
GMProf: A Low-Overhead, Fine-Grained Profiling

Approach for GPU Programs

Mai Zheng, Vignesh T. Ravi, Wenjing Ma*, Feng Qin, and Gagan Agrawal

Dept. of Computer Science and Engineering, The Ohio State University *Pacific Northwest National Lab

2015 Neil Avenue, Columubs, OH, USA P.O.Box 999, Richland, WA, USA

{zhengm, raviv, qin, agrawal}@cse.ohio-state.edu wenjing.ma@pnnl.gov

Abstract—Driven by the cost-effectiveness and the power-
efficiency, GPUs are being increasingly used to accelerate com-
putations in many domains. However, developing highly efficient
GPU implementations requires a lot of expertise and effort. Thus,
tool support for tuning GPU programs is urgently needed, and
more specifically, low-overhead mechanisms for collecting fine-
grained runtime information are critically required. Unfortu-
nately, profiling tools and mechanisms available today either
collect very coarse-grained information, or have prohibitive
overheads.

This paper presents a low-overhead and fine-grained profiling
technique developed specifically for GPUs, which we refer to as
GMProf. GMProf uses two ideas to help reduce the overheads
of collecting fine-grained information. The first idea involves
exploiting a number of GPU architectural features to collect
reasonably accurate information very efficiently, and the second
idea is to use simple static analysis methods to reduce the
overhead of runtime profiling. The specific implementation of
GMProf we report in this paper focuses on shared memory
usage. Particularly, we help programmers understand (1) which
locations in shared memory are infrequently accessed? and (2)
which data elements in device memory are frequently accessed?

We have evaluated GMProf using six popular GPU kernels
with different characteristics. Our experimental results show that
GMProf, with all optimizations, incurs a moderate overhead, e.g.,
1.36 times on average for shared memory profiling. Furthermore,
for three of the six evaluated kernels, GMProf verified that shared
memory is effectively used, and for the remaining three kernels,
it not only helped accurately identify the inefficient use of shared
memory, but also helped tune the implementations. The resulting
tuned implementations had a speedup of 15.18 times on average.

I. INTRODUCTION

A. Motivation

In recent years, Graphics Processing Units (GPUs) have

become extremely cost and power effective and have garnered
increasing popularity. Using a large number of simple, in-order

cores, GPUs have been effective in scaling the performance

of a variety of non-graphical applications across different
domains, including financial modeling, weather forecast, com-

putational biology, and many others [1], [2]. On one hand,

GPUs are part of extreme-scale systems, e.g., in the list of
top 500 supercomputers released in November 2011, three

out of the top ten systems were built on GPUs [3]. On
the other hand, commonly used desktops and laptops are

having low or medium-end GPUs, which makes a highly

parallel environment accessible and affordable to application
developers who have no or little prior parallel programming

experience.

1. __global__ void transpose(float *odata, float *idata, int width, int height)

2. { …

3. __shared__ float shared_data[BLK_DIM][BLK_DIM];

4. unsigned int xIndex = blockIdx.x * BLK_DIM + threadIdx.x;

5. unsigned int yIndex = blockIdx.y * BLK_DIM + threadIdx.y;

6. if ((xIndex < width) && (yIndex < height)) {

7. unsigned int index_in = yIndex * width + xIndex;

8. shared_data[threadIdx.y][threadIdx.x] = idata[index_in];

9. } …

10. }

Fig. 1. Sample code showing the use of shared memory.

Although CUDA [1] and subsequently OpenCL [4] have

facilitated the trend of using GPUs for application accel-

eration, it remains very challenging to develop an efficient

GPU implementation, especially for inexperienced developers.

There are several reasons for this, including the need for
careful management of GPU memory hierarchy, and similarly,

the need for optimizing the execution of a large number of

concurrent threads, while maintaining correctness. To promote
wider use of GPUs, programmers need a variety of productivity

and performance tools.
The focus of this work is on such tools, and more specifi-

cally, on low-overhead yet accurate and fine-grained profiling

methods. Particularly, we argue that fine-grained information
is essential for optimizing a program on a modern GPU’s

nuanced architecture. Meanwhile, unless a tool provides this

information with a low or moderate overhead, it is unlikely
that the programmers will use the tool. Unfortunately, existing

profiling tools for GPUs [5]–[7] cannot provide sufficiently

fine-grained information. Also, existing methods for profiling
(typically developed for CPUs) either do not provide fine-

grained information [8]–[10], and/or will likely have pro-

hibitive overheads [11] (if at all they can be implemented on a
GPU). The main reason is that a very large number of threads

are concurrently executed on a GPU, leading to a large num-
ber of concurrent events of interest (e.g., memory accesses),

whereas the memory available for storing the information is

very limited.

B. Our Approach

This paper presents a low-overhead and fine-grained pro-
filing technique developed specifically for GPUs, which we

refer to as GMProf. GMProf uses two ideas to help reduce the
overheads of collecting fine-grained information. The first idea

involves exploiting a number of GPU architectural features to

collect reasonably accurate information very efficiently. The
second idea is to use simple static analysis to reduce the

overhead of runtime profiling.

The specific implementation of GMProf we report in this
paper focuses on shared memory usage. Effective use of

shared memory has been one of the most critical factors for

application performance on GPUs. Figure 1 shows a simple
GPU kernel that explicitly uses the shared memory, which

is essentially a programmable cache. Line 3 declares and
allocates the array shared data in shared memory and line

8 transfers data from device memory to the shared memory

array. Developers need to maximize the utilization of this
small yet extremely fast shared memory for achieving the best

performance. This can be challenging, since it requires full

knowledge on data use patterns, which are often unavailable
at compile time. For example, memory addresses accessed at

runtime may depend on the user input, or the executed control

flow paths can vary at runtime. Various recent application
studies on GPUs have demonstrated significant performance

advantages from careful use of shared memory [12]. It should

also be noted that while the latest NVIDIA cards do provide L1
and L2 cache, careful use of shared memory remains crucial

for performance [13]. Thus, the implementation of the GMProf

approach we present in this paper focuses on the following two
critical questions: (1) which locations in shared memory are

infrequently accessed? and (2) which data elements in device
memory are frequently accessed?

To answer these questions, the current implementation of

GMProf includes two major components: Shared Memory Pro-

filer and Device Memory Profiler. Given a GPU kernel, Shared
Memory Profiler and Device Memory Profiler instrument the

statements that access shared memory and device memory,
respectively. At runtime, the instrumented code records the

access numbers of shared memory and device memory into

counter arrays. At the end of execution, GMProf processes
the counter values and presents the summarized view of the

results to developers for identifying inefficient use of memory.

C. Summary of Contributions

Overall, in this work, we have made the following contri-

butions towards developing profiling tools for GPUs.

Exploiting GPU’s Architecture: At program runtime, GM-
Prof improves the performance by exploiting various GPU

architectural features and properties of GPU programs. The

observation underlying these optimizations is that developers
are most interested in qualitative results (e.g., frequent or

infrequent memory uses), instead of the very precise number of

memory accesses. Specifically, the optimizations we perform
include the use of faster (non-atomic) memory operations, stor-

ing information in smaller-sized counters in shared memory,
and the use of threshold-based counter updates. While the last

optimization reduces the number of counter update operations,

the other two reduce the cost of each counter update operation.

