
Optimizing Approximate Weighted Matching on
Nvidia Kepler K40

Md. Naim, Fredrik Manne∗,
Mahantesh Halappanavar, Antonino Tumeo∗∗

and Johannes Langguth∗∗∗

Abstract

Matching is a fundamental graph problem with numerous applications
in science and engineering. While algorithms for computing optimal match-
ings are difficult to parallelize, approximation algorithms on the other hand
generally compute high quality solutions and are amenable to paralleliza-
tion. In this paper, we present efficient implementations of the current
best algorithm for half-approximate weighted matching, the Suitor algo-
rithm, on Nvidia Kepler K-40 platform. We develop four variants of the
algorithm that exploit hardware features to address key challenges for a
GPU implementation. We also experiment with different combinations of
work assigned to a warp. Using an exhaustive set of 269 inputs, we demon-
strate that the new implementation outperforms the previous best GPU
algorithm by 10 to 100× for over 100 instances, and from 100 to 1000×
for 15 instances. We also demonstrate up to 20× speedup relative to 2
threads, and up to 5× relative to 16 threads on Intel Xeon platform with
16 cores for the same algorithm. The new algorithms and implementations
provided in this paper will have a direct impact on several applications
that repeatedly use matching as a key compute kernel. Further, algorithm
designs and insights provided in this paper will benefit other researchers
implementing graph algorithms on modern GPU architectures.

*Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Email:
{md.naim, fredrikm}@ii.uib.no

**Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O.Box 999, MSIN J4-
30, Richland, WA 99352, USA.
Email: {mahantesh.halappanavar, antonino.tumeo}@pnnl.gov

***High performance computing, Simula Research Laboratory, Oslo, Norway. Email:
langguth@simula.no

1

2

1 Introduction

Given a graph G = (V,E) with vertex set V , edge set E and a weight function
w : E → R+, a matching M is a subset of edges such that no two edges in M
are incident on the same vertex. A maximum matching maximizes the number
of matched edges (cardinality) in M . The objective for a maximum weighted
matching is to maximize the sum of the weights of the matched edges. Further,
the solutions can be optimal or approximate. In this paper, we only consider
half-approximate weighted matching algorithms that guarantee a solution that
is at least half of an optimal solution in terms of the cardinality and weight of
the matching. We present and compare two main algorithms, Locally-Dominant
and Suitor, on two types of architectures, CPUs and GPUs. We also study four
variants of the Suitor algorithm on GPUs. The algorithms are listed in Table 1,
and are described in Sections 2 and 4.

Table 1: A list of matching algorithms and variants presented and studied in this
paper.
Algorithm Description

OMP-LD Active vertices are stored in a shared queue.
Presented in Algorithm 1.

OMP-Suitor Uses locks for synchronization. Presented in
Algorithm 3.

GPU-LD Thread-per-vertex based implementation of
OMP-LD.

GPU-Suitor Warp-based implementation of OMP-Suitor.
Synchronization and load balancing are not
used. Presented in Algorithm 4.

GPU-Suitor-SyncLB Synchronization and load balancing employed
among participating warps.

GPU-Suitor-SyncNoLB Synchronization, but no load balancing among
warps.

GPU-Suitor-Hybrid Synchronize and load balance only for the first
few iterations of the Suitor algorithm.

Matching is a fundamental combinatorial problem with many applications in
scientific computing, optimization and data analytics. In scientific computing,
matchings are used in the solution of sparse linear systems to place large matrix
elements on or close to the diagonal [4]; computation of sparse basis for the null
space or column space of under-determined matrices [16]; computation of block-
triangular form of a matrix [17]. Approximate weighted matchings are used in
multi-level graph algorithms for partitioning and clustering during the coarsening

3

phase [10]; network alignment [11] and community detection [18]. These applica-
tions drive the need for efficient parallel implementations of matching algorithms
on emerging multicore and manycore architectures. Many of these applications
repeatedly compute matchings several hundreds of times during their execution.
Therefore, small improvements in matching performance can lead to large gains
in the performance of these applications [11].

An important class of manycore architectures are general purpose graphics
programming units (GP-GPUs, or simply GPUs) that are not only powerful but
also ubiquitous. The Nvidia Kepler K40 presented in Section 3 is currently one of
the best manycore platforms for scientific computing. While many significant per-
formance gains for compute intensive applications with regular and predictable
memory access patterns have been demonstrated using GPUs, the efficient im-
plementation of irregular applications such as graph algorithms remains a chal-
lenge [21]. Highly irregular degree distributions, poor locality in memory accesses,
and minimal computation on accessed data make efficient utilization of compute
resources challenging. Using approximate weighted matching as a case study for
irregular applications, we introduce several algorithmic ideas that can also be
adapted for other graph algorithms.

1.1 Contributions

We make the following contributions in this paper:

• Develop new parallel implementations of a weighted matching algorithm
(GPU-Suitor) on the Nvidia Kepler architecture. We present four variants
of the algorithm and several combinations of threads-per-block and vertices-
per-warp.

• Present detailed experimental results using 269 test cases representing di-
verse applications and sparsity patterns (graph structures).

• Demonstrate the superiority of our algorithms over the previous best algo-
rithm (GPU-LD) on GPUs [7], as well as shared-memory (OpenMP) imple-
mentations. We show that the new implementation outperforms GPU-LD
by 10 to 100× for over 100 instances, and by 100 to 1000× for 15 in-
stances. We also demonstrate up to 20× speedup relative to 2 threads, and
up to 20× relative to 16 threads on Intel Xeon platform with 16 cores for
the same algorithm.

