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Abstract—In the field of scientific computing, load balancing
is a major issue that determines the performance of parallel
applications. Nowadays, simulations of real-life problems are
becoming more and more complex, involving numerous coupled
codes, representing different models. In this context, reaching
high performance can be a great challenge. In this paper, we
present graph partitioning techniques, called co-partitioning, that
address the problem of load balancing for two coupled codes:
the key idea is to perform a “coupling-aware” partitioning,
instead of partitioning these codes independently, as it is usually
done. Finally, we present a preliminary experimental study which
compares our methods against the usual approach.

I. INTRODUCTION

One of the key issues in the field of scientific computing

is the load balancing for distributed computing, which highly

determines the performance of parallel programs. A general

strategy is to apply a static balancing algorithm before running

the parallel program, that equilibrates the computational load

among the available processors.

Graph theory can be used to solve the problem of load

balancing, with graph partitioning [1]. More precisely, each

vertex of the graph represents a basic computational task of

the program (related to a mesh element) and has a weight

proportional to the task’s cost. Besides, each edge represents

a dependency in calculations between two tasks assigned on

different processors and has a weight proportional to the

communication costs between the processors.

In order to balance the load among N processors, one

performs a graph partitioning in N parts, each part being

assigned to a processor. The main objective of graph partition-

ing is to divide the given graph into N smaller parts (vertex

subsets), such that they have roughly equal computational

loads, and a minimal number of edges cut between them. Thus,

graph partitioning appears as a fundamental technique for

parallelization, that offers high performance by substantially

minimizing the total execution time. Unfortunately, graph

partitioning is known to be NP-hard [2], so finding a partition

of a given graph is usually based on heuristic techniques

or approximating algorithms. Integrated software for graph

partitioning exist, such as Metis [3], Jostle [4], Kahip [5] or

Scotch [6].

Another crucial issue rising in scientific computing nowa-

days is that numerical simulations are mixing several models

that represent different physics or scales (multiphysics and

multiscale models). Here, the key idea is to reuse available

legacy codes through a coupling framework instead of merging

them into a standalone application. For instance, the simulation

of the earth’s climate system typically includes coupled in-

teractions between four geophysical components (atmosphere,

ocean, land, and sea-ice) [7]. Other examples of applications

emerge in the field of aeronautic propulsion where the behavior

of hot components is impacted by complex interactions be-

tween different physics such as turbulent combustion, radiation

and heat conduction. To predict such thermal environments,

coupling of these different heat transfer models (combustion,

radiation and conduction) is necessary [8]. Combining such

different models in massively parallel computations, is still a

challenge to reach high performance and scalability. In this

context, the load balancing of the overall coupled simulation

remains an open question.

In order to solve the load balancing problem for complex,

multiphysics or multiscale applications, we use the coupled

model definition proposed in [9], that describes the general

execution of coupled codes. A coupled model consists of

a number of component models (or components), that may

interact periodically with each other, throughout the coupled

simulation, using a coupling framework like for instance

CCSM/CESM [7], OASIS [10] or OpenPALM [11]. A com-

ponent A represents a model that solves an individual system

defined in a computational domain ΓA. Two components

A,B interact, and thus are coupled when parts or their

entire domains overlap, imposing data dependencies on their

models. The overlapping creates a common coupling interface

ΩAB = ΓA ∩ ΓB . An example of a 3D coupling interface is

given in Figure 1.

Fig. 1: Example of coupling interface for two rectangular computa-
tional domains.

The general model of a coupled simulation with two com-

ponents is shown in Figure 2. As one can see, a coupled model

evolves iteratively in time, entering a sequence of regular and

coupling phases. A regular phase occurs when each component



computes solutions independently, on its own computational

domain. The number of processors assigned to A and B in

the regular phase is NA and NB respectively. During a regular

phase, each component model uses a different time and space

discretization, so the number of iterations performed by each

solver may vary, that is kA 6= kB . That usually leads to

differences in execution time between components at the end

of the regular phase, noted as Tidle in the figure. It indicates

the time the fastest component has to wait until it enters a

coupling phase. On the other hand, a coupling phase occurs

when components interact with each other, exchanging data on

the coupling interface ΩAB . Additionally, during this phase the

coupling framework drives the overall application, ensuring

synchronization among the components, locating data through

partitioned geometries and performing the interpolation step

between different meshes. Note that the number of active

processors for each component during the coupling phase is

often lower, namely N cpl
A ≤ NA and N cpl

B ≤ NB . These are

the processors of each component that own data on ΩAB .

Fig. 2: General model of a complex simulation with two coupled
components A and B.

In order to minimize the execution time of a coupled

application, we identify two important subproblems:

i) The resource distribution problem: Here, the problem is

to find a good distribution of the total number of available

processors among the components, in order to minimize

Tidle. The main idea is to assign less processor resources

to the fastest component following an empiric approach

based on performance studies [12]. That way, the time

the fastest component waits before entering a coupling

phase is minimized.

ii) The data distribution problem: Assuming the number of

processors have been selected for each component (by

solving the previous problem), we aim to find a good

data distribution in order to minimize the total execution

time, both in the regular phase and in the coupling phase.

In this paper, we mainly focus on the data distribution

problem, assuming the number of processors NA and NB

for each component is given. Thus, the motivation behind

this paper is to solve the load balancing problem using graph

partitioning techniques for the whole coupled application and

not only for each standalone model. Therefore we propose

graph partitioning algorithms that take into consideration the

coupling phase and perform a coupling-aware partitioning of

the whole application; we call them co-partitioning.

In section II we present related work on the load balancing

problem of coupled applications. Then, in section III we

describe the co-partitioning algorithms and in section IV we

present some experimental results, comparing our methods

with the state-of-the-art approach. Finally, in section V we

state the conclusion of our research and our future work.