Combining Static Methods with Dynamic Methods: The
second main observation in our work is that even for ap-

plications that cannot be completely analyzed at compile-
time, simple compile-time information can significantly reduce

runtime profiling costs. GMProf exploits simple static analysis

to identify accessed memory addresses that are statically
determinable, invariant to thread IDs, and/or invariant to loop

iterators. The static analysis results help the dynamic profiling

components of GMProf eliminate, or reduce the number of
memory accesses that need instrumentation. GMProf also

leverages another static technique, i.e., live range analysis, to

improve the accuracy of profiling in the case when multiple
data elements are loaded into the same shared memory address

during different phases of the program execution.

Implementing, Evaluating, and Demonstrating a Prototype

of GMProf:We have implemented a prototype of GMProf and

evaluated it with six GPU kernel functions. We have shown
that after various optimizations, the overheads of profiling are

quite low for the evaluated kernels , i.e., 1.36 times for shared

memory profiling and 55% for device memory profiling on
average. Additionally, we have compared GMProf’s optimiza-

tions with a software sampling technique we implemented for

GPU profiling. The results show that GMProf has a good
balance of low runtime overhead and high accuracy comparing

to sampling. Moreover, we have demonstrated the utility of the

tool with three case studies. For each case, we show how the
tool helps tune the application, and that the resulting optimized

application has significantly better performance.

II. RELATED WORK

Our work is related to previous work on profiling tools

and static analysis for memory hierarchy management. In both

areas, we first focus on approaches specific to GPUs, and then
summarize major efforts related to CPUs.

Profiling Tools. GPU profiling tools include TAUcuda [5],
NVIDIA Visual Profiler [6], and NVIDIA Parallel Nsight [7].

TAUcuda focuses on coarse-grained runtime events, whereas

NVIDIA Visual Profiler and Parallel Nsight provide summa-
rized information on GPU hardware counters (such as branch

divergence#, launched warp#, non-coalesced device memory

accesses). None of these tools can provide very fine-grained
information, e.g., information that may help improve the use of

shared memory. A recently proposed tool [14] profiles shared

memory accesses to detect shared memory bank conflicts.
However, this tool tracks every shared memory access in a

brute force way, incurring prohibitive runtime overhead.

Program optimization for memory hierarchy has been an

important issue for uniprocessor (and multiprocessor) perfor-

mance for at least the last two decades. Thus, CPU profiling
tools have also focused on memory hierarchy related metrics.

The relevant tools can be mainly classified into two cate-

gories: simulation-based (e.g., Cachegrind [11]) and hardware

counter based approaches (e.g., Intel VTune [8], TAU [9] and

Vampir [10]). Simulation-based approaches track each mem-

ory access. While these tools report cache misses at various
granularity (e.g., thread, function, and source code lines), they

incur prohibitive runtime overhead (e.g., Cachegrind slows

down the programs by a factor of 20-100 times). On the
other hand, by exploiting hardware performance counters and

sampling techniques, the second category of tools [8]–[10]
profile programs with much lower overhead. However, some

of these approaches collect coarse-grained information [10],

while others [8], [9] follow the techniques that are inapplicable
to a programmable cache on GPU, which has to be explicitly

managed.

Static Analysis Driven Approaches. Static analysis driven
or compile time approaches for managing shared memory on

GPU have been proposed by several researchers. Baskaran et

al. developed data movement schemes for shared memory with
a polyhedral model, targeting affine loops [15]. Udayakumaran

et al. used a cost model based approach to allocate shared
memory dynamically [16]. Ma et al. deployed an integer linear

programming model to solve the problem of data arrangement

on shared memory [17]. These approaches are either unable to
deal with irregular and indirect accesses, or often in need of

extra information such as the number of iterations in a loop.

Compile time analysis for understanding cache reuse in
CPUs has also been studied. Cascaval used stack histogram

to analyze cache behavior [18]. Ding et al. proposed analysis

algorithms to find data access patterns by using profiling [19],
potentially providing intuitions for cache optimizations. Data

reuse distance information is also used to exploit a new cache

management scheme [20]. These approaches are not applicable
when only a limited amount of information about control flow

and/or data accesses is available at compile time.

III. GMPROF: DESIRED FUNCTIONALITY

AND CHALLENGES

This section explains the challenges in profiling fine-grained
information on a GPU, and especially, the space and time

overheads as well as inaccuracy it can involve. As a specific

example, we consider a trivial implementation of GMProf.
Then, we list the challenges in collecting accurate profiling

information efficiently.

Consider the functionality of GMProf mentioned in Sec-
tion I-B. Since the shared memory is explicitly allocated by a

programmer, each memory access instruction either accesses

a shared memory location or a device memory location.
Therefore, profilers for shared memory and device memory are

two independent components of GMProf. We discuss simple
implementations of each of them next, and highlight the time

and space efficiency issues.

A. Profiling Shared Memory Use

Shared Memory Profiler needs to track accesses for each
shared memory address. Specifically, given that the size of

the shared memory is very small (e.g., 16 KB on Tesla

C1060 and at most 48 KB on recent Fermi cards), the profiler
can maintain one counter for each shared memory address.

Whenever a shared memory access occurs, the profiler can

increase the corresponding counter value by one. It can use
integer (32-bit) counters to accommodate potentially large

numbers of memory accesses. Once the access number reaches

the maximum value (i.e., 232 − 1), the profiler can stop
increasing the counter. Another problem in obtaining correct

counts is that different threads in a GPU kernel may access

(read or write) the same shared memory address concurrently,
leading to race conditions when updating the corresponding

counter. To address this issue, Shared Memory Profiler can use
atomic operations that are supported in CUDA and OpenCL.

The above simple design clearly involves high space and

time overheads. Since typical GPU kernels perform computa-
tions on four-byte (or eight-byte) data types, such as integer,

float, or double, the profiler needs to keep one counter for

every four bytes in shared memory. This means that, in the
worst case, the profiler needs the memory space with the

same size as that of shared memory. On the other hand, the

required space is a small fraction of the size of device memory,
so we can expect to store these counters on device memory

with relative ease. However, this can lead to a very high
runtime overhead. For each shared memory access, the profiler

introduces an atomic operation on device memory, which can

be more than 100 times slower than a shared memory access.

B. Profiling Device Memory Use

Unlike Shared Memory Profiler, Device Memory Profiler

cannot track the use of the entire device memory due to its

huge size (e.g., 4 GB for Tesla C1060 cards). Furthermore,
tracking the use of the entire device memory may not be a

cost-effective way since many GPU kernels do not use up the

entire memory.

Therefore, Device Memory Profiler should track device
memory space that have been used by the GPU programs.