We organize the presentation in this paper as follows. We first present mul-
tithreaded matching algorithms targeting shared-memory architectures in Sec-
tion 2. The Nvidia Kepler K40 is introduced in Section 3, followed by a discus-
sion on the key challenges and our approaches to overcome them. GPU-Suitor,
along with its four variants, are presented in Section 4. Experimental results and

4

analysis are presented in Section 5, followed by a discussion of related work in
Section 6, and our conclusions in Section 7.

2 Parallel Weighted Matching

Matching is a classical topic in combinatorial optimization and has been studied
extensively [12, 19, 15]. While many variants of the problem exist, we focus on
approximate weighted matching for general graphs. In particular, we focus on
the work of Halappanavar et al. on the Locally-Dominant Algorithm [7], and the
work of Manne and Halappanavar on the Suitor Algorithm [13]. Their work itself
was built on the pioneering work of many other researchers in the area, whose
parallel algorithms systematically evolved from efficient serial algorithms. Due
to space restrictions, we only present these two approximation algorithms in this
section. We refer you to the respective papers for details.

2.1 The Locally-Dominant (LD) Algorithm

A half-approx weighted matching can be simply computed by considering the
edges in a non-increasing order of weights, and by adding all edges that do not
violate the matching condition. However, such an approach imposes a serial order
on execution. Therefore, the main idea of the LD Algorithm is to identify and
match locally-dominant edges in parallel. An edge that is heavier than all the
edges incident on its end points is called a locally-dominant edge. Algorithm 1
implements this approach. It takes a graph G = (V,E) as input and returns a
matching M as output. The algorithm starts by making a call to Procedure Pro-
cessVertex(v) for each vertex (Lines 6 and 7). In Procedure ProcessVertex,
for a given vertex, all its neighbors are scanned to find the current heaviest neigh-
bor that has not been matched already. It is important to break ties (duplicate
weight) consistently to prevent deadlocks. For this purpose we use vertex indices,
which are guaranteed to be unique (Line 5). The identity of the heaviest neighbor
for each vertex is then stored in a vector (candidate). After setting the candidate
mate for vertex s, say to vertex t, we check if the candidate mate for t is also set
to s: candidate[candidate[s]] = s (Line 9). If this is true, we have found a locally-
dominant edge es,t. We add this edge to M , and the two vertices s and t to the
queue (Line 12). Some of the vertices might end up not having any candidates
available to match with.

The second part of the execution begins when every vertex has been processed
and matched vertices have been added to the queue QC . In this part, we iterate
until the queue becomes empty (Line 8 in Algorithm 1). Note that at least one
edge (the heaviest edge) would get matched in the first loop, and therefore, QC is
nonempty if M is nonempty. During each iteration of the while loop on Line 8,

5

Algorithm 1 Parallel Locally-Dominant Algorithm. Input: graph G = (V,E).
Output: A matchingM represented in vector mate. Data structures: a queue, QC ,
listing vertices for processing in current step, and a queue, QN , listing vertices to
be processed in the next step – both the queues list matched vertices; a vector
candidate of size |V | that contains the id of the current heaviest neighbor of each
vertex.
1: procedure Locally-Dominant(G(V,E), mate)
2: for each v ∈ V in parallel do
3: mate[v] ← ∅
4: candidate[v] ← ∅
5: QC ← ∅;QN ← ∅
6: for each v ∈ V in parallel do
7: ProcessVertex(v,QC)
8: while QC �= ∅ do
9: for each u ∈ QC in parallel do
10: for each v ∈ adj (u) do
11: if candidate[v] = u then
12: ProcessVertex(v,QN)
13: Swap(QC , QN) � Swap the two queues

Algorithm 2 ProcessVertex
1: procedure ProcessVertex(s, Q)
2: max wt ← −∞
3: max wt id ← ∅
4: for each t ∈ adj (s) do
5: if (mate[t] = ∅) AND (max wt < w(es,t)) then
6: max wt ← w(es,t)
7: max wt id ← t
8: candidate[s] ← max wt id
9: if candidate[candidate[s]] = s then

10: mate[s] ← candidate[s]
11: mate[candidate[s]] ← s
12: Q ← Q ∪ {s, candidate[s]}

we process vertices matched in the previous iterations while adding new vertices
to the queue QN that become eligible as edges get matched. Note that we only
need to process vertices for which the candidate was set to one of the matched
vertices (Line 12). This is achieved by adding the newly matched vertices to
the queue and checking if any of their unmatched neighbors point to them. If so,
those neighbors will have to find new candidates for matching. The algorithm will
terminate when the queue becomes empty. The matching is stored in a vector,
mate.

The running time of Algorithm 1 is given by O(|V | + |E|Δ), where Δ is the

6

maximum degree in G. The worst case happens when a vertex points to all
of its neighbors unsuccessfully, and in order to determine the current heaviest
neighbor it needs to check the entire list. However, the runtime can be improved
to Θ(|V |+ |E|) if the adjacency list for each vertex is provided in a non-increasing
order of edge weights. Under this assumption, the current heaviest neighbor
of a vertex can be computed in constant time. The amount of parallelism is
determined by the number of vertices in QC during each iteration of the while
loop (Line 8). We use the compressed row storage format (CSR) for storing
graphs in memory and therefore benefit from caching effects on adjacency lists
on platforms with cache hierarchies. On the x86 platforms we use an intrinsic
atomic operation sync fetch and add() to add vertices to the tail of the queue.

