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raphael.camargo@ufabc.edu.br

Abstract—Models are useful to represent abstractions of soft-
ware and hardware processes. The Bulk Synchronous Parallel
(BSP) is a bridging model for parallel computation that allows
algorithmic analysis of programs on parallel computers using
performance modeling. The main idea of BSP model is the
treatment of communication and computation as abstractions
of a parallel system. Meanwhile, the use of GPU devices are
becoming more widespread and they are currently capable of
performing efficient parallel computation for applications that
can be decomposed on thousands of simple threads. However,
few models for predicting application execution time on GPUs
have been proposed.

In this work we present a simple and intuitive BSP-based
model for predicting the CUDA application execution times on
GPUs. The model is based on the number of computations and
memory accesses of the GPU, with additional information on
cache usage obtained from profiling. Scalability, divergence,
effect of optimizations and differences of architectures are
adjusted by a single parameter.

We evaluated our model using two applications and six
different boards. We showed by using profile information for
a single board, that the model is general enough to predict
the execution time of an application with different input sizes
and on different boards with the same architecture. Our model
predictions were within 0.8 to 1.2 times the measured execution
times, which are reasonable for such a simple model. These
results indicate that the model is good enough to generalize the
predictions for different problem sizes and GPU configurations.

Keywords-BSP model, Performance Prediction, GPGPU, Ke-
pler Architecture, CUDA.

I. INTRODUCTION

Graphics Processing Units (GPUs) are specialized pro-
cessing units that were initially conceived with the purpose
of accelerating vector operations, such as graphics rendering.
GPUs are general purpose parallel processing units with
accessible programming interfaces, including standard lan-
guages such as C and Python. In particular, the Compute
Unified Device Architecture (CUDA) is a parallel comput-
ing platform that facilitates the development on any GPU
enabled system [1]. CUDA was introduced by NVIDIA in
2006 for their GPU hardware line.

Parallel computing models have been an active research
topic since the development of modern computers [2],
[3], [4]; their main goal is to provide a standard way

of describing and evaluating the performance of parallel
applications. For the success of a parallel computing model,
it is paramount to also consider the characteristics of the
underlying architecture of the hardware being used.

One of the most well-established models for parallel
computing is the Bulk Synchronous Parallel (BSP), first in-
troduced by Valiant in 1990 [5]. Its main goal was to provide
a bridging model that can represent different architectures
sufficiently well, without considering all the hardware de-
tails. The BSP model bridges the essential characteristics
of different kinds of machines as a combination of three
attributes:

• a set of virtual processors, each associated to a local
memory;

• a router, that delivers the messages in a point-to-point
manner;

• a synchronization mechanism for all or for a subset of
processors.

The computation is organized in a sequence of super-
steps, each one divided into three successive—logically
disjointed—phases. On the first phase, all processors use
their local data to perform local sequential computations
in parallel (i.e., there is no communication among the
processors.) The second phase is a communication phase,
where all nodes exchange data performing personalized all-
to-all communication. The last phase consists of a global
synchronization barrier, that guarantees that all messages
were delivered and all processors are ready to start the
next superstep. Figure 2 depicts the phases of a BSP
application. On the BSP model there is no restriction on
sending messages, but all of them should be received by the
synchronization barrier. According to the execution model,
the first and second phase may occur simultaneously.

In this work we propose a new refinement of the BSP
model for applications developed for GPUs. Similarly to
the BSP model, our model is mainly based on the number
of computational and communication steps used by the
application. These values are multiplied by parameters that
describe the number of cores, threads and the clock rate of
the processors. Differently from the BSP model, we did not
include the synchronization step of the BSP model, since



global synchronizations in GPUs occur only at the end of
the kernel and we consider only the execution of a single
kernel.

Application optimizations, such as divergence, shared
bank conflicts, and coalesced global memory accesses can
have an important impact on the performance of GPU
applications. We model these effects by adjusting a single
parameter λ, which can be obtained empirically by executing
one instance of the application on a single GPU model and
with a single input size. The same λ value would them be
used to predict the application execution time for other GPU
models and input sizes.