II. RELATED WORK

The static load balancing problem of a meshed-based ap-

plication involves dividing the mesh into subdomains at the

beginning of the execution and assign them over a set of pro-

cessors in a distributed environment, so that each processor has

about the same amount of computation and the communication

costs are minimized.

A great variety of methods that address the static load

balancing problem exists in literature, mainly based on graph

model. A popular graph partitioning algorithm is the multilevel

K-way graph partitioning [13], [14]. The multilevel paradigm

consists of three phases: i) coarsening phase, ii) initial parti-

tioning phase, iii) uncoarsening phase. During the coarsening

phase, a sequence of successively coarser graphs is constructed

from the original one, collapsing vertices using edge matching.

In the initial partitioning phase, a direct K-way partition of the

coarsest graph is computed, using a conventional partitioning

algorithm, like recursive bisection (RB) [15], or K-way greedy

graph growing (KGGGP) [16]. Finally, during the uncoarsen-

ing phase, the partition of the coarsest graph is projected back

and refined using FM-like algorithms [17], until the original

graph.

Although the classic load-balancing problem of a standalone

simulation is well studied, as far as we know, there are little

work that attempt to solve the load-balancing problem on

coupled applications. Nevertheless, some interesting, related

studies exist and we briefly review them here.

A similar problem to the one we study is the multi-phase

mesh partitioning problem. Multi-phase computations consist

of several distinct computational phases, each separated by

an explicit synchronization step. In this context, one must

partition the mesh such that the computation in each phase

is balanced, and the communication cost among processors

in each phase is minimized. Methods that solve this problem

use the multi-constraint partitioning paradigm [18], [19]. At

first glance, one could consider the co-partitioning problem as

several multi-phase problems, each one representing a different

component. However this simple representation is not correct,

since it does not include the coupling communications between

components which indicates dependencies among the multi-

phase problems. Moreover, this approach imposes the use



of all available processors in the coupling phase, that could

degrade the global edgecut especially if the coupling interface

is small compared to the whole computation domain.

An example of a multiphysics problem is the optimization

of gas turbines, as studied in [12]. To improve the results of

the standalone simulations that are currently used to optimize

gas turbines, they introduce a scalable conjugate heat transfer

simulation by coupling a computational fluid dynamics (CFD)

code with a thermal conduction simulation. Following a case

study, they accelerate the thermal solver by assigning more

processors to it, compared to the fluid one. Moreover, they

propose a fully distributed coupling methodology in order to

manage data transfer, data interpolation and synchronization

between different components. Indeed, their results indicate

that massively parallel simulations (i.e., until 100000 cores)

can be coupled through this framework, without severely

damaging the performance of the models.

As we mentioned before, climate modeling is another typ-

ical example of coupled simulations which involves several

interacting components for atmosphere, oceans, land, and sea-

ice. An example of a flexible coupling strategy for the climate

model, along with a new coupler (CCSM4) is presented in [7],

[20]. The coupler contains a top level driver that calls model

components and coordinates their time sequence to provide

greater flexibility in processor layouts. More precisely, the

coupler dynamically adapts the number of processors that will

be assigned to each component, by iteratively improve the

processors’ layout, until the time execution of all components

is almost equal. Typically, the tunning step only needs a few

runs to produce a good configuration with relative small idle

time.

Despite the performance gains obtained by the above stud-

ies, it mainly addresses the resource distribution problem and

not the data distribution problem we focus on. In this paper,

we investigate new techniques to overcome the load balancing

issues of coupled simulations. Thus, we present new graph

partitioning algorithms that are aware of the coupling process,

in order to minimize the overall execution time.

III. ALGORITHM

In this section, we first give some background definitions

and a formal statement of the co-partitioning problem. Then

we introduce some graph operators based upon which we

describe our co-partitioning algorithms, called AWARE and

PROJREPART, and the NAIVE method used as the state-of-

the-art solution.

A. Background definitions

Consider a graph G = (V,E) where V is the set of vertices

and E is the set of edges. Each vertex u ∈ V has a weight

w(u) representing the computational load at each processor,

while each edge e ∈ E has a weight w(e) representing

the communication cost between different processors. P =
(V1, V2, . . . , VK) is a K-way partition of G if the following

conditions hold: each part Vk, 1 ≤ k ≤ K is a non empty

subset of V , parts are pairwise disjoint (Vk ∩ Vl = ∅ for all

1 ≤ k, l ≤ K) and union of K parts is equal to V . Given

a vertex v mapped to the part Vk, one notes P [v] = k its

part number. A partition is said to be balanced if each part Vk

satisfies the balance criterion:

Wk ≤ Wavg(1 + ǫ) for k = 1, . . . ,K. (1)

In 1, weight Wk of part Vk is defined as the sum of the

weights of vertices in that part. Wavg =
∑

ui∈V w(ui)/K
represents the weight of each part in G under the perfect

load balance, and ǫ denotes the maximum imbalance tolerance

allowed. A typical imbalance tolerance is ǫ = 5% of the ideal

weight. The edgecut of a partition is said to be the weight of

all edges whose pair of vertices belong to two different parts.

The edgecut definition for representing the cost of a partition

is
∑

e∈F
(w(e)), where F = {(a, b) ∈ E, a ∈ Vi∧b ∈ Vj∧i 6=

j}. This classical edgecut metric is known to approximate the

total communication volume [21].

Hence, the graph partitioning problem can be defined as the

task of dividing a graph into a number of parts in a way that

the edgecut is minimized while the balance criterion 1 for all

parts is maintained.

Fig. 3: Example of a global graph GAB based on two graphs GA

and GB and interedges IAB (in dashed red), showing the coupled

subgraphs G
cpl
A and G

cpl
B (circled in blue).

B. The co-partitioning problem

In the case of coupled models, where more than one compo-

nent model is involved, we propose to enrich the classic graph

model to take into account the coupling phase of the simulation

explicitly. For reasons of simplicity in the remainder of the

paper, we assume that only two models are involved in the

coupled simulation, though this can clearly be extended to a

larger number of components. Subscript letters A,B represent

component models, while the exponent notation cpl denotes

the coupling phase.