2.2 The Suitor Algorithm

We now present the Suitor algorithm, the currently best performing half-approx
algorithm for weighted matching [13]. An important distinction of the Suitor
algorithm relative to the Locally-Dominant algorithm is the absence of a central
queue for active vertices that need to be considered for matching in a given
iteration. Elimination of the queue makes the algorithm better suited for parallel
implementation. Further, by paying careful attention to the vertex that is being
processed, the Suitor algorithm proactively avoids unnecessary work. Similar
to the Locally-Dominant algorithm, we again use vertex identities to break ties
consistently. We also use the notion of locally-dominant edges in order to find
candidate edges for matching. The Suitor algorithm is detailed in Algorithm 3.

Parallelism is achieved by distributing the executions of the outer for loop
(Line 6 in Algorithm 3) among the threads. Multiple threads will concurrently
process different vertices, and attempt to find a suitable candidate for each. Since
two variables, mate and ws, are shared among the participating threads, there is
a need for explicit synchronization among the threads. We use OpenMP locks for
synchronization. To prevent conflicts, we define a lock for each vertex (Line 5) and
then require that a thread must acquire a partner’s lock before executing lines
20 through 29, at which point the lock is released. Immediately after acquiring
the lock we test if heaviest > ws[partner] is still true as it is possible that some
other thread might have increased the value of ws[partner] after partner was
determined to be the best match for current. If this is not the case, then current
cannot be the suitor of partner and we must continue the search for next best
candidate (lines 26 to 28). If a given vertex v ends up replacing another vertex w
as the mate, then the thread processing vertex v becomes responsible for finding
a suitable mate for w. This is shown in lines 21 to 23. The algorithm terminates
when all the vertices have been processed. We note that there is no strict order
in which the vertices need to be processed.

The running time of the serial Suitor algorithm isO(Σu∈V |adj(u)|2) = O(|E|Δ)

7

Algorithm 3 Parallel Suitor algorithm. Input: graph G = (V,E). Output: A
matching M represented in vector mate. Data structures: a vector ws of size |V |
that stores the weight of the current heaviest neighbor of each vertex.
1: procedure OMP-Suitor(G(V,E), mate)
2: for each u ∈ V in parallel do
3: mate[u] ← NULL
4: ws[u] ← 0
5: omp init lock[u] � Initialize the lock for each vertex
6: for each u ∈ V in parallel do
7: current ← u
8: done ← False
9: while (done = False) do
10: partner ← mate[current]
11: heaviest ← ws[current]
12: next ← ∅
13: for each v ∈ adj(current) do � For all neighbors of current
14: if w(current, v) > heaviest and w(current, v) > ws(v) then
15: partner ← v
16: heaviest ← w(current, v) � Weight of edge (current, v)
17: done ← True
18: if heaviest �= NULL then � True only if there is a candidate to match

with
19: omp set lock[partner] � Lock the partner
20: if heaviest > ws[partner] then
21: if mate[partner] �= NULL then � Check if partner had a

previous offer
22: next ← mate[partner]
23: done ← False
24: mate[partner] ← current
25: ws[partner] ← heaviest
26: else
27: done ← False � The partner already has a better offer
28: next ← u
29: omp unset lock[partner] � Release the lock for partner
30: if done = False then
31: current ← next � Continue the search for next best candidate

as a node u might have to traverse its neighbor list |adj(u)| times to find a new
partner. Note that Δ is the maximum degree in G.

8

3 Architecture and Challenges

The NVIDIA Tesla K40, based on the Kepler architecture, is currently the most
powerful single chip GPU board for scientific computing. There exists a dual
chip board, Tesla K80, which trades off some of the peak performance of each
chip to obtain higher combined performance and has better compute-to-shared-
memory and register ratios, but requires multi-gpu programming techniques for
effective utilization. The new GPUs based on the Maxwell architecture are more
power efficient, but they are primarily targeted for single-precision computation
and gaming applications. Their double precision performance is 1

32
of the single

precision performance.

The Tesla K40 features the GK110B GPU with 15 streaming multiprocessors
(SMX). Each SMX integrates 192 single precision units, 64 double precision units
and 32 special function units. Each SMX is equipped with 48 KB of read-only
cache, as well as 64 KB of on-chip storage, configurable in splits of 48/16, 32/32
and 16/48 KB between L1 cache or shared-memory. The shared-memory is a
directly addressable scratchpad memory. K40 also includes 1.5 MB of L2 cache
shared among the 15 SMXes. The board provides 12 GB of GDDR5 memory
with a datarate of 6 GHz, and all accesses to this memory are cached in L2 au-
tomatically. With a core clock of 745 MHz (and turbo clocks up to 875 MHz),
the K40 has a theoretical peak performance of 4.29 TFLOPS (5 with turbo) in
single-precision and 1.43 TFLOPS (1.66 with turbo) in double precision. Its peak
memory bandwidth is 288 GB/s. Applications can reach about 80% of the peak
bandwidth on the Kepler architecture [5]. Thus, in throughput oriented comput-
ing, it is significantly more powerful than current CPUs both for bandwidth- and
compute-bound problems. However, its memory is limited to 12 GB, and even
if K40 employs PCI-E v. 3.0 with bandwidths up to 16 GB/s, transfer rates be-
tween host and GPU memory are still an order-of-magnitude smaller than those
between the GPU and its memory.