More specifically, for each declared device memory array,

Device Memory Profiler can create a shadow array for coun-
ters, where each element (32-bit) in the shadow array stores

the access number of the corresponding element (32-bit or
64-bit) in the tracked device memory array. For each device

memory access, the profiler can increase the corresponding

counter. Similar to Shared Memory Profiler, Device Memory
Profiler can store the shadow arrays in device memory and

uses atomic operations for updating the counters. As a result,

in this simple design, the profiler adds one device memory
atomic operation for each access to device memory. This itself

can be a substantial overhead, since an atomic operation on

device memory is much slower than a normal read or write
on device memory.

C. Design Challenges

Challenge 1: Profiling Efficiency. Our discussion above has

clearly pointed to challenges in time and space efficiency
when profiling. Particularly, to leverage massive parallelism

for best performance, GPU kernels typically launch hundreds
or thousands of concurrent threads. Each thread, in turn, issues

a memory access operation every few cycles. In trying to

obtain efficiency, we must pay attention to the cost of different
operations on GPUs. For example, the cost of each device

memory access is much higher than a shared memory access,

and atomic operations are significantly more expensive than
the non-atomic operations. Section IV presents how GMProf

addresses this challenge.

Challenge 2: Profiling Accuracy. There is another challenge

in obtaining accurate information of shared memory use. A
simple scheme is to tabulate the aggregate number of accesses

to each shared memory address. However, it will only work for

GPU kernels that perform a simple memory management, i.e.,
where a chunk of shared memory is dedicated for a certain

piece of data throughout the kernel execution. For longer
running kernels, it is often desirable that a section of shared

memory holds different data at different periods during the

execution. A simple address-based scheme will not provide
accurate information for such programs. Section V presents

how GMProf addresses this challenge.

Two well-studied approaches can be used for optimizing a pro-
gram’s use of memory hierarchy, while reducing or eliminating

the overheads of profiling. The first mechanism is collecting

data via sampling [21]–[26]. For comparison purpose, we have
designed and implemented a GPU-specific sampling scheme

that appeared most appropriate for addressing our problem.
More details are discussed in Section VI-B.

The second approach involves the use of static analysis

and can completely eliminate any runtime costs [15], [27]–
[30]. However, static analysis is applicable only if both of the

memory addresses and the number of accesses are statically

determinable. Unfortunately, this is not the case for many
scientific, computation-intensive applications that are suitable

for GPUs. In fact, a recent study has shown that many GPU

kernel functions have dynamic irregularities in both memory
references and control flows [31].

IV. GMPROF: EFFICIENT PROFILING

APPROACH

We now describe the optimized profiling approach for GPU

architectures that we have developed. This section specifically

focuses on runtime overhead reducing mechanisms we have
introduced. As we stated earlier, our approach involves use

of simple static analysis, GPU architectural features, features

of GPU programs, and an understanding of how profiling
information is likely to be used by application developers, to

reduce profiling overhead.

A. Static Analysis (SA) Optimization

As we stated earlier, profilers are most useful for appli-

cations where all accesses and execution paths cannot be re-

solved at compile time. However, even in dynamic or irregular
applications, many memory accesses can be resolved statically.

The SA optimization we introduce reduces the number of

counter update operations for both Shared Memory Profiler
and Device Memory Profiler.

The first step involves scanning all memory references

in a GPU kernel and checking whether the addresses as
well as the corresponding access numbers can be resolved

at compile time. If so, GMProf does not need to monitor
such memory accesses at runtime. In the next step, SA checks

whether a memory reference is dependent on thread IDs

(e.g., threadIdx.x). If not, such memory access is invariant
to thread IDs (referred to as tid-invariant), i.e., different

threads access the same memory address. This information

is annotated and passed to the profilers (i.e., Shared Memory
Profiler and Device Memory Profiler) for optimized profiling.

At runtime, we use a single thread to add the total number of

threads, which can be obtained from the kernel configuration,
to the corresponding profiling counter. In this way, we keep

the correct counts while avoiding the contention of counter

updates from hundreds or thousands of threads completely.
More importantly, this step makes another optimization (Non-

Atomic Operations) possible (discussed in Section IV-B).
Finally, SA checks each array index within a loop or a

nested loop to see whether the index is dependent on loop

iterators. If not, such memory access is invariant to loop
iterators (referred to as loop-invariant). This information is

annotated and passed to the profilers for optimized profiling.

1. __device__ void RClusterCnt (float *data, int nRowCL, int *colCL, …)

2. { …

 //Computation and reduction on memory

3. for (int r = 0; r < nRow; r+= ROWCL_THRDS * ROWCL_BLKS) {

4. for (int rc = 0; rc < nRowCL; rc ++)

5. if (rowCS[rc] > 0)

6. for (int c = 0; c < nCol; c++) {

7. tempDistance += data[(r + n_idx) * nCol + c] *

 Acomp[rc * nRowCL + colCL[c]];

8. …}

9. …}

10. }

Fig. 2. Simplified code of Co-clustering kernel.

For a loop-invariant, since the number of accesses is deter-

mined by the number of iterations, the profilers do not need
to update the counter in every iteration. Instead, the profilers

only instrument the last iteration by performing one-time

counter update operation, i.e., adding the number of iterations
(determined at runtime) to the corresponding counter.

Note that we perform the standard conservative static anal-
ysis here. We consider an access to be loop-invariant only if:

1) its value does not change across iterations of the loop, and

2) it is accessed in every iteration of the loop (i.e., it is not
enclosed in a conditional statement). In cases where certain

part of the code or the context cannot be analyzed, e.g., if

there are procedure calls involved, SA optimization will not
report the expression as being loop-invariant, and the memory

access is monitored during runtime.

To explain how static analysis optimization works, we take

the simplified Co-clustering kernel in Figure 2 as an example.

This kernel contains the aforementioned memory accesses that
are tid-invariant or loop-invariant. For example, the access to

rowCS (line 5) is independent of the outermost loop iterator

r, which means it is r-loop-invariant access. In addition, it is
independent of thread IDs and thus is also identified as tid-

invariant access.

B. Non-Atomic Operation (NA) Optimization

As we described in the previous section, our initial approach
for profiling involved the use of atomic operations, to avoid

race conditions when concurrent threads access the same

location. These operations turn out to be quite expensive
especially when the number of competing threads is large.

Thus, we introduce NA optimization, where we replace
atomic operations with the normal (non-atomic) operations for

updating counter values. This optimization can improve the

efficiency of each counter update operation. At the first glance,
however, it appears that this optimization may significantly

compromise the accuracy of the access counts we obtain.

Specifically, in the case when all threads access the same
memory location at the same time, the access count obtained

with non-atomic operations may be very small. However,

with the help of the SA optimization discussed earlier, it
turns out that such inaccuracy can be avoided to a great

extent. Specifically, static analysis can help identify thread-

invariant memory accesses, and consolidate concurrent updates
of the same counter. As shown in our experimental results,

after applying the SA optimization, the use of non-atomic
operations does not impact the overall accuracy in almost all

of the cases.

C. Shared Memory Counters (SM) Optimization

The next optimization we introduce reduces the runtime

overhead of shared memory profiling further. Specifically, it

maintains the counters for Shared Memory Profiler in shared
memory instead of device memory. The rationale is that device

memory has much higher latency than shared memory (e.g.,
150 times slower on Tesla cards), and therefore updating

counters in shared memory for Shared Memory Profiler can

significantly reduce the cost of each counter update operation.