Let us consider that each individual component involved

in the simulation, is represented by a graph, that is GA =
(VA, EA) for model A and GB = (VB , EB) for B. As shown

in Figure 3, we represent the coupled models with the global

graph, GAB = (VA∪VB , EA∪EB∪IAB), where IAB is the set

of weighted edges that interconnect some vertices of VA and

VB . We call those edges interedges1 (as they connect vertices

1In other words, the interedges IAB just represent a binary relation from
VA to VB .



from different graphs), and they represent the communication

costs of exchanging data that belong to different components

during the coupling phase. In practice, these interedges are

located thanks to geometric intersection between mesh cells

of A and B.

Moreover, we can define the coupled graph Gcpl
AB as the

subgraph of GAB whose vertex set includes only vertices that

are interedge endpoints. Likewise we can obtain the coupled

subgraphs Gcpl
A and Gcpl

B from GA and GB respectively.

In this context, we aim to find a partitioning of the global

graph that is aware of the coupling subgraph. We call this

problem the co-partitioning problem. More precisely, a K-

way partition PAB of the global graph GAB is said to be

a (NA, NB , N
cpl
A , N cpl

B )-way co-partition, if the following

conditions hold:

• PA is a NA-way balanced partition of GA,

• PB is a NB-way balanced partition of GB ,

• P cpl
A is a N cpl

A -way balanced partition of Gcpl
A ,

• P cpl
B is a N cpl

B -way balanced partition of Gcpl
B ,

• PAB = PA ∪ PB ,

• K = NA +NB ,

• N cpl
A ≤ NA and N cpl

B ≤ NB .

Following the above definition, we expect that such a co-

partition will provide a good load balancing for both the

regular phase and the coupling phase, and for both components

A and B, since it explicitly finds a partition for the graphs

that participate in the regular phase (GA and GB) and their

subgraphs in coupled phase (Gcpl
A and Gcpl

B ). As an additionnal

criterion, we aim to minimize the inter-component communi-

cation cost (represented by the weighted interedges), which

implies to minimize the total number of messages (totZ) and

the total volume of data exchanged (totV ) during the coupling

phase.

Fig. 4: Example of (4, 3, 2, 3)-way co-partition of GAB .

Figure 4 depicts a (4, 3, 2, 3)-way co-partition. Assuming all

vertex/edge weights are 1, we see that the balance criterion

is perfectly respected in the regular phase for both PA and

PB (NA = 4 and NB = 3), with an edgecut respectively

equal to 8 and 12. As for the coupling phase (red vertices),

P cpl
A and P cpl

B are perfectly balanced as well (N cpl
A = 2 and

N cpl
B = 3), with an edgecut equal to 1 and 2 respectively.

Considering the coupling communication, Vtot = 4 and Ztot =
4, such that we have the following processor pairs implied:

(2, 5), (2, 6), (4, 6), (4, 7).

C. Graph operators

Subsequently, we describe in details the basic steps of

the proposed algorithms. To facilitate this description, we

introduce some graph operators that produce new graph struc-

tures or partitions. Namely, we use the following operators:

partition, repartition, restriction, extension and projection.

a) Partition: First, we define the partition operator as

Part(G,K) → P which simply returns a K-way balanced

partition of the graph G (with respect to an imbalance toler-

ance ǫ).
b) Repartition: Then, the repartition operator is defined

as Repart(G,P,M,N) → P ′. This operator computes a new

N -way balanced partition of a graph G using a former (possi-

bly unbalanced) M -way partition of the same graph, such that

the migration volume is minimized as an additional criterion.

This repartition operator uses the M ×N repartitioning algo-

rithm presented in [22], that contrarily to classic repartitioning

algorithms (scratch-remap [23], diffusion [24], [25] or biased

partitioning [26], [27]) enables to change the target number

of parts (i.e., N 6= M ). The M ×N repartitioning algorithm

constructs, with a greedy strategy, a good migration matrix2 C,

that minimizes both the total migration volume (totV ) and the

total number of messages exchanged during migration (totZ).

Then it performs a biased partitioning of the graph G, enriched

with N additional fixed vertices3 connected to the M former

parts based on the migration matrix C (Fig. 5). More details

on this operator and its implementation can be found in [28],

[22].

c) Restriction: The restriction operator can be expressed

as Rest(G, V ′) → G′, and returns a subgraph G′, that is the

restriction of G = (V,E) to vertex set V ′ ⊂ V . Given the

interedges IAB and the graph GA, we will use this operator to

compute the coupled subgraph Gcpl
A as Rest(GA, Dom(IAB))

where Dom(IAB) = {ua ∈ VA, (ua, ub) ∈ IAB} is the

departure domain of IAB . The Figure 6 illustrates this operator

on two cubic meshes with a surface coupling.

d) Extension: Next, we define the extension operator

Ext(G,G′, P ′,K, L) → P , which returns a L-way partition

of a graph G using a given K-way partition P ′ of a subgraph

G′ ⊂ G, where L ≥ K. The idea behind this operator is to

extend a given partition P cpl
A of the coupled subgraph Gcpl

A

to the graph GA, such that vertices already assigned to a part

in P cpl
A remain fixed in the new partition PA, as shown in

Figure 7. This method is trivially implemented by using a

partitioning routine that handle fixed vertices.

e) Projection: Finally, we define the projection operator,

Proj(G,G′, I, P,K) → P ′, that finds a K-way partition of

a graph G′, using a given K-way partition of a graph G and

the interedges I ⊂ V × V ′, with G = (V,E) and G′ =
(V ′, E′). The key idea of the projection operator is to compute

a similar partition of G on G′ using the relation provided by

2A migration matrix C = (Ci,j) of dimension M × N represents the
amount of data that migrates from a former part i to a newer part j (if i 6= j)
or the amount of data that remains in place (if i = j).