The GPU uses the Single Instruction Multiple Thread (SIMT) model, where
threads are issued in warps (groups of 32 threads). A warp executes the same
instruction at the same time for all its threads. Warps are further grouped into
thread-blocks, which are sets of threads scheduled on the same SMX that can
share data through the shared-memory. Finally, thread-blocks are organized in a
grid, which comprises all threads launched in an application kernel. Since this is
an important parameter, we provide results using several values of threads-per-
block in Section 5.3.

3.1 Challenges in parallelization

The main challenges that limit performance on current GPU architectures are:
(i) un-coalesced memory accesses, (ii) thread divergence, and (iii) load imbalance

9

among participating threads. The Kepler architecture somewhat mitigates the
performance problems of un-coalesced memory accesses due to a better cache
architecture. Memory accesses from the same warp that use the read-only cache
can obtain maximum memory bandwidth independent of the thread ordering.
Furthermore, shared memory can be used to coalesce other memory accesses.

Threads in the same warp are considered divergent if they take different paths
in a branching statement. Because of their lockstep execution, all threads in a
warp have to wait until threads that have taken different directions completes.
Load imbalance among threads keeps warps executing longer on an SMX, thus
wasting resources if only a handful of threads are still computing.

Therefore, efficient implementations on GPUs should address all of these chal-
lenges in a systematic manner. With reference to the previous implementation
of approximate matching, we address these challenges by implementing the algo-
rithm from the perspective of a warp processing a set of vertices instead of one
thread processing a set of vertices. We will now briefly explain how we address
the challenges in order to build towards the detailed presentation in Section 4.

Un-coalesced accesses in the previous (Locally-Dominant) implementation re-
sulted from a thread-based approach where threads in a warp accessed neigh-
borhoods of different vertices simultaneously, leading to poor locality of memory
accesses and under-utilization of data caches. In our implementation, coalesced
memory accesses are achieved by exploring the neighborhood of a vertex in par-
allel using the threads in a warp.

The performance of the previous implementation was also adversely impacted
by thread divergence resulting from variations in the size of neighborhoods and
vertex-specific decisions. Using the warp-based approach we minimize the im-
pact of thread divergence. In our implementation, thread divergence is caused
by threads in a warp attempting to set the suitor for the vertices that they
are responsible for. For example, the availability of locks associated with the
candidate-vertices that are chosen for a set of vertices in the warp, the branch-
ing of if statements based on the weights, and the replacement of one vertex
by another vertex that needs to be processed further. While thread divergence
is hard to eliminate, we tackle this challenge by exploring several combinations
of vertices-per-warp. As presented in Section 5.3, best performance is observed
with 8 vertices-per-warp. We note here that all the threads in a warp process
the neighborhood of a vertex in tandem. Each vertex in a warp is processed in a
sequential order. This is described in Section 4.

Variations in the sizes of the neighborhood (vertex degree) is a major source
of load imbalance for approximate matching. This issue was not addressed in
the previous implementation. For example, the slowest thread in a warp de-
termined the speed of the warp. However, by using the warp-based approach to
process the neighborhood of a vertex, load imbalance from varying vertex-degrees
is minimized. We further address load imbalance by redistributing work among

10

participating warps of a thread block. The impact of this approach is presented
in Section 5.3.

4 Weighted Matching on the GPUs

We now present the GPU implementations of the Suitor Algorithm. We build on
the presentation of Suitor in Section 2. The GPU implementation of the Locally-
Dominant Algorithm is a straight-forward adaptation of the multithreaded
(OpenMP) algorithm, where a single thread processes the entire neighborhood of
a vertex. In contrast, the GPU implementation of the Suitor Algorithm utilizes
all the threads of a warp to processes the neighborhood of a vertex. Consequently,
the vertices themselves are processed in serial on a given warp. In this section, we
only present the GPU implementation of the Suitor Algorithm. We refer to Ha-
lappanavar et al. for details on the GPU implementation of the Locally-Dominant
Algorithm [7].

The GPU implementation of the Suitor Algorithm utilizes the nested parallel
structure of a GPU – where several warps run in parallel, and in turn each warp
consists of parallel threads. Consequently, the fundamental difference between
the OpenMP and GPU implementations arise from this nested structure. As an
illustration, observe that in Algorithm 3 vertices are processed in parallel (Line
6). In contrast, chunks of vertices are assigned to concurrent warps (Line 2) for
parallel execution in Algorithm 4. Each warp processes these vertices in serial
(Line 5), but the neighborhood of a vertex is processed in parallel (Line 6). In
the following discussion, we present intuition and details of the GPU adaptation
of the Suitor Algorithm designed to maximize the nested parallelism of a GPU.

Algorithm 4 GPU-Suitor Algorithm. Input: graph G = (V,E). Output: A
matching M represented in vector mate. Variables: Vi represents a chunk of
vertices based on vertices-per-warp processed on warp i.
1: procedure GPU-Suitor(G(V,E), mate)
2: Determine the number of warps required based on |V |, vertices-per-warp and

threads-per-block
3: while (there are vertices to process) do
4: for each Vi in parallel do � Across warps
5: for each v ∈ Vi do
6: Process adj(v) in parallel � In a warp
7: Determine best candidate for v in parallel

8: Set suitor for each candidate of Vi in parallel

9: Store self or displaced vertices � Within a warp
10: Synchronize across warps; load balance (optional)

We present the overall structure of the GPU-Suitor in Algorithm 4. The
details are provided in the following discussion, where we also present the intuition

11

and differences among the four variants of GPU-Suitor. For ease of presentation,
we present the algorithm in two phases: (i) Initial phase, and (ii) Recurrent
phase.

