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Abstract—In this work we present an approach for the paral-
lelization of hyperbolic simulations on shared-memory architec-
tures running on fully-adaptive grids.

We tackle the parallelization problem with a dynamic sub-tree
split- and join-approach by running computations on those split
sub-trees in parallel using lightweight tasks. The traversal of sub-
trees created by tree-splittings is built upon an inherently cache
efficient approach for solving hyperbolic PDEs on dynamically
adaptive triangular grids using a Sierpinski space filling curve.
Our communication scheme among sub-trees stores the exchange-
data to/from adjacent sub-trees in a consecutive memory area
which is further utilized for an improved run-length-encoded
data exchange.

To give results for a concrete scenario, we implemented a
solver for the shallow water equations which demands for fully-
adaptive grid refinement and coarsening after each time-step.
QOur results give detailed statistics about optimization of the
split size, parallelization overhead and also strong scalability
results for a simulation running on multi-socket Intel and AMD
architectures.

I. INTRODUCTION

Due to the current trends towards many-core architectures
[1], efficient shared-memory parallelization is becoming a
highly important aspect in numerical simulations, including
the solution of partial differential equations (PDE) with a
high computational demand. On the numerical side, the use of
Discontinuous Galerkin methods, and also of classical Finite
Volume methods, receives growing attention for solving hyper-
bolic equations on dynamically adaptive grids, especially for
problems that involve shock-formation and wave-propagation,
such as the shallow water equations (SWE) — a model used in
Tsunami simulation, e.g. — and similar hyperbolic problems
[2], [3]. As these models allow varying approximation orders
per element and also dynamic choice of flux computation or
Riemann solvers (e. g. those presented in [4], [S]), simulations
will typically lead to unpredictable work-load per element, but
also require adaptive grids in each time-step [6]. Also possible
extensions — e. g. local-time-stepping (LTS) for hyperbolic
PDEs [7], [8], especially for cluster-based LTS [9] — pose new
demands on cluster-oriented storage schemes and an efficient
parallelization of full-adaptive grids.
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Traditional partitioning strategies strongly rely on the same
or at least pre-computable work-load on each grid cell. This is
no longer the case when considering the previously mentioned
improvements of LTS, but also unpredictable workload — e. g.
by using flux-solvers with an unknown number of Newton-
iterations, skipping of adaptivity traversals for already con-
forming grids in a cluster or loading datasets from a database.

The Sierpifiski space filling curve (SFC) and stack-based
communications for cache optimized communication and com-
putations is successfully used in serial processing [10], [11],
[12]. Here we present an approach for the parallelization
using massive tree-splitting methods which enables us to
tackle the aforementioned problems. To achieve good load
balancing, SFCs are usually cut into equally sized partitions
for MPI communication (among others [13], [14], [15], [16],
[17]). All those methods so far induced storage of additional
data about adjacent cells in each cell or at least computing
this adjacency information. We shifted the storage of such
management data to a higher refinement-tree level to strongly
reduce this computation and storage overhead. We utilize split-
and join-operations on Sierpiiski SFC sub-trees containing a
bulk of grid cells for parallelization since they are natural
borders when splitting the binary tree into tree branches.
Therefore no modifications and thus no further overhead has
to be introduced to the traversals of these sub-trees. Instead of
creating only one sub-tree per core (e. g. [18]) we use massive
splitting to overcome the load-balancing limitations created by
such tree-splittings.

Our implementation is based on a Sierpinski SFC algorithm
presented in [12] which is further outlined in Sec. II. The novel
SFC parallelization concept is presented in Sec. III which uses
a massive tree split- and join-approach on fully-adaptive grids.
We show solutions for the parallel communications based
on stacks and how to efficiently update the communication
information about adjacent sub-partitions. Finally we present
performance-benchmark results in Sec. IV.

I1. SIERPINSKI TRAVERSAL TO SOLVE SWE

We start with an introduction to our Sierpiniski approach,
which is based on newest vertex bisection grid-generation,
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Left images: Successive grid-refinement by applying the grammar given in Fig. 2. The bit string below each image represents the data stored on the

structure-stack with ‘| marking the bottom of the stack. Refinement of a grid-cell is handled by replacing a “0* on the stack representing a tree-leaf with the
string “001*. Note that these replacement operations are done in a stream based manner.