The basic SM optimization stores 32-bit profiling counters
in shared memory instead of device memory. However, since

the size of shared memory is very limited, the 32-bit counters

can not fit in shared memory without incurring large space
overhead. Thus, the basic SM optimization may not be appli-

cable for all applications. On the other hand, to qualitatively

identify frequent or infrequent use of shared memory, it might
be unnecessary to maintain a 32-bit counter to keep counting to

a large number. Based on this observation, we can use less bits

for storing a profiling counter, For example, a configuration
of 16-bit counters reduces half of the required space, while a

8-bit configuration reduces 75% space overhead. As a result,

the SM optimization can be applied to more applications.

With a small-sized counter, however, the counting could
exceed the maximum value and lead to wrong results. The

next optimization avoid such a overflow problem and make

the SM optimization safe and more applicable.

D. Threshold (TH) Optimization

As we discussed earlier, one main problem with the trivial
approach for collecting profile information is the number of

updates performed on the counters, and the space required

for the counters. We make the observation that programmers
are most interested in qualitative information, as opposed to

precise access counts. For example, a programmer would like
to know whether a memory address is frequently accessed or

not. Thus, while the difference between, say, 10 accesses and

1000 accesses may be important, difference between 1000 and
1010 accesses may not be in certain cases.

Thus, we propose TH optimization, where we maintain

counts up to a predefined threshold, i.e., stop updating the

counters once the values reach a certain threshold. In this way,
we reduce the number of counter update operations, which, in

a memory bandwidth limited GPU, are extremely expensive.

As shown in Section VI, it turns out that this idea can
further lower the profiling costs on GPUs even after applying

the previous three optimizations. Moreover, as mentioned in

the previous section, use of thresholds also enables use of
fewer bits for maintaining counters, which also has substantial

benefits such as make the SM optimization more applicable.

To implement the TH optimization, GMProf adds a thresh-

old as the upper bound of the counter values. The profilers
check the value of a counter before it is updated, and increase

the counter only if the value is below the threshold. In essence,
the TH optimization is a tradeoff between overhead and accu-

racy. A smaller threshold value incurs lower runtime overhead

since fewer updating operations are performed. On the other
hand, a larger threshold value provides more accurate memory

use information to developers. The appropriate thresholds for

Algorithm 1 Optimized Shared Memory Profiling

1: if shared memory is available then

2: Create dynamic count array in shared memory

3: else

4: Create dynamic count array in device memory

5: end if

6: for each shared memory access do

7: if isStaticDeterminable(shm addr) and
isStaticDeterminable(access count) then

8: static count[shm addr] = access count
9: else if isLoopInvariant(shm addr, iterator) then
10: if (! isStaticDeterminable(n iter)) then
11: Compute n iter
12: end if

13: if isLastIteration(iterator) then
14: if isTidInvariant(shm addr) and (tid == 0) then

15: inc = n iter * N THREADS
16: dynamic count[shm addr] =

min(dynamic count[shm addr] + inc,
THRESHOLD)

17: else

18: dynamic count[shm addr] =
min(dynamic count[shm addr] + n iter,

THRESHOLD)

19: end if

20: end if

21: else if isTidInvariant(shm addr) and (tid == 0) then

22: dynamic count[shm addr] =
min(dynamic count[shm addr]+N THREADS,

THRESHOLD)

23: else if dynamic count[shm addr] ¡
THRESHOLD then

24: ++ dynamic count[shm addr];
25: end if

26: end for

different GPU applications are tunable and can be specified by
developers based on prior program executions. For example,

if multiple frequently-used memory addresses need to be

differentiated (e.g., all of their access numbers are above the
threshold), developers can increase the threshold based on

prior runs and profile the program again until reaching the

desired results.

E. Overall Profiling Algorithm

We now show how our runtime optimizations and the infor-
mation from the SA optimization are integrated. Algorithm 1

shows the algorithm for Shared Memory Profiler with all

the optimizations enabled. Specifically, the profiler creates a
counter array in shared memory for every shared memory

address. In the case of insufficient shared memory, the counter
array is created in device memory instead (lines 1-5). The SA

optimization provides three types of information for guiding

instrumentation, i.e., statically determinable references (lines
7-8), loop-invariants (lines 9-20), and tid-invariants (lines 14-

16 and 21-22). For statically determinable references, the

counts are recorded at compile time (line 8). For loop-
invariants, the number of iterations (n iter) is computed at

run-time (line 11) if it is not statically determinable. The

counter is incremented only in the last iteration (lines 13-20).
If the access is tid-invariant as well, the increment (inc) is

the multiplication of the number of iterations and the number
of threads, and only one thread (tid == 0) is used to perform

the update (lines 14-16). Otherwise, all threads increase their

corresponding counters by the number of iterations (lines 17-
18). For tid-invariants that are not loop-invariants, one thread is

used to increase the counter by the number of threads (lines 21-

22). Note that a threshold code (THRESHOLD) is checked
when updating counters to guarantee that the counts do not

exceed the threshold (lines 16, 18, 22, 23). Also, the NA

optimization, which is using non-atomic operations to update
counters, is used at the relevant statements (lines 16, 18, 22,

24) in this algorithm.

The algorithm for Device Memory Profiler is similar to
Algorithm 1 except that the SM optimization is inapplicable.

V. ENHANCED ALGORITHM: IMPROVING PROFILING

ACCURACY

This section presents an enhanced profiling algorithm,
which addresses an important limitation of Algorithm 1. Par-

ticularly, the methods we have presented so far cannot handle
the situation when a shared memory address holds different

data elements during different periods of a kernel’s execution.

In such a case, the number of accesses to a shared memory
address reported by Algorithm 1 may not directly reflect the

frequency of data use, and can only mislead developers.

To understand the limitations of the techniques presented so
far, consider the following example. A GPU kernel first loads

an array section S1 from device memory to shared memory,

performs some simple computation while reading data from
the shared memory array only once, and then stores the results

back to device memory. Next, the kernel loads the array

section S2 to the same shared memory location, for a similar
computation and stores the results back to device memory.

Suppose this process repeats for many different array sections.
In this scenario, the shared memory addresses involved do

not have any data reuse, and the shared memory is not being

effectively used. However, Algorithm 1 will report a relatively
high number of accesses to these shared memory addresses,

and thus mislead the application developers in believing that

data stored in shared memory has a high reuse.

To overcome the above-memtioned limitation, we introduce

an enhanced profiling algorithm based on dynamically com-

puted live ranges [32]. For our purpose, the live range of an
array section originally stored in a device memory location

is defined as the interval between the time when the data is

loaded from the device memory location to a shared memory
location and the time when the data (which may be overwritten

by intermediate computation results) is stored back from the
same shared memory location to the same or different device

memory location. Our enhanced profiling algorithm uses the

live range information to accurately track the access numbers
for each piece of device memory data during its live range in

shared memory.