Initial Phase

The algorithm starts by moving vertex indices from global memory of the GPU
to the local (logical) shared-memory of each warp for a given chunk of vertices
assigned to that warp (Line 2). Once a warp has read the indices of the neighbor
lists for all vertices of its chunk into shared memory, it finds the best available
candidate for each vertex v in the chunk consecutively. All the 32 threads in a
warp collectively read the neighbor list of a vertex v (Line 6), and decide the best
candidate using a butterfly reduction on the local best read by each thread in the
warp (Line 7). As a result of this reduction, each thread of the warp discovers
the best candidate and the weight of the corresponding edge. These values are
saved in an intermediate buffer in the global memory or registers. After finding
and storing all the candidates, the entire warp reads the intermediate buffer
containing the stored candidates and corresponding edge weights in a coalesced
manner. Each member thread is responsible for setting one vertex as the suitor
of its corresponding candidate (Line 8). As detailed in Algorithm 3, a thread in a
warp succeeds in setting its vertex as the mate of its candidate vertex if it has a
heavier edge (ties resolved consistently). Similar toOMP-Suitor, locks are used
in determining the current highest offer for a candidate stored in ws[partner].

If a thread fails to set a particular vertex v as the suitor of its best candidate
c, or it succeeds in replacing a previously assigned vertex u, then we consider
those vertices as unsuccessful. The threads of a warp collectively gather all the
unsuccessful vertices in consecutive location of shared memory using parallel pre-
fix sum. This is the same part of the memory that was initially used for storing
vertex indices assigned to that warp.

The number of vertices assigned to a warp plays a critical role in determining
the overall performance. We therefore use different values for vertices-per-warp
and show the impact on performance in Section 5.3.

Recurrent Phase

Once a warp completes processing all the vertices in its chunk, it knows how
many vertices need to be processed next (Line 9). Processing of these vertices
can potentially lead to other vertices becoming eligible for processing in the next
iteration. The warp keeps iterating over the recurrent phase until all of its vertices
either obtain suitors or cannot be matched (no candidates are available). It is
important to note that while each member thread in a warp can try for a different
vertex in parallel, only one thread is allowed to set the suitor of the same vertex

12

at the same time. In order to avoid race conditions arising from this, we use
atomic memory operations.

Synchronization and Load Balancing

Synchronization between warps can be avoided in a warp-based implementation,
which can lead to minimization of the idle time of the multiprocessors. However,
this can lead to an imbalanced load distribution among the warps of a block. For
many inputs, we observed that most of the warps finish after a few iterations in
the recurrent phase, while a few warps perform a significant number of iterations.
To examine these effects further, we implemented intra-block load distribution
among participating warps of a thread block. This distribution incurs a cost from
synchronization between the warps of a block, and movement of unsuccessful
vertices from the shared memory (logical) of one warp to the shared memory of
other warp(s). Finding imbalances in load further requires atomic operations and
logarithmic to linear operations to find warps with load deficiencies.

Depending on synchronization and load balancing, we have four variations
of GPU-Suitor as described below. The differences in performance and their
analysis is provided in Section 5.3.

1. NoSync: A thread block is not synchronized at all. Each warp works
independently to match all of its vertices. This approach has both advan-
tages and limitations. While most of the warps complete their work after
a few iterations, only a few warps require tens to hundreds of iterations
to complete. These numbers determine the overall performance of the ker-
nel. Thus, load imbalance among the warps of a thread block has a large
impact on overall performance. For inputs where most of the warps have
approximately the same amount of work, the NoSync approach benefits
immensely from avoiding thread synchronization within the blocks, which
is an expensive operation on the GPU.

2. SyncLB: To alleviate problems arising from load imbalance in NoSync,
this approach redistributes load among warps of a thread block during the
first k iterations of the recurrent phase, which entails synchronization of all
warps and thus of all threads. Here, k is either a predefined number or it
is determined based on the number of vertices that haven’t been the suitor
for other vertices yet. As a result, all warps of a particular thread block
are guaranteed to perform more or less the same work for these iterations.
For subsequent iterations, warps of a block are synchronized in order to
decide on termination of the block without any redistribution of the load.
For our implementation, we allow a 25% deviation from the average load
when redistributing work during the first k iterations.

13

3. SyncNoLB: In order to examine the impact of synchronization on execu-
tion time, this implementation synchronizes warps of a particular block in
each iteration, but without balancing the load among them.

4. Hybrid: In preliminary experiments, we noticed that after first few iter-
ations with load distribution, subsequent iterations takes more time with
synchronization and load distribution than without any synchronization or
load balancing. This variant performs load balancing only during the early
phases of the execution.

5 Experimental Results and Analysis

We provide the experimental results and analysis in this section. In particular,
we demonstrate significant speedup of the new algorithm and implementations
relative to the previous best algorithm. We also demonstrate the speedup of
GPU implementations relative to CPU (OpenMP) implementations. We further
provide results on performance differences between different variants of the GPU
implementation. Since we summarize the information in this section, we make the
entire result set available at this website: http://hpc.pnl.gov/people/hala/

suitor.html. The source code is available upon request.

