable can be added to one or more

vertices, but the association is not required;
3) The same edge can be used to connect two different

pairs of vertices.
All the new APIs are non-collective and allow their argu-
ments to contain different values when used by different
processes. However, if it is intended to define the same
objects by a group of processes, then the defining processes
must agree on the arguments. When the exiting the define
mode is called (i.e. at the call to ncmpi_enddef()), the
metadata consistency will be performed to check and merge
the newly created objects. We use the object names as unique
keys to tell if a group of defined calls is for the same
object or not. Hence, defining the same objects for different
processes the attributes must have the same argument values.
Once the objects are merged, the header and graph metadata
are duplicated in memories across all the processes.

IV. IMPLEMENTATION CONSIDERATION FOR SCALABLE
I/O

Although high-level I/O libraries have made an important
contribution to supporting large parallel applications, they
do not always attain a high percentage of peak performance
when used in these applications. Some of the performance
issue reasons have been that (1) the underlying models,
formats, and APIs in storage software did not explicitly

4

begin = OFFSET //vertex start location

 \x02 //undirection graph

graph = graph_magic graph_att_list edge_list vertex_list

graph_magic = ’G’ ’R’ ’A’ ’P’ ’H’ graph_type

graph_att_list = att_list //graph attribute
att_list = ABSENT | NC_ATTRIBUTE nelems [attr ...]
edge_list = ABSENT | NC_EDGE nelems [edge ...]
vertex_list = ABSENT | NC_VERTEX nelems [vertex ...]
NC_ATTRIBUT = \x00 \x00 \x00 \x0C //tag for list of attributes
NC_EDGE = \x00 \x00 \x00 \x0D //tag for list of edges
NC_VERTEX = \x00 \x00 \x00 \x0E //tag for list of vertexes
nelems = NON_NEG //nmber of elements in following sequence
edge = name edge_weight
edge_weight = name varid_list edgid_list vertex_att_list vertex_size begin
varid_list = nelems [varid ...]

edgeid_list = nelems [edgeid pair ...]
edgeid_pair = edgeid adj_vertexid

varid = NON_NEG //variable ID for graph data model

edgeid = NON_NEG //edge ID for graph data model
vertex_id = NON_NEG //vertex ID for graph data model
vertex_att_list= att_list
vertex_size = NON+NEG //vertex size. The amount of space in Z bytes
 //allocated to the vertex

graph_type = \x01 //direction graph

Figure 4. Metadata format for graph representation.

consider parallelism in their original designs, (2) the paral-
lelism subsequently introduced has been incremental and has
often been driven to work around limitations of interfaces
and underlying software (e.g., working around a specific file
system performance bug), and (3) many more applications
require, for scalability and algorithmic reasons, much more
sophisticated data structures than those incorporated in the
original designs (e.g., adaptive meshes, irregular datasets).
Given the irregular data distribution patterns exhibited in
many data models, we focus on the issues related to keeping
high I/O parallelism.

1) Metadata I/O: All define mode functions are collective
I/O mode in current PnetCDF and all processes in the
same communicator must call them with the same argument
values. While the consistency semantics of file systems
are well-defined and strict, consistency semantics in high-
level libraries have often been underspecified, leading to
confusion on the part of users. These consistency semantics
for high-level libraries are not suitable for an irregular
data set, because the underlying data distribution is highly
irregular and dynamic. Process synchronization in the exist-
ing parallel I/O methods can penalize the I/O parallelism
if the process collaboration is not carefully coordinated.
Due to the irregularity introduced by the some scientific
applications, the I/O workload can vary widely depending
on computational region of interest during the runtime. The
intensive and dynamic I/O behavior presented by scientific
applications imposes a big challenge to achieve scalable
and sustainable I/O performance when applications run on
a large scale of HPC systems.

Based on the understanding of the underlying data models,
we relax the collectiveness requirement for the metadata
I/O. Different processes can concurrently define different

objects, such as variables, edges and vertices. At the end
of the define mode, the root process collects metadata from
all the processes and merge them into a consistent form. The
advantage of this strategy is allowing processes to keep only
the related data objects. It is not necessary for a process
to know the metadata of those objects it never accesses.
However if the amount of the metadata is large, having the
root perform the metadata merge and check the consistency
may create a performance bottleneck. We plan to investigate
new approaches to overcome this potential problem.