Right image: structure-tree for the rightmost sketch of an adaptive grid.
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Fig. 2. Recursive description of 2D Sierpifiski SFC. Refining a grid-cell is

recursively defined by applying the corresponding rules. During refinement,
the SFC itself is realigned close to the hypotenuse. This is later on useful
for distinguishing right edges which are to the right side when following
the SFC and left edges vice versa. K, H and V represent the so called even
grammar whereas the stroked grammars K’, H” and V’ are further denoted as
odd grammar.

and show how to run cache oblivious traversals on such grids
to present our parallelization of the original algorithm. This
Section explains our approach on a triangular-shaped domain
which is extended to a parallelization approach for arbitrary
triangulated domains in the next Section.

A. Recursive definition

1) Grid structure: A tree-based recursive definition for the
creation of grids based on the 2D Sierpifiski SFC used in this
work is given in Fig. 2. Cells are bisected according to certain
patterns that reflect the local course of the SFC in this cells.
For the K and K’ pattern the curve enters the triangle via one
of both legs and leaves it across the hypotenuse, for H and
H’ the triangle is entered across the hypotenuse and leaves it
across one of the triangle-legs. V and V’ is given by the curve
following a V-like scheme.

In the recursive definition the SFC is always drawn close
to the hypotenuse. Later on, this is used to classify whether
an edge is on the left or right side: Following the Sierpifiski
SFC, an edge is on the left side whenever its edge midpoint
is on the left side of the curve and vice versa.

The grid-refinement information is stored on the so called
structure-stack' in depth-first-order with O representing a tree-
leaf and 1 an inner tree node to recursively follow the defi-
nition. During the grid-traversal, structure information stored
on the structure-stack is successively removed from the top of
the stack, thus giving us a stream based access. An example is
given in Fig. 1 with the corresponding structure-stacks below
each grid. During a refinement of a grid cell, 001 is streamed
to the new structure-stack instead of a 0. For a coarsening, the
operation is vice versa.

2) Element-data: The element-data needed to run the com-
putation for each grid-cell is also stored on a stack using a
streaming-access: only pop- or push-operations are allowed
for a stack. During adaptivity traversals, an element-data is
removed from the top of the element-data-stack for each leaf-
cell. After processing, this element-data is pushed to an output
element-data-stack. This requires one input- and one output-
stack. Without considering adaptivity and thus no stack size
variations, the element-data-stack elements are accessed by
using non-destructive stack pop-operations handing back a
reference to the element data stored on the stack. In this way
the element-data is updated only, avoiding write-access to an
additional element-data-stack. Therefore only a single stack is
necessary, which is used for element-data input and output.

B. Edge-based communication

While the SFC is not used when only traversing the grid
and accessing element-data, the locality and further properties
becomes crucial for an efficient and inherently cache efficient
exchange of data from one grid-cell to an adjacent one.

The SWE model we implemented (see Sec. II-D) relies
on two different kinds of datasets: Element-data which is
persistently stored for each triangle-cell on the element-data-
stack and non-persistent data which is temporarily stored
for edge-based data-exchange to/from adjacent triangle-cells.
We handle the edge-based communication to/from adjacent
triangles via so called left and right stacks. The nomenclature
is based on the placement of the edge across which data is send
to or received from the adjacent grid-cell. If the edge-midpoint
is located on the left side from the point of view when
following the SFC inside the triangle grid-cell and drawing the
SEC close to the hypotenuse, the send- or receive-operation is

Ithis is not the stack-frame of programs but a software-managed stack



Fig. 3. Recursive inheritance of edge types. n: new edge, o: old edge, b:
domain boundary. The boundary type is used to apply boundary conditions
during the traversals.
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Fig. 4. Specific state during a forward traversal. The letters close to the
edges represent different data-sets which have to be transmitted to adjacent
triangles. Triangles with darker background were processed up to the current
state. Red bold framed elements are modified in the current state of processing
grid-cell D after reading a O from the structure-stack: First of all, 4 is popped
from the right stack (edge type of right catheti is old) and pushed to the edge-
buffer-stack. Then [ is pushed to the right stack (edge type of left catheti is
new) and j to the left stack (edge type of hypotenuse is new). To setup the
structure-stack to a postfix-order for the backward traversal, the O is pushed
to the backward structure-stack.

done via the left stack. Otherwise the stack which is used for
communication is the right one.