5.1 Hardware Platforms and Dataset

All the experiments are conducted on a server with Intel CPUs and NVIDIA
GPUs. The system integrates two sockets and 64 GB of DDR3-1600 memory.
Each socket is equipped with an hyperthreaded 8-core Intel Xeon E5-2687W
(Sandy Bridge) running at 3.10 GHz (turbo up to 3.8 GHz), thus amounting to
a total of 16 cores and 32 threads. Each core has two L1 caches of 32 KB (for
instructions and data, respectively) and a private 256 KB L2 cache. Cores in
each processor share 20 MB of L3 cache. Each processor has 4 memory channels
and a peak memory bandwidth of 51.2 GB/s. We used GCC 4.9.2 to compile our
OpenMP implementation of the algorithms. We also used GOMP CPU AFFINITY

to request thread pinning in a scatter fashion, and numactl for NUMA-aware
memory allocation. The GPU is a Tesla K40 system, as described in Section 3,
consisting of a GK110B GPU with 15 SMXes (2880 streaming processors) at 745
MHz (turbo up to 875 Mhz) and 12 GB of GDDR5 at 6 GHz. We compiled the
code using CUDA version 7.0.

Dataset: We experimented with a large dataset of 269 instances (matrices)
downloaded from the University of Florida Sparse Matrix Collection [2]. We
downloaded matrices that are symmetric and converted the negative nonzero
values to positive. For matrices without weights, weights were added uniformly
at random between zero and one, and zero-weight edges were discarded. Given a

14

matrix A of size m × n, we represent each diagonal entry as a vertex. Each off-
diagonal entry is represented as an edge between the vertices representing the row
and column of that nonzero entry. The nonzero value is set as the weight of that
edge. The diagonal entries are ignored. Thus, the graph representing A has |m|
vertices, and the number of edges match the number of nonzeros with diagonal
entries ignored. In this paper, we present results only for inputs above a million
but less than a billion edges. The number of vertices vary based on the sparsity
structure of the matrices. We summarize the size distribution in Figure 1. We
also experimented with over 300 problems ranging from hundred thousand to a
million edges with similar run time behavior. This large set of inputs represents
a wide variety of applications and sparsity patterns. Accordingly, we see a wide
variation in run time for different algorithms and their variants. For each input,
we run each algorithm at least ten times and capture the minimum time among
these runs.

Figure 1: Summary of the sizes of input problems arranged in a non-increasing
order of the number of edges. The dataset consists of 269 problems ranging from
a million to a billion edges.

5.2 Scaling Comparisons

The two main variants are the Suitor and the Locally-Dominant (LD) algorithms.
We implement each algorithm on CPUs using OpenMP (OMP) and on GPUs
using CUDA. Thus, we have four main variants to compare: GPU-Suitor, OMP-
Suitor, GPU-LD, and OMP-LD. Furthermore, for GPU-Suitor we experiment

15

with different numbers of threads-per-block and vertices-per-warp as discussed in
Section 4. For performance comparisons, we only consider the GPU-Suitor runs
with 128 threads-per-block and 8 vertices-per-warp. The impact from variations
in these parameters is presented in Section 5.3. Among the four variants presented
in Section 4, we present results only for the variant NoSync, the variant with
no synchronization and no load balancing. The relative performance of different
variants is presented in Section 5.3.

In order to highlight the superior performance of GPU-Suitor, we first present
the compute time of GPU and OMP versions of the Suitor and LD algorithms in
Figure 2. The run times in milliseconds are presented in log scale on the Y -axis.
The times are ordered based on the times of GPU-Suitor. It can be observed that
GPU-Suitor outperforms the run time of other variants for most of the problem
instances. The OMP run times are for two threads. We present the speedups
relative to Suitor and LD algorithms next. The speedup of GPU-Suitor relative

Figure 2: Run time in milliseconds for the two algorithms on two platforms in
log scale. The problem instances are shown in non-increasing order of the run
times of GPU-Suitor. The OMP times are for two threads.

to GPU-LD and OMP-LD (2 and 16 threads) is presented in Figure 3 on the
left, and to OMP-Suitor (2 and 16 threads) on the right. Each speedup curve
is ordered individually in non-increasing order of speedup. While we observe
positive speedups for GPU-Suitor on a large fraction of the problems against all
other algorithms, the largest gains are against GPU-LD. Relative to GPU-LD,
the speedups are in the range of 1 to 10× for 115 problems; 10 to 100× for about
100 problems; and above 100× for 15 problems. We run each algorithm for each

16

input multiple times and pick the minimum time observed among these runs. The
experiments were also performed on multiple platforms and we observed similar
results. With respect to OMP-Suitor, the best known multithreaded algorithm

Figure 3: Speedup of GPU-Suitor relative to GPU-LD and OMP-LD on the left,
and OMP-Suitor on the right. The speedups are ordered individually for each
curve in non-increasing order.

for shared-memory platforms, we observe speedups of up to 20× with two threads

17

and up to 5× with 16 threads. The speedups with respect to OMP-LD are much
higher – up to 40× with two threads and up to 16× with 16 threads.

5.3 Relative Performance

We now present the relative performance of the four variants of GPU-Suitor for
different combinations of threads-per-block and vertices-per-warp in this section.
The relative performance of variants is presented in Figure 4 in the form of a
performance profile. Along the Y -axis we present the fraction of input problems,
and along the X-axis we present the relative performance (log2) to the best
variant. For example, we observe that NoSync is the best performing algorithm
for about 90% of the problems. However, for about 10% of the problems, NoSync
can be up to 4× worse relative to the best variant. We observe that whileNoSync
stands out as the best variant, the other three variants are similar in performance.
The cost of synchronization outweighs the benefits of load balancing.

During the execution of the kernel, most of the blocks finish their work in a few
iterations while a few blocks need a significant number of iterations, which in turn
determines the overall kernel execution time. If this behavior can be improved
without necessitating a large synchronization overhead, GPU-Suitor can perform
significantly better.