3When computing a partition, fixed vertices are those previously assigned
to a given part, while regular vertices are free to be assigned in any parts.



P (unbalanced) C

G̃ P ′

Fig. 5: Sample of a 5× 7 repartitioning of a 2D grid of dimensions
10× 10. The migration matrix C explains how vertices will migrate
from the 5 former parts to the 7 newer. It is chosen to minimize

both totZ and totV . On the enriched graph G̃, the square vertices
represents the N fixed vertices, connected to former parts according
to C. The final partition obtained is well balanced and respects the
communication scheme imposed by C.

Fig. 6: Overview of the surface coupling between two mesh

domains A (left) and B (right) showing the restriction to the

coupled subdomains (in red) and interedges between cells. It

corresponds to the exp3 test case described in section IV.

interedges I , that map vertices from V to V ′. More precisely,

lets consider a vertex u′ ∈ V ′ and the vertex set S(u′) = {u ∈
V, (u, u′) ∈ I}. In the case where all the vertices of S(u′) are

mapped to the same part p in P , then u′ is trivially assigned

to this part p in P ′. In the case where the vertices of S(u′) are

mapped to different parts, the situation is ambiguous, and one

must select a part for u′ according to a second criterion, like

the edgecut optimization. In practice, this operator is used to

compute a similar partition between the two coupled subgraphs

Gcpl
A and Gcpl

B , connected through interedges IAB , as shown in

Figure 8. In this example, the projection is trivial for interedges

(a, e) and (d, g), that are respectively mapped to part 1 and

2. But, it is clearly ambiguous for vertex f , that is shared by

Fig. 7: Given the N
cpl
A -way partition P

cpl
A of G

cpl
A (in red), the

extension operator computes a NA-way partition PA of GA (in blue),

with N
cpl
A = 2 and NA = 4.

interedges (b, f) and (c, f), since b and c are already mapped

to different parts. As the edgecut criterion in Gcpl
AB gives the

same result for this vertex, one chooses randomly to assign f
in part 1.

To implement this operation, we just perform a graph

partitioning of Gcpl
AB in K parts, such that all vertex weights

are set to zero (i.e., no balance constraint) and such that all

vertices of Gcpl
A are fixed to their own part according to P cpl

A .

As an optimization, one collapses all vertices of Gcpl
A into K

fixed super-vertices that represent each part. By minimizing

the edgecut of such an enriched graph, the partitoning routine

will compute the desired projection (possibly unbalanced).

Fig. 8: Illustration of the projection operator on the graph G
cpl
AB .

Given the N
cpl
A -way partition P

cpl
A (in blue), one aims to find a

N
cpl
A -way partition of G

cpl
B (in dashed blue), with K = N

cpl
A = 2.

D. Co-partitioning algorithms

We will now present our co-partitioning algorithms, called

AWARE and PROJREPART, and the NAIVE method used as

the state-of-the-art solution. All these algorithms are precisely

described as a sequence of the graph operators previously

defined.

For these algorithms, we use as an input the graphs GA and

GB , the interedges IAB (or I−1

AB = IBA) and the number of

processors NA and NB used for both components. Besides, as

we do not address the problem of resource distribution (intro-

duced in section I), we assume that the number of processors

used in the coupling phase for both components (i.e., N cpl
A

and N cpl
B ) are also provided as an input). Nevertheless, in

section IV, we will give a simple heuristic to compute these



inputs. All our algorithms solve the co-partitioning problem

(defined in Sec. III-B) and compute the output partitions PA

and PB , such that PAB = PA ∪ PB .

Let us now give some explanations about our three co-

partitioning algorithms:

a) NAIVE: As described in Figure 10, the NAIVE method

just computes a partition for each graph (GA and GB) inde-

pendently, without taking into account the interedges, as it is

currently done in complex coupled simulations. This simple

algorithm is clearly not aware of the coupling phase. It will

be used as a standard to compare against other methods in the

experimental study (Sec. IV). In this method, the parameters

N cpl
A and N cpl

B are not managed, and the coupled partitions

P cpl
A and P cpl

B are not controlled.

b) AWARE: This method is divided in 3 main steps,

symmetrically applied to graphs GA and GB (Fig. 11). It starts

by computing the coupled subgraphs (Gcpl
A and Gcpl

B ) based

on the interedges, using the restriction operator. Then, one

partitions each subgraph independently into N cpl
A and N cpl

B

parts respectively. Finally, the obtained partitions are stretched

to the global graphs using the extension operator.

c) PROJREPART: This method works exactly as the

AWARE method, except it replaces the “naive” partition of

Gcpl
B by the projection & repartition steps (Fig. 12). Here,

the key idea is to improve the communication scheme during

the coupling phase, by minimizing both the amount of data

exchanged (totV ) and the number of messages (totZ). First,

the projection operator tries to keep the parts of P cpl
A face-

to-face with those of P̃ cpl
B (Fig. 9a and 9b). Then, the

repartitioning operator computes the partition P cpl
B in a way

to maintain totV and totZ quite low (Fig. 9c). In practice, it

injects the newer parts (in the case where N cpl
A < N cpl

B ) and

tries to keep the former ones in place as far as it is possible.

Finally, we extend the partitions obtained for Gcpl
A and Gcpl

B

to the global graph as we do also in AWARE. Note that in the

case where N cpl
A = N cpl

B , the repartition step is still required,

because the projection operator possibly gives an unbalanced

partition.