2) Data I/O: Many I/O optimizations have been devel-
oped over the years including: two-phase I/O; data sieving;
collective I/O with caching; etc. These optimizations have
been incorporated into layers such as MPI-IO and have been
shown to work in some cases, but fall short in many others,
particularly in cases that require very irregular accesses,
which may involve adaptive structures etc. One of most
important goals is providing scalable I/O performance for the
various complex structures and layouts. PnetCDF relies on
MPI-IO for portability and for providing high performance,
but MPI-IO alone is not efficient or flexible enough for
handling the I/O requirements from the various data models
discussed. Our preliminary results in combining multiple I/O
requests in PnetCDF are encouraging [23] in that significant
performance improvement was obtained over the traditional
APIs. The combination is hidden under the non-blocking
I/O interfaces, enabling data aggregation to achieve high
I/O bandwidths. Combining many I/O operations into fewer,
larger I/O operations has been a fundamental component
of parallel I/O optimization for decades. Multiple benefits
come with non-blocking I/O interfaces, as follows. First, it
is implemented with standard MPI-IO library (ROMIO [24]),

5

which provides two-phase collective I/O to aggregate indi-
vidual small I/O requests. Second, the non-blocking feature
allows the I/O function calls to return right away so that
computational process can proceed while the I/O subsystem
is consuming all the I/O requests. Blocking I/O processes
each logical write request one after another sequentially.
Non-blocking I/O requests can be fired all at once. This
essentially reduces the synchronization overhead among all
the processes when all the issued logical writes can be
aggregated not only among all the processes but also along
programs execution order. Third, by spanning the I/O over
the entire evolutional interval, the stress imposed on I/O
systems will be reduced. Last but not the least, the total run
time of applications will be reduced.

For data models exhibiting an irregular data distribution,
PnetCDF non-blocking I/O is the best choice for obtain-
ing high performance. The non-blocking APIs are non-
collective, which allows processes to make different numbers
of the calls for different variables. At the end, a collective
wait call aggregates the posted requests and carries out the
I/O using a single MPI collective I/O call.

V. PERFORMANCE IMPROVEMENT AND EVALUATION

To illustrate the irregular distribution nature of many data
models that can be handled efficiently by our new scheme,
we use Chombo I/O [29] as an example for performance
evaluation. It is a representative example that has a hi-
erarchical tree relationship among all data objects (multi-
dimensional arrays).

A. Chombo I/O

Chombo [30] developed at Lawrence Berkeley National
Lab (LBNL) is a library for block-structured Adaptive mesh
refinement (AMR) [31] applications. The AMR methodol-
ogy has been successfully applied to numerical modeling of
various physical problems that exhibit multi-scale behavior,
such as those mentioned in [32]. The idea of AMR is quite
straightforward, that is, to apply finer discretization only
at places where higher resolution is needed. However, the
simplicity of finite difference calculation on a uniform grid
is a trade-off in AMR, where the irregularity comes from
the boundaries between grids introduced by local mesh re-
finement. Although designed primarily for finite differences
and computational fluid dynamics, Chombo can be used
in other areas of computational science and engineering.
By providing sufficient C++ abstract data types, Chombo
enables user to build and manage the grid evolutions,
decompose the computational data on the evolved grid, as
well as process the I/O operations in either sequential or
parallel mode. The Chombo I/O benchmark is derived from
the framework mentioned above [29]. It creates simulated
Chombo data structures and writes them to a single file
using the HDF5 high-level I/O library [7]. Chombo accesses
a variety of small auxiliary files at run time.