Furthermore edge types are introduced by extending the
recursive definition by edge types new, old and boundary.
Each edge of the child inherits the edge type of the overlying
edge of the parent. An example is given in Fig. 3. The
edge type of the edge which is created by following the
recursive definition is of type new for the triangle which is
accessed at first following the SFC and old for the edge
which is associated with the triangle accessed afterwards.
This accounts for the communication way: Looking at Fig. 3,
the first triangle H’ creates new information and the second
triangles V’ reads the old information with the communication
being managed via stacks. For edges of type new, exchange-
data is pushed to the corresponding left or right stack while
exchange-data is popped from the left or right stack when the
edge type is old. Edges of type boundary are handled directly
during the traversal by setting the edge communication data
to appropriate boundary condition values.

To run a single time-step we run a forward- and backward-
traversal: For a single element-wise computation based on the
adjacent triangle edge data, a forward-traversal is used to store
the edge data of type new to the respective left and right stacks.
While during the forward traversal the data can be transmitted
only to grid-cells which are accessed next when following
the SFC, an additional backward traversal is used afterwards.

1) Refine: Hypotenuse 2) Refine: Hypotenuse
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3) Refine: Hypotenuse
and right edge

4) Refine: All edges

Fig. 5. All possible states which are stored on the adaptivity-state-stack
during the refinement traversals.

To make the already forwarded data available during this
backward traversal, an edge-buffer-stack is further used. Edge
data read from edges of type old are pushed to the edge-buffer-
stack to make them available for the computation during the
backward traversal.

An example is given in Fig. 4 for a specific forward traversal
step. Looking at the red framed triangle, the value 0 is
read from the structure-stack. During the forward traversal, a
new structure-stack for the backward traversal is also created
allowing to execute a recursive backward traversal of the SFC
by using post-order push operations to store leaf (0) and inner-
node (1) information to the backward structure-stack. Starting
the processing of a leaf element, the value O is pushed to the
backward-structure-stack.

The edge data i which was previously stored from the adja-
cent triangle C is popped from the right edge-communication-
stack and pushed to the edge-buffer-stack. Afterwards the new
data j is stored to the left stack since the edge mid-point is to
the left side of the SFC and the data [ to the right stack.

During the backward traversal, all edge-communication-
data from adjacent triangles are available via the left and
right stack as well as the edge-communication-buffer. Loading
references to this edge-communication-data, the computation
for processing of the element local data is started.

C. Adaptivity traversals

Adaptivity traversals are used for refinement- and
coarsening-operations on grid-cells. After this adaptivity op-
erations, the new grid has to fulfill the property of not having
any hanging node — e. g. created by the red dashed edge in the
left image in Fig. 6 — and the element-data being stored along
the SFC. During the first forward adaptivity traversal, the tri-
angle grid-cells are refined to reduce numerical discretization
errors or are coarsened by joining with an adjacent triangle.
Possible adaptivity states which are in particular refinements,
coarsenings and no adaptivity are given in Fig. 5. Those
states are stored on the adaptivity-state-stack with one element
associated to exactly one element-data-stack element.

To avoid hanging nodes, as many forward- and backward-
traversals as are necessary are executed with refinement infor-
mation being forwarded via the edge-based communication
schemes presented in the previous section (see Fig. 6 for
simple example). A refinement request is sent via those edges
where a new node is going to be created due to an inserted
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Fig. 6. Adaptivity traversals to create conforming grid by avoiding hanging
nodes. Local refinement request was triggered for grid-triangle B (refinement
state 1). Due to the new hanging node created by the new edge, the refinement
request is forwarded to triangle A (refinement state 3).
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Fig. 7. Four grid-triangles requesting a Join operation.

edge. The adjacent triangle then reads this adaptivity informa-
tion and updates its adaptivity state to avoid the hanging node.
Those traversals are executed until the adaptivity-states-flags
represent a grid without hanging nodes.

For coarsening operations, an agreement protocol is used as
shown in Fig. 7. Coarsening requests have to be transmitted
across both triangle-leg edges. Without loss of generality, we
only consider triangle-leg edge types of type old and new. For
the first grid cell A, both catheti are of type new, forwarding
the coarsening request across both catheti edges. As long as
all other grid cells (B and C) also request a coarsening, the
original coarsening request of A is forwarded to D. Since
all edge types of triangle-element D are of type old, both
forwarded requests have to request a coarsening. Otherwise D
does not agree to the coarsening. During the next traversal in
the reversed direction, this information is only forwarded when
all four triangle-elements agree to the coarsening operation.