In the enhanced algorithm, the Shared Memory Profiler
maintains a logical clock, which monotonically increases and

marks the boundary of live range for each data. Furthermore,

the Shared Memory Profiler creates a shadow array of counters
in shared memory for each shared memory array declared in

a GPU kernel. For each statement that loads data from device
memory to a shared memory array (i.e., the beginning of a

live range), the profiler increases the logical clock by one,

resets the corresponding shadow array counters, and records
the logical clock value to the shadow array. Within the data

live range, the shadow array of counters are updated using

Algorithm 1. For each statement that stores data from a shared
memory array to device memory (i.e., the end of a live range),

the profiler increases the logical clock by one and stores the

values in the corresponding shadow array of counters into
device memory. Additionally, the profiler stores the logical

clocks for the live range and the shared memory array name

with the shadow array of counters for this live range. Note that
this algorithm maintains one global logic clock, and only one

thread is needed for updating the clock. Also, while the live

ranges are computed dynamically, static analysis helps identify
all the statements that transfer (i.e., load or store) data between

device memory and shared memory. Due to space limit, the
formal description of the algorithm is omitted. Please refer to

our technical report [33] for more details.

VI. EXPERIMENTAL RESULTS

We have conducted the experiments using a NVIDIA Tesla

C1060 GPU with 240 cores (8 cores/streaming multiprocessor
* 30 streaming multiprocessors), a clock frequency of 1.296

GHz, 16 KB shared memory per streaming multiprocessor,

and 4 GB device memory. This GPU was connected to a
machine with two AMD 2.6 GHz dual-core Opteron CPUs

and 8 GB main memory. We have implemented the prototype

of GMProf based on CUDA Toolkit 3.0. Note that we do not
see any particular difficulty to port GMProf to other GPU

environments such as OpenCL [4] or stream SDK [34].

We have evaluated GMProf with six applications, including
Co-clustering (referred to as co), EM clustering (referred to

as em), Binomial Options (referred to as bo), Jacobi (referred

to as jcb), Sparse Matrix-Vector Multiplication (referred to
as spmv), and DXTC (referred to as dxtc). Among these

applications, both co and em are data mining algorithms, bo

is a financial modeling algorithm, jcb and spmv are stencil
computation applications, and dxtc is a texture compression

algorithm. We show the efficiency and accuracy of

GMProf in this section. Additionally, we demonstrate the
effectiveness of GMProf in the next section. Due to

space limit, the space overhead is discussed briefly in VI-C

and VII-B. Please refer to our technical report [33] for details.

A. Runtime Overhead

The current implementation of GMProf can be used for

profiling shared memory use only, or for profiling device
memory use only, or profiling both. A programmer who

is interested in examining whether their implementation is

adequately using shared memory is likely to profile shared
memory only, whereas a programmer who is interested in ex-

amining what arrays from device memory should be allocated

Apps Native GMProf-basic GMProf-SA GMProf-SA-NA GMProf-SA-NA-SM

co 39.50 7186.75 (180.93x) 55.98 (0.42x) 72.27 (0.83x) 46.96 (0.19x)

em 129.57 18738.61 (143.62x) 131.54 (0.02x) 131.00 (0.01x) 131.00 (0.01x)*

bo 16.59 1503.53 (89.63x) 122.59 (6.39x) 35.35 (1.13x) 30.20 (0.82x)

jcb 163.31 951.07 (4.82x) 951.07 (4.82x) 560.06 (2.43x) 560.06 (2.43x)*

spmv 21.25 381.52 (16.95x) 341.06 (15.05x) 70.34 (2.31x) 40.72 (0.92x)

dxtc 21.94 14229.70 (647.57x) 14229.70 (647.57x) 338.20 (14.41x) 132.36 (5.03x)

Average 180.59x 112.38x 3.52x 1.57x

TABLE I
RUNTIME OVERHEAD OF DIFFERENT SCHEMES FOR PROFILING SHARED MEMORY USE. NATIVE MEANS RUNNING A GPU KERNEL WITHOUT ANY

PROFILING. GMPROF-BASIC MEANS RUNNING A GPU KERNEL WITH THE TRIVIAL DESIGN OF GMPROF. GMPROF-SA IS APPLYING THE SA
OPTIMIZATION TO GMPROF-BASIC. NA MEANS APPLYING THE NA OPTIMIZATION, AND SM MEANS APPLYING THE SM OPTIMIZATION. IN EACH CELL

OF THE TABLE, THE FIRST NUMBER IS THE EXECUTION TIME OF A GPU KERNEL IN MILLISECONDS AND THE SECOND NUMBER WITHIN A PARENTHESIS

IS THE RUNTIME OVERHEAD COMPARED TO THE NATIVE EXECUTION. THE LAST ROW SHOWS THE ARITHMETIC AVERAGE OVERHEAD OF DIFFERENT

SCHEMES. * USE DEVICE MEMORY DUE TO INSUFFICIENT SHARED MEMORY FOR SM OPTIMIZATION.

in shared memory may profile device memory only. Thus, we

have conducted two separate sets of experiments to measure
the overheads incurred by GMProf’s Shared Memory Profiler

and Device Memory Profiler, respectively.
1) Runtime Overhead for Shared Memory Profiling: To

measure the efficiency of shared memory profiling and the
performance contribution of the different optimizations, we

run each GPU kernel in five configurations, including (1)

Native: the native run without any profiling instrumentation,
(2) GMProf-basic: the run with the trivial scheme (i.e., no

optimizations) of shared memory profiling, (3) GMProf-SA:

the run with GMProf-basic and the SA optimization applied,
(4) GMProf-SA-NA: the run with GMProf-basic and the

SA and NA optimizations applied, and (5) GMProf-SA-NA-

SM: the run with GMProf-basic and the SA, NA, and SM
optimizations applied. Table I shows the execution time and

runtime overhead (within the parentheses) for the six GPU

kernels in all the configurations. As for TH optimization, we
evaluate it separately in section VI-C since it represents an

adjustable tradeoff between overhead and accuracy.
Table I demonstrates that the trivial profiling scheme

(GMProf-basic) incurs very large runtime overhead. For exam-

ple, GMProf-basic adds 647.57 times overhead for dxtc. The
main reasons for the prohibitive runtime overhead are that the

device memory has a high latency, the atomic operations are

time-consuming, and the number of tracked memory accesses
is huge. Therefore, the trivial profiling scheme is impractical

for profiling the memory use of GPU programs.
After enabling the three optimizations, GMProf incurs a

low to modest overhead for all six GPU kernels. As shown

in Table I, GMProf adds 19%-5.03 times with an average of
1.57 times runtime overhead to the native run of the GPU

kernels. As an example, by applying the three optimizations,

GMProf reduces the overhead for bo from 89.63 times to 82%.
This is because GMProf exploits GPU architecture-conscious

optimizations and leverages invariant information provided by
simple static analysis for reducing the number of counter

update operations and improving the efficiency of each counter

update operation. With the modest overhead, we found that
GMProf is well suited for performance debugging or tuning.
Furthermore, different optimizations improve GMProf’s ef-

ficiency for different GPU kernels to different extent, de-

pending upon the nature of the application. For example, the

SA optimization reduces the overhead incurred by GMProf-
basic by orders of magnitude for co, em and bo, while

reduces little for the others. This is because the effect of

Apps Native GMProf GMProf GMProf
-basic -SA -SA-NA

co 39.50 3,304.29 155.00 61.13
(82.64x) (2.92x) (0.55x)

em 129.57 25,563.46 260.79 151.38
(196.29x) (1.01x) (0.17x)

bo 16.59 52.76 19.00 18.95
(2.18x) (0.15x) (0.14x)

jcb 163.31 542.74 542.74 491.71
(2.32x) (2.32x) (2.01x)

spmv 21.25 45.63 45.05 36.12
(1.15x) (1.12x) (0.70x)

dxtc 21.94 30.71 30.71 22.04
(0.40x) (0.40x) (0.01x)