Our algorithms can be implemented with any graph parti-

tioning software that supports fixed vertices. Nevertheless, and

as far as we know, this feature is not available in classic tools

like Metis or Jostle, but only in Scotch4. As explained in [29],

it is better to use multilevel direct K-way (MLKW) partitioning

instead of multilevel recursive bisection (MLRB) to manage

fixed vertices. Moreover, for similar reasons, the initial par-

titioning of the coarsest graph should not use the recursive

bisection paradigm (see Sec. 4.1.2 and Sec. 4.2.5 in [30]). As a

consequence, we decide to develop our own paritioning routine

called KGGGPML (multilevel K-way greedy graph growing

partitioning) method, that extends some existing work [16]. As

a reminder, the complexity of our algorithms is dominated by

the partitioning routine, known to be O(log k.|E|) for MLRB

and O(k.|E|) for MLKW, improved to O(|E|) in [31].

4Note that some hypergraph partitioning software like Patoh, HMetis or
Zoltan handle fixed vertices as it is useful for classic VLSI applications.

Inputs: GA, GB , NA, NB

Outputs: PA, PB

i) Part(GA, NA) → PA

ii) Part(GB , NB) → PB

Fig. 10: Description of the NAIVE co-partitioning algorithm.

Inputs: GA, GB , IAB , NA, NB , N
cpl
A , N

cpl
B

Outputs: PA, PB

i) Rest(GA, Dom(IAB)) → G
cpl
A

ii) Rest(GB , Dom(I−1

AB)) → G
cpl
B

iii) Part(Gcpl
A , N

cpl
A ) → P

cpl
A

iv) Part(Gcpl
B , N

cpl
B ) → P

cpl
B

v) Ext(GA, G
cpl
A , P

cpl
A , N

cpl
A , NA) → PA

vi) Ext(GB , G
cpl
B , P

cpl
B , N

cpl
B , NB) → PB

Fig. 11: Description of the AWARE co-partitioning algorithm.

Inputs: GA, GB , IAB , NA, NB , N
cpl
A , N

cpl
B

Outputs: PA, PB

i) Rest(GA, Dom(IAB)) → G
cpl
A

ii) Rest(GB , Dom(I−1

AB)) → G
cpl
B

iii) Part(Gcpl
A , N

cpl
A ) → P

cpl
A

iv) Proj(Gcpl
A , G

cpl
B , IAB , P

cpl
A , N

cpl
A ) → P̃

cpl
B

v) Repart(Gcpl
B , P̃

cpl
B , N

cpl
A , N

cpl
B ) → P

cpl
B

vi) Ext(GA, G
cpl
A , P

cpl
A , N

cpl
A , NA) → PA

vii) Ext(GB , G
cpl
B , P

cpl
B , N

cpl
B , NB) → PB

Fig. 12: Description of the PROJREPART co-partitioning algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we present some experimental results on

synthetically generated problems for the co-partitioning algo-

rithms presented above. Note that we consider the NAIVE al-

gorithm as the usual method to partition coupled applications,

so we use it as a reference, in order to evaluate the quality of

AWARE and PROJREPART algorithms.

In the following experiments, all algorithms are imple-

mented thanks to the KGGGPML partitioning routine5 as

explained before. In all experiments, one uses exactly the same

partitioning parameters (coarsening, refinement, etc.) with an

imbalance factor set to 5%.

In the experiments we use synthetically generated graphs,

whose characteristics are described in Table I. The coupling

that we perform in these experiments is a simple surface

coupling between two cubic domains, using hexaedral or

tetrahedral mesh discretization as shown in Figure 6. Besides,

one assumes that all graphs have vertex/edge weigth of 1.

In the remainder of this section, we present the results of

5The code is publicly available in the LBC2 library on http://gforge.inria.
fr/projects/mpicpl.



(a) Partition of G
cpl
A

in N
cpl
A

= 2. (b) Projection to G
cpl
B

. (c) Repartition of G
cpl
B

in N
cpl
B

= 3.

(d) Overview of partitions for GA (left) and GB (right) after extension (NA = 4 and
NB = 6).

Fig. 9: Example of the PROJREPART co-partitioning for a test case similar to exp3 (see Sec. IV).

four experiments, named exp1, exp2, exp3 and exp4, as

illustrated in Table II. We repeat each experiment 5 times in

order to compute average values for all our metrics. In all our

experiments we keep the number of processors for A fixed to

16, while the number of processors for B takes values from

the range [16− 128].

Due to the difference of mesh discretization between A and

B, the problem of minimizing the communication costs in

the coupling interface is more complex for exp3 and exp4

than for exp1 or exp2. Indeed, for exp1 and exp2, we

use similar mesh discretization (with hexaedral elements well

aligned), unlike for exp3 or exp4 where we use misaligned

elements (hexaedral or tetraedral). In Figure 13, we illustrate

two examples of mesh alignment in the coupling interface and

we show the number of messages that need to be exchanged

in each case. In 13a, there is an exact correspondence of

one element in mesh A to several elements in mesh B, like

for exp1. On the contrary, in 13b, a bad alignment between

the two meshes creates possible additional small messages,

denoted with the dashed lines, like for exp3 or exp4.

Besides, we should mention that NAIVE algorithm does not

control the values of N cpl
A and N cpl

B , since it is not aware of

the coupling phase at all. This is why these values are not

integer in the different tables. On the other hand, AWARE and

PROJREPART algorithms use a simple heuristic to calculate

N cpl
A and N cpl

B . The idea behind that is to find a proportion of

the initial number of processors and assign it to the coupled

subgraph, equal to the geometrical ratio between the coupling

surface and the whole cubic domain, i.e., N cpl
X =

⌊

NX
2/3

⌋

.

However, the values of N cpl
A , N cpl

B computed for AWARE and

PROJREPART algorithms in our experiments are quite similar

to the ones obtained by NAIVE methods, allowing us to fairly

compare the three algorithms on the partitioning quality.

TABLE I: Description of the graphs used in the experiments.