The predictability of this model is evaluated with the
classical use-case of matrix multiplication application (with
4 different types of performance optimizations) and with
an application to solve the maximum subarray problem [6].
We evaluated our model using 6 different GPUs models,
comparing the predicted execution times with the actual
measured times. We verified that we could use the same λ
value for all GPU models and for a large range of input sizes,
showing that this parameter could be general enough to
capture the optimization effects in the evaluated applications.

The structure of this document is as follows. Section II
reviews the GPU architectures and the programming model
of CUDA, while Section III describes other works about
parallel models in GPUs. In Section IV we present the model
proposed in this research. Section V explains the different
use-cases used to evaluate our new model and Section VI
shows our experimental results. Finally, Section VII con-
cludes this work and presents the planned future works.

II. GPU ARCHITECTURE AND CUDA

The most widely used GPUs are those produced by
NVIDIA, together with the CUDA platform. The architec-
ture of these GPUs is built with a set of Streaming Multi-
processors (SMs) each containing several cores called Scalar
Processors (SPs), a set of Special Function Units (SFUs) and
a number of load/store units. The multiprocessors execute
asynchronously, in parallel. The SM schedules threads in
groups of 32 parallel threads called warps, which can use
load/store units concurrently, allowing simultaneous reads
from memory for these threads.

GPUs have a hierarchical memory, with a large, high
latency off-chip global memory and a small, low latency
on-chip memories, such as the shared memory and registers.
Each GPU has its own DRAM, referred to as global memory,
which can be accessed from any multiprocessor. The GPU
also has a noncoherent caches. Each multiprocessor has
its own cache L1. Data in the shared memory can be
accessed by multiple hardware thread contexts on the same
multiprocessor.

Each thread has to access these different levels of mem-
ory, and their efficient usage are essential for optimizing
application execution. More recent boards have L1 and L2

cache memories to reduce the latencies of global memory
accesses.

The GPU architecture has evolved in recent years, with
Tesla, Fermi, Kepler, and Maxwell architectures. Their main
architectural differences are in the configuration of SMs,
such as number of cores, registers, SFU and load/store
units, on-chip memory size and local cache. There are also
changes in processor clock frequency, memory bandwidth,
and some specific features, such as unified memory spaces
and dynamic kernel launches, features summarized in the
Compute Capability of the GPU. A function launched in a
GPU with CUDA programming model is named kernel.

Tesla, Fermi and Kepler architectures have SFUs to ex-
ecute transcendental instructions such as sin, cosine and
square root, with each SFU executing one instruction per
clock. Tesla architectures implemented fused multiply-add
(FMA) for double precision. Fermi architectures imple-
mented the IEEE 754-2008 floating-point standard [7] for
both single and double precision arithmetic which performs
multiplication and addition with a single rounding step.

Similarly to Tesla, Fermi and Kepler architectures support
a unified memory request path [8]. In Tesla architectures,
global memory access by threads of a half warp (16) can
be coalesced to one transaction for words of sizes 8-bit,
16-bit, 32 bit, 64-bit and 128-bit. On Fermi and Kepler
architectures, coalesced accesses can be done by all threads
of a warp.

The global memory has a latency of about 400 or 600
cycles per clock [9], [10], which has a latency of one cycle.
To improve memory access efficiency, Fermi and Kepler
provide a low-latency on-chip L1 cache, with an access
latency equal to the shared memory. A L2 off-chip cache is
also present, with a latency higher than L1, but lower than
the global memory. L1 and shared memory are accessed
only by threads from the same SM, while global memory
and cache L2 are accessed by every thread. Figure 1 shows
the hierarchy memory accessed by any thread executed in
a Fermi and Kepler architecture, this figure was adapted
from [11].

Figure 1. Memory hierarchy of threads in a kernel executed in Kepler
architectures



A. Compute Unified Device Architecture

The Compute Unified Device Architecture (CUDA) is
a high-level platform for developing GPU applications.
It extends the C language and provides a compiler that
translates it into a pseudo-assembly PTX (Parallel Thread
Execution) code, which is executed in NVIDA GPUs. CUDA
applications are organized in kernels, which are functions
executed on GPUs. GPUs execute kernels asynchronously
and, depending on the Compute Capability, several kernels
can be executed concurrently.