Finally, a backward traversal reads the element-data from
the input-element-data-stack and stores respectively either
interpolated or restricted element-data to the output-element-
data-stack depending on the corresponding adaptivity-state
(see Fig. 5) stored on the adaptivity-state-stack.

D. Application

To test our approach and to give concrete results for
a simulation, a shallow-water-equation (SWE) model with
explicit Euler time-stepping and constant bathymetry was
implemented. Here we give a very short overview of the
derivation of the discretized Discontinuous Galerkin (DG)
method with local Lax-Friedrichs (LxF) fluxes to simulate
such a system (see [19], [20], [21] for more details). For each

grid cell as many state vector as there are degree of freedoms
(DOFs) in a single triangle are stored to the element-data. For
the 0" order basis functions there is only a single state vector
located in the middle of the triangle. We also implemented
the 1°' order DG method with a state vector at each midpoint
of an edge (Crouzeix-Raviart nodal points [22]). This state
vector U stores the height 7 of the surface, the height averaged
momentum @ = (uy, u,)”, and also the bathymetry b which is
constant in our simulation and thus neglected in the derivation:
U = (hyug, uy, b)T = (h,v:h,v,h,b)T. The velocity can be
directly computed by v; = w;/h. Furthermore the SWE in its
homogeneous form is given by conservation law of hyperbolic
equations

au

pr +V-F{U)=0
with F(U) = (0h, Tvgh + Sgh*e,, tvyh + %they)T as the
flux-function and the basis vector €. By applying the Gaussian
divergence theorem we get the weak formulation

au

T dt T T

mass-term stiffness-term flux-term

)
with 7' representing a triangle grid cell. Next, we substitute
the solution U with basis-function approximated solution
U= Z?Zl ffi%‘ and evaluate the integral over the mass-term
to obtain a constant c. Using an explicit Euler time-step the
update for a single time-step At can then be expressed by
the discretized stiffness-term and the flux-term U, (¢ + At) =
Ui(t) +c- (S(U(t) + F(U(t),U*(t))) with U representing
the closest state vector in the adjacent cell. While S can be
precomputed, the flux-term which represents the exchange of
mass and momentum crossing the edge to/from the adjacent
cell has to be computed in conjunction with flux-data from
the adjacent cell. Various flux-solvers have been developed
which compute the fluxes with different quality and com-
putational costs. We used the local Lax-Friedrichs flux [19]
with dynamically chosen viscosity coefficient for our test cases
which introduces a numerical diffusion for stability reasons.
By using the property of rotational invariance of the SWE [23]
the velocity components of each state vector are projected to
the corresponding edge-normal space before applying the flux
computation. Therefore using this specific flux computation
in our framework does not restrict implementation of other
improved Riemann solvers, such as the one presented in [5].

E. Traversators & Kernels

In our software framework, we organize the algorithm via
traversators and kernels. The term traversator accounts only
for the parts of the traversal which are responsible for the edge-
communication-data management, pushing and popping data
from stacks, to read and write data to streams but also to follow
the recursive definition. The kernels itself are responsible to
offer interfaces providing storing edge-communication-data,
running element-data and edge-communication-data based
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Fig. 8. Left image: Parallelization by creating #cores sub-partitions. Right image: Parallelization by creating by far more splits than there are cores available

on the system.
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Fig. 9. Radial breaking-dam simulation scenario with initial depth of 6 and maximum refinement depth of 12. Sub-partitions are split when the number of
grid cells exceeds 512. Left handed images: Fine grid cells in black and sub-partitions in red. Right handed screenshots: Extracted water surface of simulation.

computations and also refinement- or coarsening-requests for
adaptivity traversals.

While traversators and kernels are completely disjunct, the
implementation of a SFC tree-traversal as it is used to run a
single time-step update is instantiated with a kernel defined
by the user and the corresponding traversator offered by the
framework.