Graph Elements |V | |E|
cube-hexa-25x25x25 hexa 15 625 45 000
cube-hexa-70x70x70 hexa 343 000 1 014 300
cube-hexa-100x100x100 hexa 1 000 000 2 970 000
cube-tetra-40630 tetra 40 630 78 131
cube-tetra-486719 tetra 486 719 953 488

TABLE II: Description of the experiments.

Exp. Graph A Graph B

exp1 cube-hexa-25x25x25 cube-hexa-100x100x100

exp2 cube-hexa-25x25x25 cube-hexa-70x70x70

exp3 cube-tetra-40630 cube-hexa-100x100x100

exp4 cube-tetra-40630 cube-tetra-486719

To measure the overall partitioning quality, we initially com-

pare our algorithms against the main objectives of partitioning,

that are the global edgecut and partition imbalance for graphs

GA and GB . In our results, they are denoted as cutA, cutB and



mesh A mesh B

(a) Good mesh alignment

mesh A mesh B

(b) Bad mesh alignment

Fig. 13: Examples of different mesh alignment in the coupling
interface.

ubA, ubB respectively. In order to measure the co-partitioning

quality, we introduce here some additional metrics that give

us an insight on the quality of the partitioning during the

coupling phase. Thus, two obvious yet important metrics in

this context are the edgecut and the partition imbalance of the

coupled subgraphs Gcpl
A and Gcpl

B , denoted as cutcplA , cutcplB

and ubcplA , ubcplB respectively. Finally we are interested in

measuring the communication costs between the two graphs

during the coupling phase, so we also compare our results

against totV (total volume of data exchanged) and totZ (total

number of messages).

Following, we make some comments on the results of all

four experiments, depicted in Tables III, IV, V and VI. A quite

obvious but still important remark is that all algorithms respect

the global balance constraint for both meshes, ubA, ubB . On

the other hand as expected, NAIVE algorithm fails to balance

the computational load during the coupling phase whereas

AWARE and PROJREPART give a good load balance for both

subgraphs, (ubcplA , ubcplB ). Remember that in the experiments

NA is fixed, and since the steps performed on graph A are

the same for AWARE and PROJREPART, we do not expect

any differences in their results for cutA, cut
cpl
A , ubA and ubcplA .

Obviously, as illustrated in the tables, their results on the above

metrics are the same. Note also that we do not compute the

values of cutcplA , cutcplB for the NAIVE algorithm since there is

no coupled subgraph involved in that method. In that case, we

use the AWARE algorithm as reference, because it performs

a simple partitioning of the coupled subgraph without other

constraints, and minimize this edgecut as a primary objective.

For PROJREPART, cutcplB reaches an acceptable overhead of

10-15% in most cases compared to AWARE. Finally, one can

see that in all experiments, the AWARE and PROJREPART

algorithms manage to maintain the edgecut of graph B, cutB ,

low relatively to the NAIVE algorithm, despite of the additional

constraints imposed by these algorithms (minimizing load

balance and communication costs during the coupling phase).

To draw conclusions on the results of totV and totZ, we

address each experiment separately. In Tables III and IV, the

results of exp1 and exp2 indicate that the PROJREPART

algorithm has always better results compared to AWARE and

NAIVE as it succeeds to minimize both totZ and totV
efficiently, due to good mesh alignment. In Tables V and VI,

we illustrate the results of exp3 and exp4 where the two

meshes A and B are strongly misaligned. Subsequently, the

PROJREPART algorithm fails to minimize totZ or totV , since

the projection step is much more complex. In this case, the

AWARE algorithm is clearly a better choice among all proposed

algorithms.

Finally, we present results on execution time (given in ms

in the last column of tables). In most cases, one can see that

the PROJREPART method is less than 5% slower compared

to NAIVE, while the AWARE method is roughly as fast as

NAIVE. We evaluate that our partitioning routine is about 10

times slower than kMetis and 2 times slower than Scotch on

the variety of graphs presented here, for a 128-way partition

of same quality. It is mainly due to the lack of optimization

of our K-way refinement routine, but it correctly handles fixed

vertices as required by our algorithm implementation.

V. CONCLUSION AND FUTURE WORK

In this paper, we initially give some formal definitions on the

co-partitioning problem, i.e., the load balancing problem for

coupled applications. We propose to enrich the classic graph

model with interedges, that represent the coupling phase of

component model interactions. Finally we present two new

algorithms, called AWARE and PROJREPART, and compare

them to the currently used approach (i.e., NAIVE). Both

AWARE and PROJREPART algorithms succeed to balance the

computational load in the coupling phase and in some cases

they succeed to reduce the coupling communications costs.

Surprisingly we notice that our algorithms do not degrade the

global graph edgecut, despite of the additional constraints that

they impose.

In future work, we aim to validate our results on real-life

cases in the field of aeronautic propulsion. In order to achieve

that, we plan to integrate our algorithms within the Scotch

framework. Finally, our algorithms should be implemented

in parallel and should be extended in order to manage more

complex applications with more than two interacting models.
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TABLE III: Experiment 1: results for mesh A (cube-hexa-25x25x25) and mesh B (cube-hexa-100x100x100).