Typically, a structured AMR simulation starts from a
uniform mesh that covers the entire computational domain.
In order to compute or study the object (the black curve line
as shown in Figure 5(a)), a union of patches (the shaded
region) needs to be identified based on level 0’s resolution
and a finer mesh can be applied to this localized region of
interest. This refinement process is repeated for the next level
until the termination condition is satisfied. As a result, AMR
simulation produces a dynamic, multi-level grid hierarchy
with increasing refinement resolution. By overlying all the
individual structured patches in the hierarchy, an adaptive
refined mesh is formed as Figure 5(b). Since a patch can be
further decomposed into boxes in Chombo framework, the
union of patches at each level is reduced to a set of boxes
on different processes, as shown in Figure 5(c), the number
of boxes are changing between levels and the individual size
for each box can be different at the same level or between
levels.

B. Performance Improvement

One possible optimization is to use MPI derived data type
to combine all the sequential I/O requests in the for-loop and
replace it with a single logic I/O request. Another feasible
optimization is to adopt collective I/O function calls. Note
that the number of for-loop iterations on each process may
not be the same, which results in some processes having
more I/O requests than the other processes, thus, collective
I/O would not work unless all the processes participate in
each I/O request or all processes have the same number of
I/O requests. The issue of varying number of I/O requests
can be quickly solved by simply retrieving the maximum
number of iterations across all the processes and using it as
the for-loops termination variable, once the iteration index
exceeds the number of boxes owned by a process.

It is possible that there are multiple components contained
in a Box, since they are all serialized into a 1-D buffer,
only a single logical I/O operation is required to write out
this entire buffer. Fig. 6 illustrates an example grid of a
particular level decomposed into 8 individual MPI processes,
each holding the boxes in space-filling curve order. However,
the boxes are organized in lexicographic order, in the final
file layout. Therefore, a process will write multiple portions
of data at noncontiguous regions in file. In the worst case
scenario, the number of physical file seek and write requests
issued by a process would be the same as the number
of the boxes assigned for that process. The physical I/O
requests can be further reduced by simply appending the
list of boxes from each process in the order of the MPI
process rank, which might cause applications analysis and
visualization tools to rewrite their I/O interface in order to
adopt the new file layout. We decided to leave this optional
optimization to application scientists and look for more
general solutions. Figure 6 only demonstrates a simple I/O
access pattern, in reality, the file offsets and access sizes for

6

p0	
 p1	

p2	
 p3	

p1	
 p3	
 p1	
 p2	

p0	
 p1	

p2	
 p3	

p1	

p3	

p0	

 p2	

p1	

 p3	

p0	

p2	

Level 0	

Level 1	

Level 2	

(b) Mesh Refinement	
 (c) Hierarchical grid in box layout	
(a) Combined AMR Grid 	

Coarsest	 level	

Intermediate	 level	

Finest	 level	

p0	
 p2	

p2	

p0	
 p3	
 p3	
p2	
p1	
p0	

p1	
p0	
 p3	
p3	
 p2	
p1	
p0	
p0	
p0	
p0	
 p1	
p1	
p1	
 p2	
 p3	
 p2	
 p3	
 p2	
p3	

A	 2-‐D	 patch-‐based	 hierarchical	 grid	 with	 three	 levels	 of	 refinement	 	 on	 4	 processes	

Figure 5. An example of hierarchical grid in Chombo

each I/O request vary widely per evolution because of the
irregular grid shape developed by AMR refinement scheme.
Thus, it would be very difficult if not impossible to develop
generalize solutions other than collective I/O by utilizing
underlying specific but dynamically changeable I/O access
patterns. This forces us to resort to some other I/O traits.
Having observed that a burst of intensive I/O activity is
presented after a period of CPU processing and it is repeated
at certain intervals over the whole simulation process, we
believe the relaxing the stress on I/O subsystem imposed
by this high peak I/O bandwidth requirement would be one
possible solution. One approach to reduce the stress on the
I/O subsystem is to use non-blocking strategy, which allows
the I/O operation to span over the computation interval until
the next I/O request collection occurs. The idea of using the
non-blocking I/O is because the traditional methods used
by PnetCDF or HDF5 for accessing metadata and data are
blocking I/O and per variable basis. Our implementation of
non-blocking I/O is actually deferring the I/O, so multiple

I/O requests can be aggregated into larger requests for better
performance. Therefore, we believe the non-blocking I/O
approach would performance at least as well as the blocking
ones.