The second source of difference comes from the variation of threads-per-block
and vertices-per-warp. We again present these results in the form of a perfor-
mance profile captured in Figure 5. We can observe that vertices-per-warp has
a large impact on performance, and the threads-per-block has a relatively minor
impact. The best performance is obtained with 8 threads-per-warp, and the worst
performance is obtained with 256 threads-per-warp, where performance degrada-
tion is as high as 30× relative to the best combination. The performance also
got worse when less than 8 vertices-per-warp were used.

6 Related Work

Graph algorithm in general, and matching algorithms in particular, are studied
extensively. In this section, we present related work that is most relevant to our
work. As discussed in Section 2, our work builds on the on multithreaded approx-
imation matching (Locally-Dominant Algorithm) by Halappanavar et al. [7], and
the Manne and Halappanavar (Suitor Algorithm) [13]. The GPU implementa-
tion of Halappanavar et al. maintained the general algorithmic structure similar
to the implementations on multicore (Intel Xeon) and massively multithreaded
(Cray XMT) architectures. In their implementation, the CPU initiates the kernel
call considering the number of eligible vertices enqueued in a queue data struc-
ture. The actual computation of finding a locally-dominant edge and subsequent

18

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance relative to the best algorithm (log2)

Fr
ac

tio
n

of
 p

ro
bl

em
s

(2
69

 p
ro

bl
em

s)

NoSync
SyncNoLB
SyncLB
Hybrid

Figure 4: Performance profile depicting the relative performance obtained by
different variants of GPU-Suitor. Fraction of input problems are plotted on the
Y -axis, and the performance (log2 scale) relative to the best algorithm are plotted
along the X-axis.

matching is done on the GPUs. Matched vertices are concurrently enqueued in a
queue for processing in the next iteration. As reported in [8], the increased per-
formance of atomic operations in Fermi-based GPUs provided significant speed
ups with respect to a previous generation of hardware. In contrast to the work
of Halappanavar et al., we adapt the algorithm of Manne and Halappanavar in
this work, which is superior in performance [13]. Further, we consider different
combinations of vertices-per-warp and threads-per-block for four variants of the
algorithm. The utilization of shared memory is also new in our implementation.

Vasconcelos and Rosenhahn presented GPU adaptation of Bersekas’s auction-
based algorithm in [20]. However, their implementation is adapted for maximum
(unweighted) matching and is limited to bipartite graphs. Fagginger Auer and
Bisseling adapt the work of Vasconcelos and Rosenhahn to general graphs by im-
plicitly finding a bipartite graph based on randomly coloring the eligible vertices
blue or red [6]. While the blue vertices try to match with one of the neighboring
red vertices by bidding, the red vertices select only one bid from the received bids.
There are several limitations to this approach, which is not suitable for weighted
matching. In our experiments, we found that the quality (in terms of the weight)

19

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance relative to the best algorithm (log2)

Fr
ac

tio
n

of
 p

ro
bl

em
s

(2
69

 p
ro

bl
em

s)

(128,8)
(192,8)
(256,8)
(128,16)
(192,16)
(256,16)
(128,32)
(192,32)
(256,32)
(128,64)
(192,64)
(256,64)
(256,128)
(256,256)

Figure 5: Performance profile depicting the relative performance obtained by
different combination of threads-per-block (128, 192, 256) and vertices-per-warp
(8, 16, 32, 64, 128, 256). Fraction of input problems are plotted on the Y -axis, and
the performance (log2 scale) relative to the best algorithm are plotted along the
X-axis.

of the matching computed with this approach was significantly lower relative to
our algorithms. We also note that the algorithm of Auer and Bisseling repeatedly
considers all the vertices and is therefore not (work) efficient, but scales better.
Xu et al. use the algorithm of Auer and Bisseling, along with several other graph
algorithms [21]. We address some of the performance issues raised by them in
our work. In a similar vein, Devici et al. also present adaptation of maximum
matching on GPUs [3].

A recent unpublished work of Cohen et al. is also relevant to our work [1].
Using a hand-shaking approach, Cohen et al. identify locally-dominant edges
similar to the approach used in Halappanavar et al. They further adapt this
algorithm by enabling k-way handshake that builds a subgraph by restricting the
maximum degree of any vertex to k (k top neighbors of a vertex). However, the
performance gain from this extension is not observed in all the inputs. Further,
their implementation is specific to bipartite graphs.

Our work benefited from the work of Hong et al. that introduced the notion
of utilizing the threads of a warp to process the neighborhood of a vertex [9]. As

20

discussed in several parts of this paper, we present the benefits of this approach
over the thread-per-vertex approach of Halappanavar et al. Considerable amount
of literature exists on implementations of other graph kernels such as breadth-first
search, single-source shortest-path, graph coloring and betweenness centrality on
modern GPU platforms. We again refer to the work of Xu et al. on this topic. An
important area of relevant work is on multi-GPUs. While we restricted our focus
on a single GPU in this work, we plan to explore multi-GPU implementations in
the near future. We refer the work of Mastrostefano and Bernaschi on distributed
multi-GPU implementations of the breadth-first algorithm [14].

We conclude this section by noting that to the best of our efforts, this is
the first extensive work on implementing the current best approximate matching
algorithm of the current best GPU platform using an exhaustive set of variations
and input problems.