EXP1 NA NB N
cpl
A N

cpl
B ubA ubB ub

cpl
A ub

cpl
B cutA cutB cut

cpl
A cut

cpl
B totV totZ time

NAIVE 16 16 6.80 7.80 4.71% 4.97% 37.95% 49.87% 3429 57078 – – 706 21.00 3903
AWARE 16 16 6 6 4.86% 5.00% 0.80% 4.46% 3454 55070 81 317 699 18.00 3910
PROJREPART 16 16 6 6 4.86% 4.82% 0.80% 0.80% 3454 56188 81 324 625 6.00 3799

NAIVE 16 24 6.80 9.40 4.71% 4.95% 37.95% 48.15% 3429 71292 – – 716 23.60 4559
AWARE 16 24 6 8 4.86% 5.00% 0.80% 4.96% 3454 71955 81 481 702 22.00 4479
PROJREPART 16 24 6 8 4.86% 4.99% 0.80% 4.70% 3454 67928 81 441 671 12.00 4588

NAIVE 16 32 6.80 11.00 4.71% 5.00% 37.95% 45.76% 3429 80198 – – 723 26.80 5134
AWARE 16 32 6 10 4.86% 5.00% 0.80% 5.00% 3454 78915 81 527 697 24.00 4615
PROJREPART 16 32 6 10 4.86% 5.00% 0.80% 3.72% 3454 80982 81 502 696 14.00 4924

NAIVE 16 48 6.80 15.20 4.71% 5.00% 37.95% 39.21% 3429 96605 – – 748 32.20 5520
AWARE 16 48 6 13 4.86% 5.00% 0.80% 4.91% 3454 97017 81 598 735 27.00 5430
PROJREPART 16 48 6 13 4.86% 4.99% 0.80% 4.78% 3454 97956 81 617 717 18.00 5545

NAIVE 16 64 6.80 17.60 4.71% 5.00% 37.95% 59.38% 3429 110148 – – 763 36.60 6369
AWARE 16 64 6 16 4.86% 5.00% 0.80% 4.96% 3454 109251 81 653 766 33.00 5782
PROJREPART 16 64 6 16 4.86% 5.00% 0.80% 4.93% 3454 110361 81 740 738 20.00 6289

NAIVE 16 96 6.80 23.80 4.71% 4.99% 37.95% 46.58% 3429 132728 – – 792 43.00 6925
AWARE 16 96 6 20 4.86% 4.99% 0.80% 5.00% 3454 133210 81 847 805 39.00 7384
PROJREPART 16 96 6 20 4.86% 4.99% 0.80% 5.00% 3454 132593 81 892 765 24.00 7647

NAIVE 16 128 6.80 29.80 4.71% 4.99% 37.95% 73.83% 3429 149464 – – 829 52.00 9040
AWARE 16 128 6 25 4.86% 4.99% 0.80% 5.00% 3454 147484 81 876 814 46.00 8298
PROJREPART 16 128 6 25 4.86% 4.99% 0.80% 5.00% 3454 150489 81 1077 793 30.00 9020

TABLE IV: Experiment 2: results for mesh A (cube-hexa-25x25x25) and mesh B (cube-hexa-70x70x70).

EXP2 NA NB N
cpl
A N

cpl
B ubA ubB ub

cpl
A ub

cpl
B cutA cutB cut

cpl
A cut

cpl
B totV totZ time

NAIVE 16 16 6.80 8.00 4.71% 4.96% 37.95% 46.67% 3429 27398 – – 723 21.60 1706
AWARE 16 16 6 6 4.86% 4.92% 0.80% 4.08% 3454 27212 81 237 712 18.00 1792
PROJREPART 16 16 6 6 4.86% 4.99% 0.80% 2.69% 3454 27381 81 226 699 18.80 1752

NAIVE 16 24 6.80 9.00 4.71% 4.99% 37.95% 38.21% 3429 33144 – – 728 24.00 1960
AWARE 16 24 6 8 4.86% 4.96% 0.80% 4.82% 3454 33633 81 302 734 21.00 2067
PROJREPART 16 24 6 8 4.86% 4.99% 0.80% 4.29% 3454 33257 81 303 727 21.60 2187

NAIVE 16 32 6.80 12.60 4.71% 4.98% 37.95% 48.69% 3429 38991 – – 754 28.60 2240
AWARE 16 32 6 10 4.86% 4.97% 0.80% 3.06% 3454 38723 81 351 750 23.00 2470
PROJREPART 16 32 6 10 4.86% 4.98% 0.80% 3.43% 3454 38738 81 344 741 23.00 2551

NAIVE 16 48 6.80 15.00 4.71% 4.98% 37.95% 56.76% 3429 47385 – – 782 33.20 2877
AWARE 16 48 6 13 4.86% 4.98% 0.80% 4.53% 3454 47358 81 422 775 29.00 3032
PROJREPART 16 48 6 13 4.86% 4.98% 0.80% 4.42% 3454 47727 81 438 775 27.00 2814

NAIVE 16 64 6.80 17.60 4.71% 4.97% 37.95% 46.97% 3429 53314 – – 801 37.20 3256
AWARE 16 64 6 16 4.86% 4.97% 0.80% 4.82% 3454 53756 81 479 799 34.00 3365
PROJREPART 16 64 6 16 4.86% 4.97% 0.80% 4.82% 3454 54973 81 533 815 32.00 3156

NAIVE 16 96 6.80 22.60 4.71% 4.96% 37.95% 50.20% 3429 64448 – – 837 42.20 3693
AWARE 16 96 6 20 4.86% 4.96% 0.80% 4.90% 3454 64088 81 569 836 42.00 3817
PROJREPART 16 96 6 20 4.86% 4.96% 0.80% 4.90% 3454 64684 81 634 845 40.00 4328

NAIVE 16 128 6.80 29.00 4.71% 4.94% 37.95% 57.71% 3429 71832 – – 861 51.40 4742
AWARE 16 128 6 25 4.86% 4.94% 0.80% 4.59% 3454 72011 81 637 868 49.00 4507
PROJREPART 16 128 6 25 4.86% 4.94% 0.80% 4.59% 3454 72500 81 749 892 44.60 5012

TABLE V: Experiment 3: results for mesh A (cube-tetra-40630) and mesh B (cube-hexa-100x100x100).