III. PARALLELIZATION
A. Massive workload creation

A traditional way to parallelize PDEs is to cut the data
stored along the SFC into #cores pieces with equally sized
lengths (among others [13], [14], [15], [16], [17]). In this
work, we utilize a different way to allow a parallelization:
Splitting the original tree many times at the new tree root. To
our knowledge, parallelization with a tree-splitting approach
was so far only done by splitting the grid-tree into as many
partitions as there are cores installed on the system ([18]). This
would create a high idle time for unbalanced grids (left image
in Fig. 8).

To overcome this limitation our approach creates by far
more partitions, further denoted as sub-partitions, than there
are cores available on the system — a massive workload
splitting (Right image in Fig. 8 and the red framed sub-
partitions in Fig. 9).

B. Task-based parallelization

To be ready for upcoming many-core systems, operations
executed for each sub-partition have to be created very fast
in parallel. We store the sub-partitions at the leaf-nodes in
a binary tree (see right image in Fig. 8 for initial domain-
triangulation tree). One task is executed for each tree node.

Assuming a regular balanced sub-partition tree, this would lead
to 2" number of tasks running operations on leaf-nodes and
thus sub-partitions within n recursions executed in parallel.

C. Sub-partition

For the parallelization of our SFC-based massive splitting
approach, we aimed at the following three goals:

(1) Independence: Sub-partitions can be scheduled in ar-
bitrary order to allow task based work-stealing. (2) Cache
efficiency: Operations local to sub-partitions are handled in
an as cache efficient way as possible. (3) Read-only access
to other sub-partitions: Actions executed on a single sub-
partition do not access other sub-partitions by using write
operations. This becomes a crucial component once extending
this implementation to MPI using push and pull MPI access
schemes.

D. Skeleton of sub-partition

A single sub-partition is implemented in an object-oriented
manner providing the following data-structures and features:

Local stacks: Used to run computations on sub-
partitions in arbitrary sub-partition order. Structure stacks
(forward/backward) store the adaptive triangle structure
(Sec. II-Al), element-data-stacks (forward/backward) store
element local data (Sec. II-A2), edge-communication-stacks
(left/right) (Sec. II-B) and exchange-edge-communication-
stacks (left/right) (Sec. III-G) exchange simulation data
with adjacent sub-partitions, edge-buffer-stacks store non-
persistent edge communication data for the backward traversal
(Sec. 1I-B), adaptive-edge-communication-stacks (left/right)
and exchange-adaptive-edge-communication-stacks (left/right)
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are used to exchange adaptivity information data with adja-
cent sub-partitions (Sec. II-C), adaptive-state-stack storing the
current adaptivity state to create a conforming grid (Sec. II-C).

Edge communication information (ECI): Information about
adjacent sub-partitions and the edge-communication-data
which has to be read from the adjacent sub-partitions
(Sec. III-E, ff.).

SplitJoinlnformation: Information to run tree-split/-join op-
erations on this sub-partition (Sec. III-1, ff.).

Access structures to sub-partition binary tree structure to
read data from adjacent sub-partitions for split/join operations
and for reading required exchange data.

The application developer extends this sub-partition skele-
ton by user-defined kernels and compatible traversators.

E. Edge communication information (ECI)

Starting with an arbitrary initial domain triangulation (ex-
ample given in right image in Fig. 10) adjacent sub-partitions
are determined automatically either by comparing the edge
vertices or by user-driven setup. For each sub-partition, one
ECI dataset is created for the sub-partitions next to the
hypotenuse and another one for the two sub-partitions next
to both triangle legs — each accounting for edges shared with
adjacent triangles either on the left or right side of the SFC
curve.

F. Run-length encoded edge communication information (RLE
ECI)

Each ECI is set up with a list of RLE ECI’s. Working with
stack-based edge communication for grid traversal, the data
which has to be read by another sub-partition is stored in a

consecutive memory area on one of the edge-communication-
stacks. This is achieved by setting the outer sub-partition
edge types to new before executing a traversal (see Fig. 11).
To make use of this consecutive storage we use a run-
length-encoding (RLE) to store information about the number
of shared edges to an adjacent sub-partitions in the ECI.
Knowing the number of elements which have to be transferred,
improved code is used for exchange of edge-communication
data between sub-partitions. See Fig. 12 for an example of the
RLE ECI in the second column.