Average 47.50x 1.32x 0.60x

TABLE II
RUNTIME OVERHEAD OF DIFFERENT SCHEMES FOR PROFILING DEVICE

MEMORY USE. THE FOUR CONFIGURATIONS AND RESULTS HAVE THE

SAME MEANINGS AS THOSE IN TABLE I. NOTE THAT THE SM
OPTIMIZATION DOES NOT APPLY HERE.

SA optimization depends on the number of memory accesses
that can be determined completely at compile time, as well

as the number of loop-invariant and tid-invariant memory

accesses that can be identified in the GPU kernel. For co,
em and bo, the SA optimization significantly reduces the

number of counter update operations, which can also alleviate

contention from these counter update operations from a large
number of concurrent threads. The NA and SM optimizations

further reduce the overhead incurred by GMProf-SA through

improving the efficiency of each counter update operation.
Note that for em and jcb, the SM optimization is inapplicable

since there are insufficient free shared memory. As we will
see in section VI-C, by adding TH optimization, the SM

optimization can be applied to the two applications.

One exception for the effectiveness of the NA optimization

occurs in co, where the NA optimization even adds overhead

to GMProf-SA. In co, after applying the SA optimization to
GMProf-basic, only one thread needs to update the profiling

counter for a frequently executed memory access within a
loop. Also, there is no identical address accessed across

different iterations or from other statements executed by other

threads. In this case, the original atomic addition operation
outperforms the non-atomic addition and assignment operation

(“+=”) used in the NA optimization.

2) Runtime Overhead for Device Memory Profiling: Ta-

ble II shows the runtime overhead of different schemes for

profiling device memory use. Note that because the device
memory arrays are typically much larger than the shared

memory, the optimization of shared memory counters (SM)

0

5

10

15

20

25

co em bo jcb spmv dxtc AVERAGE

Sampling(1/10) Sampling(1/100) Sampling(1/1000) GMProf-Opts

Fig. 3. Runtime overhead comparison between GMProf-Sampling (with
sampling rates equal to 1/10, 1/100, and 1/1000) and GMProf-Opts.

used in profiling shared memory is inapplicable here.

Overall, the runtime overhead incurred by GMProf for

profiling device memory is modest, ranging from 1% to 2.01

times with an average of 60%, which indicates GMProf is
suitable for performance debugging and tuning. The small

overhead is mainly because of GPU architecture-conscious op-

timizations and assistance of static analysis. For example, the
SA optimization brings down the runtime overhead incurred

by GMProf-basic on co from 82.64 times to 2.92 times. The
NA optimization further bring down the overhead to 55%.

B. GMProf-Opts vs. GMProf-Sampling (Efficiency and Accu-

racy Comparison)

Sampling is widely used in the literature for reducing the

runtime overhead of CPU program profiling [21]–[26], [35].
While direct applications of any of these techniques on GPUs

would likely cause very high contention among threads, the

basic idea of sampling is certainly applicable on GPUs. For
comparison purposes, we implemented a software sampling

scheme on GPUs we refer to as GMProf-Sampling. The
method is as follows. We generate a random sequence of

1’s and 0’s, with the probability of 1’s equals to the pre-

specified sampling rate. The memory accesses are mapped to
the random sequence one by one through a sampling counter,

and only those accesses that correspond to 1’s are recorded. To

implement this method, we maintain a local sampling counter

for each thread, and thus avoid the the contention for updating

a global counter among a large number of GPU threads. For

clarity, we refer to the GMProf scheme with SA, NA, and SM
optimizations as GMProf-Opts in this section.

Figure 3 compares the runtime overhead of shared mem-

ory profiling using GMProf-Opts and GMProf-Sampling. For

fairness, we also apply the SM optimization on GMProf-
Sampling. Note that the NA optimization and the invariants

used in the SA optimization may affect the accuracy of the

sampling rate, thus they cannot be applied to sampling directly.
As shown in Figure 3, the runtime overhead of GMProf-

Sampling decreases as the sampling rate decreases. However,

even with a very low sampling rate, the average overhead is
still higher than that of GMProf-Opts. For example, GMProf-

Sampling slows down the applications by 6.70 times on
average with a sampling rate of 1/1000, which is about 5 times

higher than that of GMProf-Opts.

Figure 4 further compares the accuracy loss of GMProf-

Opts and GMProf-Sampling. For each data array in a
GPU application, we calculate the relative error caused

by these two schemes using the following formula

|Countscheme − Countactual|/Countactual, where
Countscheme is the count reported by GMProf-Opts or

GMProf-Sampling, and Countactual is the actual access

0

0.2

0.4

0.6

0.8

1

co em bo jcb spmv dxtc AVERAGE

Sampling(1/10) Sampling(1/100) Sampling(1/1000) GMProf-Opts

Fig. 4. Accuracy loss comparison between GMProf-Sampling (with sampling
rates equal to 1/10, 1/100, and 1/1000) and GMProf-Opts.

number obtained through GMProf-basic. Note that for

GMProf-Sampling, the reported counts are calculated by
multiplying the counter values with the reciprocal of the

sampling rate. The accuracy loss for a GPU application is

defined as the arithmetic average of the relative errors for all
data arrays within the application.

As shown in Figure 4, the accuracy loss of GMProf-Opts

is very small. For five of the six evaluated applications, the

accuracy loss is less than 5%. dxtc is the only outlier. In this
application, there are certain memory accesses inside function

calls. Since the SA optimization in our current prototype does

not involve interprocedural analysis, these memory accesses
cannot be resolved. As a result, there are race conditions in

counter updates after applying the NA optimization. We be-

lieve more advanced static analysis is needed for improving the
accuracy in this case, which is a topic for future investigation.

Considering GMProf-Sampling, the accuracy loss increases
as the sampling rate decreases. With a high sampling rate

(e.g., 1/10), it can achieve a accuracy loss as low as 9.5%

on average, which is still higher than the average loss of 6.9%
by GMProf-Opts. Moreover, GMProf-Sampling has very high

runtime overhead when the sampling rate is 1/10.

The above comparison and discussion indicates that

GMProf-Opts has a good balance of low runtime overhead
and high accuracy, comparing to GMProf-Sampling.