Although HDF5 actually uses the MPI IO library to
implement parallel file access, Chombo I/O only adopts an
independent mode, where I/O operations among processes
are totally independent of each other. This implementation
is also blocking, where the next iteration cannot proceed
until the write or read operation in the current iteration
has been finished and returned. The Chombo I/O bench-
mark abstracts all the I/O operations involved in simu-
lation and leaves out the complex and time consuming
computational component. Since its current version only
has HDF5 I/O method, we added the PnetCDF method
for the evaluation purpose. Two I/O methods are imple-
mented, one using blocking APIs and the other using
non-blocking APIs. The blocking I/O method mimics the
approach used by the HDF5 method. The example grid

7

0	

4	

5	

0	

0	

4	

4	

1	

1	

5	

5	

2	

2	

6	

6	

3	

3	

7	

7	

2	

6	

3	

7	

0	

2	

4	

6	

0	

2	

4	

6	

1	

0	

2	

4	

6	

1	

3	

6	

7	

File	 Layout	

Grid	 Decomposi<on	

Figure 6. I/O patterns in Chombo

file, s64x64x64L2r4i80b8-32o0f0.00100p1.abr,
provided by the benchmark is modified in order to run large
numbers of processes. We keep the I/O amount proportional
to the number of processes.

C. Experiments

Our experiments were conducted on Franklin [25], the
Cray XT4 parallel machine at the National Energy Re-
search Scientific Computing Center and Surveyor [26], the
IBM Blue Gene/P system at Argonne National Laboratory.
Franklin is a 9660-node SuSE Linux cluster where each
compute node consists of a 2.3 GHz single socket, quad-
core AMD Opteron processor with a theoretical peak per-
formance of 9.2 GFlop/sec per core. Each compute node has
8 GBytes of memory. The parallel file system is Lustre [27]
with 48 I/O servers (OSTs). The measured peak write
performance on Franklin is 16 GB per second. Surveyor
is a 4,096-core IBM Blue Gene/P system. The parallel file
system is GPFS [28] with four file servers.

We conducted a series of experiments with up to 8192
MPI processes on Franklin. In order to maximize the pos-
sible I/O bandwidth, we use all 48 stripe counts (the total

number of OSTs available on Franklin). The stripe size is
set to 1 MB. Figure 7 shows the aggregated I/O bandwidth
for HDF5 independent write, PnetCDF blocking, and non-
blocking write, respectively. The independent blocking I/O
for both PnetCDF and HDF5 performs poorly performance
and does not scale at all. The maximum write bandwidth
achieved was only 2GB/s. By utilizing the new metadata
scheme, the PnetCDFs non-blocking I/O method dramati-
cally improves the aggregated write bandwidth and sustains
strong scalability. The best aggregate write bandwidth that
our implementation achieved was a little more than 12 GB/s
for 8192 processes on Franklin, very close to its measured
peak performance. Similar scalabilities are observed on the
Surveyor.

VI. CONCLUSIONS

The NetCDF file format can effectively store and de-
scribe regular multi-dimensional datasets, but it does not
address the full range of current and future computational
science data models. There is no existing parallel I/O li-
brary that supports complex data models, i.e. arbitrary data
relationships among data objects. Only HDF5 supports a

8

128 512 2048 8192

w
ri

te
 b

an
d

w
id

th
 (

M
B

/s
ec

)

w
ri

te
 b

an
d

w
id

th
 (

M
B

/s
ec

)

blocking I/O in HDF5

non−blocking I/O in PnetCDF

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1024 4096

Franklin

 0

 100

 200

 300

 400

 500

 600

64 128 256 512 1024

Surveyor

number of MPI processes number of MPI processes

64 256

blocking I/O in PnetCDF

Figure 7. Performance results of Chombo I/O benchmark

tree-structured model through group, but not for arbitrary
graphs. In this paper, we propose a storage mechanism
in PnetCDF to support a broad variety of data models
used in computational scientific applications. Our design
principle for parallel construction and access the data models
focuses on enabling metadata I/O parallelism as well as
eliminating process synchronization. The performance re-
sults from using the Chombo I/O benchmark with irregularly
distributed data objects, demonstrate that our approaches
can achieve scalable I/O performance for parallel data and
metadata creation and access. There are many other data
models that post different challenges for finding efficient
and effective mechanisms to provide scalable I/O perfor-
mance in PnetCDF. Our future work includes designing a
scalable method for merging parallel-defined metadata and
performance evaluations using more application I/O kernels.