G. Exchange of data between sub-partitions

Considering only new and old edge types without loss
of generality, a forward and backward traversal including
inter-sub-partition communication-data is handled in 3 steps:
1) For the forward traversal, the edge types of the sub-
partition boundaries are set to new, thus writing the com-
munication data to the local edge-communication-stacks. In
this way, edge data which has to be read by adjacent
sub-partitions is stored consecutively on the stacks for the
forward traversal. 2) Then the data is exchanged by copy
operations from edge-communication-stacks of adjacent sub-
partitions to local exchange-edge-communication-stacks using
local- and adjacent-ECI. 3) Finally for the backward traver-
sals, the boundary types are set to old with the input edge-
communication-stacks set to exchange-edge-communication-
stacks. In this way the backward traversal is reading the edge-
communication-data of the adjacent sub-partitions.

H. Updating the edge-communication information for adap-
tivity traversals

Updating the ECI is based on the last backward adap-
tive traversal writing the refine/coarsen information to the
adaptive-edge-communication-stacks. Fig. 12 illustrates an ex-
ample of such a traversal process. If a new node has to
be created on an edge due to a refinement, the refinement
request R is written to the corresponding adaptivity-edge-
communication-stack, otherwise the value 0. In case of coars-
ening a triangle, the coarsening identifier C is written to the
stack only for both triangle legs. Using this identifiers on the
adaptive-edge-communication-stacks, the ECI is updated after
each adaptive pass: For each ECI, as many elements storing
adaptive information from the adaptive-edge-communication-
stacks are read to match the currently stored ECI. When a
coarsening information was read, an additional coarsening
information has to follow and the RLE counter is decreased
by 1. Whenever a refinement information was read, the RLE
counter has to be increased by 1.

L. Tree-split and -joins for parallelization on a static grid

We start with the description of the tree-split and -joins for
static grids without considering refinements and coarsenings of
grid cells. Without loss of generality, we describe the algorithm
on the backward traversal for an even recursion method (e. g. K
in Fig. 2) without domain boundaries next to the sub-partition
(Fig. 13). During each split- or join-operation, the ECI of
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each split or joined sub-partition has to be modified to be
in a consistent state to match the border edges of the adjacent
sub-partitions. Also the number of elements on the shared
stack has to be known, which represents the number of shared
edges of both split sub-partitions. To gain this implicitly stored
information of a sub-partition, we implemented separated
traversals of areas a, b and ¢ (see Fig. 13). The sub-partition
boundary edge types were also set to new to get the required
information pushed to the edge-communication stacks:

After the traversal of area a is finished and the data for
the adaptive-edge-communication-stacks was stored on the
adaptive-edge-communication-stack, the algorithm remembers
the number of elements on the left and right stack. Running
the next traversal for area b, the number of the elements
on the shared stack can be determined using the previous
information about the number of elements on communication
stacks after traversal of area a and the currently stored number
of elements on the stack. After executing the methods for area
¢, all information for the split- or join-operation can be finally
determined to set up the new ECL

J. Split and joins for parallelization with dynamic adaptivity

The determination of the split- and join-information is
implemented in the last adaptivity backward traversal to avoid
an additional traversal. Therefore also the information which
was described in Section III-I would be non-consistent since
this was determined with the assumption that the traversal
is executed on a static grid. When considering adaptivity,
adaptive refinement- or coarsening-information is stored to
adaptive-edge-communication-stacks if there is a refine- or
coarsening-operation concerning the edge. This information
is used to update the split/join information described in the
previous Section III-I to create the correct RLE ECI in case
of a split/join operation. To know where to split the structure-
and element-data-stacks, also the number of currently stored
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Sketch of the last backward traversal during the adaptivity pass. After the traversal, the refining and coarsening information on the left and right
adaptivity-edge-communication-stacks are used to update the left and right ECL

items on the element-data-stack has to be known after traversal
of b.

Updating the split/join information about the shared edges
has to be handled directly after b was processed (see Fig. 13).
Since the number of elements stored on the adaptive-edge-
communication-stacks represent only the state before the adap-
tivity, the number of adaptively changed elements on the
shared stack has to be determined immediately. Otherwise
the traversal of ¢ would modify this adaptivity information
to a possibly inconsistent state. By analyzing the respective
elements on the corresponding edge-communication-stack, the
counter for the shared edges is updated.