C. Overhead Reduction by TH Optimization

As mentioned earlier, the TH optimization is a tradeoff

between overhead and accuracy. The threshold parameter is

adjustable and we use “0xFF” as an example in our evaluation.
By capping the maximum value to the threshold, we can

use less bits to store the profiling counters. In the case of

“0xFF”, only 8-bit is needed for each profiling counter. As
a result, the space overhead of GMProf is reduced to 1/4

of the original. Specifically, for shared memory profiling, the
overhead is reduced from 16KB to 4KB, which make the SM

optimization applicable to em and jcb. As for device memory

profiling, the average overhead is reduced from 126.53MB to
31.63MB, which accounts for only 0.77% of the entire device

memory.

The runtime overhead may also be reduced since the TH

optimization reduces the the number of counter update opera-
tions. For example, the overhead for jcb is reduced from 2.43

times to 5% after applying the TH optimization (the detailed

table is omitted due to space limit). On average, the runtime
overhead for shared memory profiling after applying the TH

optimization is further reduced from 1.57 times to 1.36 times,
while the overhead for device memory profiling is reduced

from 60% to 55%.

We do not quantify the accuracy loss after TH optimization

Apps GMProf GMProf
-basic w/o TH w/ TH

em v1 ShM a1 (983,040) a1 (983,040) a1 (THR)
a2 (65,536) a2 (65,536) a2 (THR)
a3 (65,536) a3 (65,536) a3 (THR)
a4 (1,289) a4 (1,289) a4 (THR)

DM a5 (30,720) a5 (30,720) a5 (THR)
a6 (19,200) a6 (19,200) a6 (THR)
a7 (513) a7 (513) a7 (THR)
a8 (513) a8 (513) a8 (THR)
a9 (3) a9 (3) a9 (3)
a10 (2) a10 (2) a10 (2)
a11 (1) a11 (1) a11 (1)

em v2 ShM a1 (983,040) a1 (983,040) a1 (THR)
a2 (65,536) a2 (65,536) a2 (THR)
a3 (65,536) a3 (65,536) a3 (THR)
a5 (30,720) a5 (30,720) a5 (THR)
a6 (19,200) a6 (19,200) a6 (THR)

DM a4 (1,280) a4 (1,280) a4 (THR)
a7 (513) a7 (513) a7 (THR)
a8 (513) a8 (513) a8 (THR)
a9 (3) a9 (3) a9 (3)
a10 (2) a10 (2) a10 (2)
a11 (1) a11 (1) a11 (1)

TABLE III
PROFILING RESULTS FOR TWO VERSIONS OF EM CLUSTERING (em). EACH

RESULT CELL SHOWS THE NORMALIZED ARRAY NAMES, AND THE

CORRESPONDING AVERAGE COUNTS FOR THE ARRAYS WITHIN THE

PARENTHESES. SHM MEANS SHARED MEMORY, DM MEANS DEVICE

MEMORY, AND THR MEANS THRESHOLD.

with the metric we had introduced earlier. This is because TH

does result in very different counts (i.e., threshold code instead
of actual count) for the locations that are accessed frequently.

The main underlying idea for TH is that it should still allow

effective decisions for shared memory usage to be made. We
demonstrate this claim through case studies in the next section.

VII. CASE STUDIES

In Section VI, we demonstrated using six applications that

various optimizations in GMProf are effective in reducing
the overheads. This section focuses on the effectiveness of

GMProf.

For the six applications we have experimented with, we

applied GMProf-basic (the trivial but very high overhead

version) and GMProf with and without the TH optimization,
and compared the accuracy of the access counts. For each

array variable, the current prototype of GMProf extracts the

maximum value, the minimum value, and the average value
from the corresponding group of counters (due to space limit,

only the average counts are presented in this section). Note

that more fine-grained results could be presented with more
advanced visualization techniques.

For three of the six applications, i.e., co, spmv, and dxtc,
we found that GMProf correctly verifies that these applications

have efficient use of shared memory. Therefore, we will focus

on the other three applications in this section.

For each of the other three applications, we evaluated two

versions of the GPU implementation. In the first version
(*_v1), only trivial memory optimizations were performed.

With the guidance of GMProf, the second version (*_v2)

were generated, which turned out to have better memory
utilization and much higher efficiency, i.e, 2.59 - 39.63 times

with an average of 15.18 times speedup. Due to space limit,

Apps GMProf GMProf
-basic w/o Enh. Alg. w/ Enh. Alg.

jcb v1 ShM a1 (5760) a1 (5748)* a1 (2)**
DM in (4) in (4) in (4)

out (1) out (1) out (1)

jcb v2 ShM a2 (4757) a2 (4741)* a2 (4)**
DM in (1) in (1) in (1)

out (1) out (1) out (1)

TABLE IV
PROFILING RESULTS FOR TWO VERSIONS OF JACOBI (jcb) WITH AND

WITHOUT THE ENHANCED ALGORITHM (ENH. ALG.). THE RESULTS HAVE

THE SAME MEANINGS AS THOSE IN TABLE III. * SHOW THRESHOLD IF

ENABLE TH OPTIMIZATION. ** COUNT IN EACH LIVE RANGE.

we only discuss two cases here. Please refer to our technical

report [33] for the third case.

A. EM: Frequent Use of Device Memory

EM is a data-mining (clustering) algorithm. It features many

arrays of different sizes being accessed with different access

patterns. We start with em_v1, where four variables are
allocated in shared memory. As shown in Table III, GMProf

found that all of the four shared memory arrays (a1 - a4)
are accessed more than the threshold, which means shared
memory is highly utilized. Meanwhile, however, several device

memory arrays (i.e., a5 - a8) also have high numbers of

access. Based on this information, programmers generated a
more efficient version em_v2 by allocating different arrays

into shared memory. Essentially, this is a knapsack problem,

i.e., putting different data arrays that have frequent accesses
in limited shared memory, except that the data arrays can

be further partitioned to accommodate with each other. In

this specific example, we use simple greedy algorithm to
select the two most frequently used device memory arrays

(a5 and a6), partition them among thread blocks, and fit them
into the shared memory. Meanwhile, a relatively less used

array (a4) is swapped out from shared memory to device

memory due to the limited size of shared memory. This turned
out to be an effective optimization, as em_v2 runs about

3.32 times faster than em_v1. Note that this optimization

could not have been performed using traditional static memory
management techniques since the access frequency of different

arrays depends on runtime parameters.

B. Jacobi: Effectiveness of the Enhanced Algorithm

Our second case study used Jacobi, a widely used scientific

kernel. Jacobi involves stencil computation which could be

optimized using advanced static methods for memory manage-
ment. However, we include Jacobi in the case studies since it

demonstrates the effectiveness of the enhanced algorithm we

have developed.

Jacobi has an input matrix (in) and an output matrix (out).
For appropriate utilization of shared memory, we need to select
which array(s) should be allocated in shared memory, and also

need to decide what tile size should be used. We started with

a version (jcb_v1) that moves out from device memory to
shared memory. Using GMProf, we identified that moving

out is not useful. Based on the suggestion from GMProf,
programmers created a second version (jcb_v2) that keeps

out in device memory, but moves in into shared memory.