ACKNOWLEDGMENT

This work is supported in part by NSF award num-
bers: OCI-0724599, CNS-0830927, CCF-0621443, CCF-
0833131, CCF-0938000, CCF-1029166, and CCF-1043085
and in part by DOE grants DE-FC02-07ER25808, DE-
FG02-08ER25848, DE-SC0001283, DE-SC0005309, and
DE-SC0005340. This research used resources of the Na-
tional Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. This
research used resources of the Argonne Leadership Com-
puting Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Hus-
bands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf,

S.W. Williams, and K.A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report
UCB/EECS-2006-183, University of California, Berkeley,
December 2006.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J.D. Kubiatowicz, E.A. Lee, N. Morgan, G. Necula, D.A.
Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K.A.
Yelick. The parallel computing laboratory at U.C. Berkeley:
A research agenda based on the Berkeley view. Technical Re-
port UCB/EECS-2008-23, University of California, Berkeley,
March 2008.

[3] R. Rew and G. Davis. The Unidata netCDF: Softwarefor
Scientific Data Access. Sixth International Conference on
Interactive Information and Processing Systems for Meteo-
rology, Oceanography and Hydrology, February 1990.

[4] R. Rew, G. Davis, S. Emmerson and H.
Davies. NetCDF Users Guide for C. Unidata
Program Center, June 1997. [Online]. Available:
http://www.unidata.ucar.edu/packages/netcdf/guidec/.

[5] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Paral-
lel netCDF: A high-performance scientific I/O interface. In
Proceedings of SC2003: High Performance Networking and
Computing, Phoenix, AZ, November 2003. IEEE Computer
Society Press.

[6] Message Passing Interface Forum. MPI-2: Extensions to
the Message-Passing Interface. 1997. [Online]. Available:
http://www.mpi-forum.org/docs/docs.html.

[7] HDF5 Home Page. The National Center for
Supercomputing Applications. [Online]. Available: http://
hdf.ncsa.uiuc.edu/HDF5/.

[8] Mark Howison, Andreas Adelmann, E. Wes Bethel, Achim
Gsell, Benedikt Oswald and Prabhat. H5hut: A High-
Performance I/O Library for Particle-based Simulations. The

9

Workshop on Interfaces and abstractions for Scientific Data
Storage, September 2010.

[9] W. Benger, A. Hamilton, M. Folk, Q. Koziol, S. Su, E. Schnet-
ter, M. Ritter, and G. Ritter, Using Geometric Algebra for
Navigation in Riemannian and Hard Disc Space. Proceedings
of Computer Graphics, Computer Vision and Mathematics,
2008.

[10] Silo: A mesh and field I/O library and scientific database.
https://wci.llnl.gov/codes/silo.

[11] HDF5 Tutorial. [Online]. Available:
http://www.hdfgroup.org/HDF5/Tutor.

[12] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard. 1995. [Online]. Available:
http://www.mpiforum.org/docs/docs.html.

[13] R. Thakur and A. Choudhary. An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays. Jour-
nal of Scientific Programming, 5(4):301, Winter 1996.

[14] R. Thakur, W. Gropp and E. Lusk. Users Guide for
ROMIO: A High-Performance, Portable MPI-IO Implementa-
tion. Technical Report ANL/MCS-TM-234, Mathematics and
Computer Science Division, Argonne National Laboratory,
October 1997.

[15] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. ACM
Transactions on Computer Systems, 1997. 15(1): p. 41-74.

[16] K. Seamons, Y. Chen, P. Jones, P.; J. Jozwiak, M. Winslett.
Server-directed Collective I/O in Panda. In Supercomputing
Conference. 1995.