K. Updating ECI after split or join of adjacent sub-partitions

After split and/or join operations on adjacent sub-partitions
the local ECI has to be updated to match the newly gener-
ated or removed adjacent sub-partitions. To know whether
an adjacent sub-partition was split or joined with another
sub-partition, the adjacent sub-partition skeleton is extended
by a transfer-state-flag with the following possible values:
NO_TRANSFER is used to flag sub-partitions with no split/join
operation during the last time-step. A sub-partition node
which was split during the last time-step is flagged with
SPLIT_PARENT while SPLIT_CHILD is used for a child
which was created by a split operation. A node which was
created by a join operation is marked with JOINED_PARENT
and respectively JOINED_CHILD is used for a node which
was joined with its sibling.

Since a detailed description of all possible (split x join
x none) constellations would be out of the scope, only the
constellation with both adjacent sub-partitions being split is
further explained. Each child which was created by a split
operation in the sub-partition tree looks up the adjacent sub-
partitions RLE ECI using the sub-partition ID of its parent
node. This is important since the adjacent sub-partition has
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Separate execution of recursion methods A, B and C to determine elements stored on right, left and shared stack. Since this is integrated in the last

backward traversal of the adaptivity pass, the left and right stacks are exchanged and given in forward notation.

no knowledge about the adjacent split operation. With the
adjacent transfer state set to SPLIT_PARENT, the adjacent
sub-partition was split as well. This requires assembly of the
new local ECI by looking up the ECI of both newly created
adjacent children. The traversal order of both children plays
a crucial role: depending on whether the first child in SFC
order searches for the corresponding communication partner
or the second child, the adjacent sub-partition tree has to be
traversed in reversed order while updating the ECIL

IV. RESULTS

We tested our implementation on 2 different shared-memory
platforms. Platform AMD contains 4 AMD Opteron 6276
processors with 8 Bulldozer modules per CPU (16 threads)
and platform Intel has 4 Intel Xeon CPUs (E7-4850@2.00GHz
with 10 cores per CPU / 20 threads per CPUs). For our model
we used a 1% order DG method with the flux being com-
puted using the local Lax-Friedrich flux (Rusanov’s method)
approximation.

Our simulation setup is as follows: A flat sea-ground
300 meters below the sea surface is used with a domain
length of 5000 m. Up to 8 levels of refinements are allowed
with the refinement/coarsening triggered respectively with the
surface above/below 300.02/300.01 meter leading to a highly
adaptive behavior. We used two triangles setting up a square
sized domain centered at the origin. The initial grid-resolution
is given by d representing the initial adaptive passes forcing
refinement operations on all triangle-cells. Thus 24+ triangle-
cells are set up during grid-initialization for the square sized
domain. The initial radial dam is centered at (—1250 m,
1000 m), a radius of 250 m and its surface to be 301 meter
above the ground (see Fig. 9). The sub-partition join-threshold
is set to be the half of the split-threshold. Two sub-partitions
sharing the same parent and undershooting the join-threshold
with their number of grid-triangles are joined. Performance
results are given in “Million Triangles Per Second” (MTPS).
The number of triangles during the simulation for this scenario
varies over time and is given in Fig. 14.

A. Optimal splitting size

Choosing specific splitting sizes — at which number of grid-
triangles the sub-partition has to be split — has influence on the
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Fig. 14. Triangle distribution for different initial domain resolution.

scalability and performance. Therefore we give an overview of
the relationship between the splitting size and the impact to the
overall runtime. By decreasing the sub-partition size a better
load-balancing is achieved in average. However this would
also lead to more sub-partitions increasing the number of
tasks and thus the overall task execution overhead. Since more
sub-partitions are created, also the overhead of exchange of
additional edge-communication data is increased. The overall
cache efficiency is also reduced by running operations on
several sub-partitions which are not stored in SFCs across sub-
partitions.

Performance charts for a simulation running on platform
Intel using different splitting sizes and problem sizes are given
in Fig. 15. For simulations running on a domain with higher
number of grid-cells, the performance is increased in average
for increasing the splitting size.

B. Parallelization overhead

To test the parallelization overhead, we ran 7 different
benchmarks (Fig. 16). The simulation parameters were set
to the same as for the square sized benchmark but with the
rightmost triangle removed. Thus the domain is set up only
by a single root triangle to allow a serial execution on one
sub-partition. An initial depth of d represents 2¢ initial grid
triangle cells. The MTPS of this benchmark were divided by
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is set up with a single domain triangle. A fixed splitting size for the sub-
partitions of 32768 was used.

the number of used threads for better comparison. The serial
version was executed on a single core only.