Table IV shows the profiling results of GMProf for the two

versions of Jacobi, jcb_v1 and jcb_v2, with and without

the enhanced algorithm. Here, the profiling results without the
enhanced algorithm show that in jcb_v1 the array a1 (tile

of out) has a large average number that above the threshold,

which means it is frequently used, However, after using the
enhanced algorithm that considers different live ranges (results

shown in the fifth column of Table IV), we found that for
jcb_v1, a1 has no reuse except load from and store to device

memory. This shows that the enhanced algorithm is necessary

for understanding the code correctly.

The results also indicate that in jcb_v1,while a1 does

not have reuse at all, the array in does have some reuse

in device memory. Based on this hint, programmers created
a second version (jcb_v2), which moves the array in into

shared memory and holds out in device memory. We then

verified the effectiveness of memory usage for jcb_v2 using
the enhanced algorithm. From Table IV, we can observe that

a2 (tile of in) is reused multiple times and there is no reuse in
device memory. It should be noted that with this improvement,

jcb_v2 outperforms jcb_v1 by 2.59 times.

In addition, using Jacobi, we studied the additional over-
heads arising from the enhanced algorithm. After applying the

enhanced algorithm, the runtime overhead for jcb increased

from 5% to 23%. The additional overhead is primarily due
to the need for copying counter values from shared memory

to device memory for each live range and maintaining the
logical clock. The total space overhead for storing additional

information on device memory turned out to be 2.36 MB.

VIII. CONCLUSIONS

In this paper, we have presented GMProf, a low-overhead
fine-grained profiling approach for the modern GPU architec-

tures. GMProf uniquely exploits architecture-conscious opti-
mizations and simple static analysis to reduce the overheads

of collecting fine-grained information on GPUs. Additionally,

we have presented and evaluated a specific implementation
of GMProf. This implementation profiles shared memory and

device memory separately with the goal of optimizing the use

of limited shared memory on GPUs.

Our experimental results with six GPU kernels show that

GMProf incurs modest runtime overhead. More importantly,

GMProf is able to identify the inefficient use of memory and
verify the efficient memory usage in the tested applications.

This indicates that GMProf is an efficient as well as effective
approach for improving application performance on GPUs.

IX. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers

for their invaluable feedback. We appreciate the useful discus-
sion with Xin Huo and Zhezhe Chen. This work was supported

in part by an allocation of computing time from the Ohio
Supercomputer Center, and by the NSF grants #CCF-0833101

and #CCF-0953759 (CAREER Award).

REFERENCES

[1] “CUDA Showcase,” http://www.nvidia.com/object/cuda home new.html.

[2] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, May 2008.

[3] “Top 10 Systems - 11/2011,” http://www.top500.org.

[4] Khronos Group, “OpenCL: The Open Standdard for Heterogeneous
Parallel Program,” http://www.khronos.org/opencl, 2008.

[5] A. D. Malony, S. Biersdorff, W. Spear, and S. Mayanglambam, “An
experimental approach to performance measurement of heterogeneous
parallel applications using cuda,” in ICS, 2010.

[6] “NVIDIA Visual Profiler,” http://developer.nvidia.com/tools/Development.
[7] “NVIDIA Parallel NSight,” http://developer.nvidia.com/tools/Development.
[8] “Intel VTune ,” www.intel.com/software/products/vtune.
[9] S. S. Shende and A. D. Malony, “The Tau parallel performance system,”

Int. J. High Perform. Comput. Appl., vol. 20, pp. 287–311, May 2006.
[10] “Vampir - Performance Optimization,” http://www.vampir.eu.
[11] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight

dynamic binary instrumentation,” in PLDI, 2007.
[12] E. Gutierrez, S. Romero, M. Trenas, and E. Zapata, “Memory locality

exploitation strategies for FFT on the CUDA architecture,” VECPAR,
2008.

[13] W. Ma, S. Krishnamoorthy, and G. Agrawal, “Practical loop trans-
formations for tensor contraction expressions on multi-level memory
hierarchies,” in CC, 2011, pp. 266–285.

[14] M. Boyer, K. Skadron, and W. Weimer, “Automated dynamic analysis
of cuda programs,” in Proc. of 3rd Workshop on Software Tools for

MultiCore Systems, 2008.
[15] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,

A. Rountev, and P. Sadayappan, “Automatic data movement and com-
putation mapping for multi-level parallel architectures with explicitly
managed memories,” in PPoPP, 2008.

[16] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” ACM Trans.

Embed. Comput. Syst., May 2006.
[17] W. Ma and G. Agrawal, “An integer programming framework for

optimizing shared memory use on gpus,” in PACT, 2010.
[18] C. Cascaval and D. A. Padua, “Estimating cache misses and locality

using stack distances,” in ICS, 2003.
[19] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse

distance analysis,” in PLDI, 2003.
[20] W. Liu and D. Yeung, “Enhancing LTP-driven cache management

using reuse distance information,” The Journal of Instruction-Level

Parallelism, 2009.
[21] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via

remote program sampling,” in PLDI, 2003.
[22] G. Jin, A. Thakur, B. Liblit, and S. Lu, “Instrumentation and sampling

strategies for cooperative concurrency bug isolation,” in OOPSLA, 2010.
[23] J. Whaley, “A portable sampling-based profiler for java virtual ma-

chines,” in ACM 2000 conference on Java Grande, 2000.
[24] O. Traub, S. Schechter, and M. D. Smith, “Ephemeral instrumentation

for lightweight program profiling,” Tech. Report, Harvard Univ., 2000.
[25] M. Burrows, U. Erlingson, S.-T. A. Leung, M. T. Vandevoorde, C. A.

Waldspurger, K. Walker, and W. E. Weihl, “Efficient and flexible value
sampling,” in ACM SIGPLAN NOTICES, 2000, pp. 160–167.

[26] M. Arnold and P. F. Sweeney, “Approximating the calling context tree
via sampling,” in Research report RC 21789 (98099). IBM, 2001.

[27] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: A compiler
framework for automatic translation and optimization,” in PPoPP, 2009.

[28] M. Marron, M. Méndez-Lojo, M. V. Hermenegildo, D. Stefanovic,
and D. Kapur, “Sharing analysis of arrays, collections, and recursive
structures,” in PASTE, 2008.

[29] M. M. Strout, L. Carter, and J. Ferrante, “Compile-time composition of
run-time data and iteration reorderings,” in PLDI, June 2003.

[30] A. Chauhan and C.-Y. Shei, “Static reuse distances for locality-based
optimizations in matlab,” in ICS, 2010.

[31] E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen, “On-the-fly elimina-
tion of dynamic irregularities for gpu computing,” in ASPLOS, 2011.

[32] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

[33] M. Zheng, V. T. Ravi, W. Ma, F. Qin, and G. Agrawal, “GMProf: A
Low-Overhead, Fine-Grained Profiling Approach for GPU programs,”
The Ohio State University, Tech. Rep. OSU-CISRC-5/12-TR11, 2012.

[34] “ATI Stream Technology,” http://www.amd.com/stream.
[35] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,

S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and
W. E. Weihl, “Continuous profiling: Where have all the cycles gone,”
in ACM TOCS, 1997.