EXP3 NA NB N
cpl
A N

cpl
B ubA ubB ub

cpl
A ub

cpl
B cutA cutB cut

cpl
A cut

cpl
B totV totZ time

NAIVE 16 16 6.40 7.80 4.91% 4.86% 50.47% 41.03% 3031 56312 – – 3276 22.60 3972
AWARE 16 16 6 6 4.87% 4.86% 0.17% 4.70% 3109 57464 112 324 3198 22.00 3978
PROJREPART 16 16 6 6 4.87% 4.99% 0.17% 3.54% 3109 57698 112 418 3218 25.00 4163

NAIVE 16 24 6.40 9.40 4.91% 5.00% 50.47% 48.87% 3031 70745 – – 3305 23.80 4790
AWARE 16 24 6 8 4.87% 5.00% 0.17% 4.96% 3109 70099 112 440 3307 24.00 4506
PROJREPART 16 24 6 8 4.87% 5.00% 0.17% 3.81% 3109 71482 112 472 3300 26.00 4746

NAIVE 16 32 6.40 11.20 4.91% 5.00% 50.47% 54.01% 3031 81100 – – 3345 26.40 4984
AWARE 16 32 6 10 4.87% 5.00% 0.17% 5.00% 3109 80839 112 543 3348 31.00 4647
PROJREPART 16 32 6 10 4.87% 5.00% 0.17% 4.92% 3109 81404 112 561 3343 31.20 5136

NAIVE 16 48 6.40 14.60 4.91% 5.00% 50.47% 44.14% 3031 97591 – – 3413 33.20 5510
AWARE 16 48 6 13 4.87% 5.00% 0.17% 4.91% 3109 96063 112 578 3387 34.00 5805
PROJREPART 16 48 6 13 4.87% 5.00% 0.17% 4.55% 3109 99427 112 676 3429 35.00 5672

NAIVE 16 64 6.40 19.80 4.91% 5.00% 50.47% 64.04% 3031 110233 – – 3510 41.80 6036
AWARE 16 64 6 16 4.87% 5.00% 0.17% 4.96% 3109 111377 112 687 3457 42.00 6028
PROJREPART 16 64 6 16 4.87% 5.00% 0.17% 4.96% 3109 112076 112 784 3495 43.40 6491

NAIVE 16 96 6.40 24.40 4.91% 4.99% 50.47% 68.45% 3031 132408 – – 3575 46.20 7302
AWARE 16 96 6 20 4.87% 4.99% 0.17% 5.00% 3109 132712 112 830 3566 46.00 6871
PROJREPART 16 96 6 20 4.87% 4.99% 0.17% 5.00% 3109 133798 112 974 3614 51.20 7407

NAIVE 16 128 6.40 28.80 4.91% 4.99% 50.47% 59.99% 3031 147993 – – 3645 54.40 9184
AWARE 16 128 6 25 4.87% 4.99% 0.17% 5.00% 3109 147802 112 912 3591 52.00 8710
PROJREPART 16 128 6 25 4.87% 4.99% 0.17% 5.00% 3109 151229 112 1125 3727 59.20 8971



TABLE VI: Experiment 4: results for mesh A (cube-tetra-40630) and mesh B (cube-tetra-486719).

EXP4 NA NB N
cpl
A N

cpl
B ubA ubB ub

cpl
A ub

cpl
B cutA cutB cut

cpl
A cut

cpl
B totV totZ time

NAIVE 16 16 6.40 7.80 4.91% 4.93% 50.14% 78.20% 3031 17045 – – 3549 21.40 1803
AWARE 16 16 6 6 4.95% 4.77% 0.25% 4.68% 3035 17050 142 349 3549 20.00 1725
PROJREPART 16 16 6 6 4.95% 4.95% 0.25% 3.12% 3035 17301 142 361 3564 23.60 2719

NAIVE 16 24 6.40 8.00 4.91% 4.98% 50.14% 66.61% 3031 21106 – – 3565 23.40 2007
AWARE 16 24 6 8 4.95% 4.97% 0.25% 4.82% 3035 21192 142 451 3612 25.00 2021
PROJREPART 16 24 6 8 4.95% 4.96% 0.25% 4.46% 3035 21562 142 520 3722 26.80 2609

NAIVE 16 32 6.40 9.80 4.91% 4.96% 50.14% 55.79% 3031 23970 – – 3625 25.80 2114
AWARE 16 32 6 10 4.95% 4.97% 0.25% 4.80% 3035 24454 142 537 3723 26.00 2176
PROJREPART 16 32 6 10 4.95% 4.97% 0.25% 4.63% 3035 24636 142 622 3822 30.60 2565

NAIVE 16 48 6.40 12.20 4.91% 4.98% 50.14% 56.65% 3031 28743 – – 3727 30.00 2538
AWARE 16 48 6 13 4.95% 4.98% 0.25% 4.93% 3035 29451 142 680 3851 35.00 2328
PROJREPART 16 48 6 13 4.95% 4.96% 0.25% 4.92% 3035 29741 142 801 3995 34.60 3013

NAIVE 16 64 6.40 16.20 4.91% 4.98% 50.14% 77.91% 3031 32534 – – 3801 34.60 3208
AWARE 16 64 6 16 4.95% 4.97% 0.25% 4.51% 3035 32532 142 678 3862 37.00 3005
PROJREPART 16 64 6 16 4.95% 4.98% 0.25% 4.58% 3035 33816 142 921 4123 40.20 3382

NAIVE 16 96 6.40 20.20 4.91% 4.97% 50.14% 65.67% 3031 38315 – – 3948 41.40 3896
AWARE 16 96 6 20 4.95% 4.97% 0.25% 4.91% 3035 39112 142 856 4044 46.00 3852
PROJREPART 16 96 6 20 4.95% 4.97% 0.25% 4.85% 3035 39758 142 1069 4289 50.40 4158

NAIVE 16 128 6.40 24.60 4.91% 4.98% 50.14% 65.05% 3031 43167 – – 4025 48.40 4483
AWARE 16 128 6 25 4.95% 4.98% 0.25% 4.49% 3035 43429 142 975 4167 55.00 4075
PROJREPART 16 128 6 25 4.95% 4.98% 0.25% 4.83% 3035 44785 142 1339 4567 57.60 5102
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