7 Conclusions

Using weighted matching as a case study, we presented different strategies to ex-
ploit GPU architectures such as coaleased memory access, minimizing thread di-
vergence and load balancing. Supported by experimental results we demonstrated
not only excellent scaling on the Nvidia Kepler K-40 platform, but also compet-
itive performance relative to traditional multi-core architectures. We demon-
strated speedups relative to previous best GPU algorithm by 10 to 100× for over
100 instances, and from 100 to 1000× for 15 instances. We also demonstrated
up to 20× speedup relative to 2 threads, and up to 5× relative to 16 threads on
Intel Xeon platform with 16 cores for the same algorithm. We showed the impact
of algorithmic variations such as synchronization and load balancing on perfor-
mance. We also showed the impact of different combinations of threads-per-block
and vertices-per-warp on performance.

We conclude this paper by observing that as power limitations impose severe
restrictions on architecture design, driving future systems toward larger num-
bers of weaker cores, this work on a prototypical irregular application (graph
algorithm) demonstrates promise of better performance on future low-power ar-
chitectures. We believe that the algorithmic ideas presented in this paper that
exploit architectural features will benefit other researchers implementing their
applications on manycore architectures, and that the lessons learned will be ap-
plicable to future generations of architectures and other graph algorithms.

Acknowledgment

A part of this work was supported by DoD under project 63810 and the Center
for Adaptive Super Computing Software Multithreaded Architectures (CASS-

21

MT) at the U.S. Department of Energy Pacific Northwest National Laboratory
(PNNL). PNNL is operated by Battelle Memorial Institute under Contract DE-
AC06-76RL01830. We thank Oreste Villa for lively discussions and access to
previous GPU implementation of matching algorithms.

References

[1] Jonathan Cohen and Patrice Castonguay. Efficient graph matching and col-
oring on the GPU. Presentation at NVIDIA GTC conference, 2012.

[2] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[3] Mehmet Deveci, Kamer Kaya, Bora Uçar, and Ümit V. Çatalyürek. GPU
accelerated maximum cardinality matching algorithms for bipartite graphs.
CoRR, abs/1303.1379, 2013.

[4] Iain S. Duff and Jacko Koster. The design and use of algorithms for permut-
ing large entries to the diagonal of sparse matrices. SIAM J. Matrix Anal.
Appl., 20(4):889–901, 1999.

[5] Florent Duguet. Kepler vs Xeon Phi : Nos mesures - et leur
code source complet. http://www.hpcmagazine.fr/en-couverture/

kepler-vs-xeon-phi-nos-mesures, June 2013.

[6] BasO. Fagginger Auer and RobH. Bisseling. A gpu algorithm for greedy
graph matching. In Rainer Keller, David Kramer, and Jan-Philipp Weiss,
editors, Facing the Multicore - Challenge II, volume 7174 of Lecture Notes
in Computer Science, pages 108–119. Springer Berlin Heidelberg, 2012.

[7] Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and
Alex Pothen. Approximate weighted matching on emerging manycore and
multithreaded architectures. Int. J. High Perf. Comput. App., 26(4):413–
430, 2012.

[8] Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and
Alex Pothen. Approximate weighted matching on emerging manycore
and multithreaded architectures. Int. J. High Perform. Comput. Appl.,
26(4):413–430, November 2012.

[9] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun.
Accelerating cuda graph algorithms at maximum warp. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 267–276, New York, NY, USA, 2011. ACM.

22

[10] George Karypis and Vipin Kumar. Analysis of multilevel graph partitioning.
In Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), page 29, New York, NY, USA, 1995. ACM.

[11] Arif M. Khan, David F. Gleich, Alex Pothen, and Mahantesh Halappanavar.
A multithreaded algorithm for network alignment via approximate match-
ing. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, pages 64:1–64:11,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[12] L. Lovasz. Matching Theory (North-Holland mathematics studies). Elsevier
Science Ltd, 1986.

[13] Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded
matching algorithms. In Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, IPDPS ’14, pages 519–528,
Washington, DC, USA, 2014. IEEE Computer Society.

[14] Enrico Mastrostefano and Massimo Bernaschi. Efficient breadth first search
on multi-gpu systems. J. Parallel Distrib. Comput., 73(9):1292–1305,
September 2013.

[15] Burkhard Monien, Robert Preis, and Ralph Diekmann. Quality matching
and local improvement for multilevel graph-partitioning. Parallel Comput.,
26(12):1609–1634, 2000.

[16] Ali Pinar, Edmond Chow, and Alex Pothen. Combinatorial algorithms for
computing column space bases that have sparse inverses. Electronic Trans-
actions on Numerical Analysis, 22:122–145, 2006.

[17] Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a
sparse matrix. ACM Trans. Math. Softw., 16(4):303–324, 1990.

[18] E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A. Bader.
Parallel community detection for massive graphs. In Proceedings of the 9th
International Conference on Parallel Processing and Applied Mathematics -
Volume Part I, PPAM’11, pages 286–296, Berlin, Heidelberg, 2012. Springer-
Verlag.

[19] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer, 2003.

[20] Cristina Nader Vasconcelos and Bodo Rosenhahn. Bipartite graph matching
computation on gpu. In Proceedings of the 7th International Conference on
Energy Minimization Methods in Computer Vision and Pattern Recognition,
EMMCVPR ’09, pages 42–55, Berlin, Heidelberg, 2009. Springer-Verlag.

23

[21] Qiumin Xu, Hyeran Jeon, and M. Annavaram. Graph processing on gpus:
Where are the bottlenecks? In Workload Characterization (IISWC), 2014
IEEE International Symposium on, pages 140–149, Oct 2014.