The Serial version represents the version with all paralleliza-
tion in the code disabled. The process was bound to run on
the first core on the first socket only.

The version Parallel, no splitting, one thread was executed
on a single core with sub-partition split threshold set to infinity
avoiding any splits to determine the generic overhead of the
additional layer. This version creates MTPS close to the non-
parallel version.

Furthermore we benchmarked the parallel version with a
splitting-size of 32768 running on different numbers of core.
Due to overheads described in Sec. IV-A an overhead is visibly
introduced to the parallel version with split sub-partitions.

Even if the sub-partition tree has to be traversed in the pre-
vious benchmark, there may be still no overhead for the task
creation included which is considered in the next benchmark
(Parallel, 2 threads). This benchmark was executed with 2
threads to force the creation of tasks including the overhead
instead of directly executing the task which is the case for
a single thread. Due to the splitting size which exceeds the
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number of grid cells in the domain, no parallelization speed-
up is obtained for 2 threads and such small problem sizes.

C. Strong scaling

Results for strong scaling of platform Intel are presented
in Fig. 17 and for platform AMD in Fig. 18. This simulation
was initialized with an initial refinement depth of 20 with
a maximum relative refinement depth of 8 for setup of the
radial dam-break scenario. 100 time-steps were computed with
19.0 Mio. grid cells processed in average per time-step.

Core-affinities were set for simulations marked with A/ or
A2. For Al, the threads were pinned linearly to the cores. For
platform Intel this pins the first 10 threads to the first 10 cores
of the CPU on socket 1, the next 10 threads to the CPU on
the 2nd socket, etc. Affinities for threads 41 to 80 are set in
the same way which utilizes the hyper-threading technology.

We implemented the parallelization using Threading Build-
ing Blocks? (TBB) tasks and OpenMP tasks.

For platform Intel, the scalability is increased by using TBB
without affinities and TBB A1 setting thread affinities. Pinning
the threads to cores with the A2 scheme uses the same cores for

2threadingbuildingblocks.org



threads 1 to 20 as for hyperthreaded threads 21 to 40 (TBB A2).
Therefore the scalability decreases for the simulation utilizing
threads 21 to 40 and thus hyperthreaded cores, increasing again
for threads 41 to 60 and decreasing for threads 61 and 80.

Another parallelization was implemented by using OpenMP
tasks with the untied clause for each sub-partition tree node
(see Sec. III-B). Due to known issues for OpenMP task
constructs (see e. g. [24]), the scalability is not as good for
unbalanced trees as by using TBB for parallelization.

For platform AMD scalability graph could be obtained simi-
lar to the platform Intel comparing only the non-hyperthreaded
scalability graphs. Also the break in the scalability graph at
the half of the maximum number of threads for TBB A2 is also
visible for this pinning scheme due to the shared floating-point
units for 2 particular cores in this architecture.

V. SUMMARY AND OUTLOOK

In this work we presented a new SFC-based parallelization
approach for shared memory systems. Compared to existing
SEC splitting approaches, massive splitting provides an alter-
native for parallelization on shared-memory architectures.

Since all sub-partitions simply represent clusters, an exten-
sion to cluster-based local-time-stepping methods is part of our
ongoing work. Also skipping adaptive traversals for already
consistent sub-partitions is expected to improve the run-time.

Further improvements are expected to be achieved by
NUMA aware allocation of memory, improved task execution
using thread affinities and NUMA aware execution of those
tasks. For improved scheduling, a priorization of tasks based
on the computational workload on the sub-partition and other
ways to split the domain are further assumed to reduce the
CPU idle time. Also the utilization of SIMD commands
to evaluate fluxes and element data operations for several
triangle-cells is one of the most challenging parts for fully-
adaptive grids. Since all accesses to adjacent partitions are ex-
ecuted in a read-only manner, also an extension to distributed
memory systems using MPI is part of our ongoing research.

Since there are many ways to implement the presented
algorithm and to allow a reproducibility of our results, a
publication of source-code seems to be mandatory. Therefore
we released the source-code on http://wwwb.in.tum.de/sierpi/
with version 2012-05-14 being the basis of this paper.
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