[17] K. Coloma, A. Ching, A. Choudhary and W. Liao. A New
Flexible MPI Collective I/O Implementation. in IEEE Inter-
national Conference on Cluster Computing. 2006. Barcelona,
Spain.

[18] K. Coloma, A. Choudhary, W. Liao, L. Ward, E. Russell,
and N. Pundit. Scalable High-level Caching for Parallel I/O.
International Parallel and Distributed Processing Symposium.
2004: New Mexico.

[19] X. Ma, M. Winslett, J. Lee and S. Yu. Improving MPI-IO
Output Performance with Active Buffering Plus Threads. in
the International Parallel and Distributed Processing Sympo-
sium. 2003.

[20] W. Liao, A. Ching, K. Coloma, A. Nisar, A. Choudhary, J.
Chen, R. Sankaran and S. Klasky. Using MPI File Caching
to Improve Parallel Write Performance for Large-Scale Sci-
entific Applications. in International Conference for High
Performance Computing, Networking, Storage and Analysis.
2007. Reno, Nevada.

[21] W. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and
S. Tideman. Collective Caching: Application-aware Client-
side File Caching. in 14th IEEE International Symposium
on High Performance Distributed Computing. 2005. Research
Triangle Park, NC.

[22] T. Cormen, C. Leiserson, R. Rivest and C. Stein. Introduction
to Algorithms. Second Edition. MIT Press.

[23] K. Gao, W. Liao, A. Choudhary, R. Ross, and R. Latham.
Combining I/O Operations for Multiple Array Variables in
Parallel netCDF. In the Workshop on Interfaces and Archi-
tectures for Scientific Data Storage, September 2009.

[24] R. Thakur, W. Gropp and E. Lusk. Users Guide for
ROMIO: A High-Performance, Portable MPI-IO Implementa-
tion. Technical Report ANL/MCS-TM-234, Mathematics and
Computer Science Division, Argonne National Laboratory,
October 1997.

[25] Franklin, the Cray XT4 parallel computer at National
Energy Research Scientific Computing Center.
http://www.nersc.gov/nusers/resources/franklin/.

[26] Surveyor, the IBM Blue Gene/P system at Argonne National
Laboratory. https://www.alcf.anl.gov/resources/storage.php.

[27] Cluster File System, Inc. Lustre: A Scalable, High Perfor-
mance File System. http://www.Lustre.org/docs.html.

[28] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. In Proceedings of the File and
Storage Technologies (FAST 02), pp. 231-244, Jan. 2002.

[29] Chombo I/O benchmark. [Online]. Available:
http://www.nersc.gov/∼ndk /ChomboBenchmarks/
chomboIOBenchmark.html.

[30] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modi-
ano, D. B. Serafini, B. Van Straalen. Chombo software pack-
age for AMR applications design document. Applied Numer-
ical Algorithms Group, NERSC Division, Lawrence Berkeley
National Laboratory, Berkeley, California, September 12,
2003. [Online]. Available: http://seesar.lbl.gov/anag/chombo/.

[31] M.J. Berger and J. Oliger. Adaptive mesh refinement for
hyperbolic partial differential equations. Journal of Compu-
tational Physics, Vol. 53, p.484, 1984.

[32] M. Berger and P. Colella. Local Adaptive Mesh Refinement
for Shock Hydodynamics. Journal of Computational Physics,
Vol. 82, No. 1, pp. 64-84, May 1989.

[33] G. Bryan. Fluids in the Universe: Adaptive Mesh Refinement
in Cosmology. In Computing in Science and Engineering,
1(2):46-53, March/April, 1999.

[34] Wen, T, Su, J, and et. al. An Adaptive Mesh Refinement
Benchmark for Modern Parallel Programming Languages.
Proceedings of Supercomputing ’07, November 10-16, 2007.
Reno, Nevada, USA.

[35] E. L. Miller, and R. H. Katz. Input/Output Behavior of Su-
percomputing Applications. Proceedings of Supercomputing
91, November 1991.

10