Threads blocks are assigned to SMs, which can concur-
rently execute groups of threads called warps. Threads from
the same warp must execute the same instructions. When the
code contains conditional flows, threads from the same warp
may have to execute different instructions, what is performed
sequentially, in an effect called divergence. Divergences can
affect the efficiency of applications.

The performance of a kernel execution in a GPU depends
largely on the optimization of access to data in the memory
hierarchy Threads within a block can cooperate by sharing
data through the shared memory. Shared memory is on chip
in each multiprocessor and has a very small latency.

This memory is divided into memory banks and different
banks can be accessed concurrently, adjacent 4-byte words
are stored in adjacent banks. But only one thread can access
each bank in the same clock cycle, if multiple threads
try to access different locations in the same bank, all
memory accesses will be serialized, this is known as bank
conflicts. Consequently, applications should be organized so
that threads from the same warp access data from different
memory banks.

The bandwidth of the global memory can be largely im-
proved by combining the load/store requests from different
threads of a single warp in a single memory request, in a pro-
cess called coalescing [12]. The coalescing occurs when the
threads access contiguous global memory addresses, which
permits usage of the multiple load/store units available per
SM.

III. RELATED WORK

The BSP model has been widely used on different ap-
plications contexts. HPC practitioners have been using the
BSP model to design algorithms and software that can run
on any standard architecture with guaranteed performance
[13], [14], [15]. Consider a BSP program that runs on S
supersteps using p processors simultaneously with clock
rate (speed) R. Let g (the gap) be the bandwidth of the
network and L the latency—i.e., the minimum duration
of a superstep—which reflects not only the latency of the
network, but also the overhead of the synchronization step.

The cost to execute the i-th superstep is then given by:

wi + ghi + L (1)

where wi is the maximum amount of local computations
executed, and hi is the largest number of packets sent or
received by any processor during the superstep. If W =∑S

i=1 wi is the sum of the maximum work executed on all
supersteps and H =

∑S
i=1 hi the sum of the maximum

number of messages exchanged in each superstep, then the
total execution time of the application is given by:

T =W + gH + LS (2)

Figure 2. Superstep in a Bulk Synchronous Parallel Model.

It is common to present the parameters of the BSP model
as a tuple (w, g, h, L).

There are other parameterized parallel models [3], [4],
almost all of them using or extending the core of the
BSP model. Dehne et al. [16] have studied the problem
of designing scalable parallel geometric algorithms, and he
has introduced the Coarse Grained Multicomputer model
(CGM), where a set of p processors are constrained to use
O(N/p) local memory, where N is the input size of the
problem.

To ease the development and analysis of parallel pro-
grams, the BSP programming model was implemented as
API libraries [17], and recently enhanced to simplify pro-
gramming on GPU architectures [18]. These developments
help to create scientific applications in massively parallel
environments computing in an easier and better way.

Recently, Valiant proposed an adaptation of the BSP
model over multicore architectures; he called this model
Multi-BSP [19]. Multi-BSP incorporates the memory size
as an additional parameter. Multi-BSP model is a multi-
level model that has explicit parameters for the number of
processors, memory cache sizes, communication costs, and
synchronization costs. It recognizes the physical characteris-
tics of multiple memory and cache levels both within single
chips as well as in multi-chips architecture.

BSP and Multi-BSP propose a bridge between the de-
velopment and analysis of algorithms over distributed and
parallel systems, but they make emphasis in machines with
multicore processors and not on GPUs.

Kothapalli et al. [20] have presented a combination of
known models with small extensions. The models they



have used are: BSP model, PRAM model by Fortune and
Wylie [21] and the QRQW model by Gibbons [2].

The authors abstract the GPU computational model by
considering the pipeline characteristic of the application in
GPU architectures. But they do not consider the effects
of divergence, which can have a significant impact in the
efficiency of GPU applications and developers need a strong
understanding of parallel applications in CUDA and its
different optimizations.

Hong and Kim [22] have proposed and evaluated a
memory and parallelism-aware analytic model to estimate
execution time of massively parallel application in GPUs.
The key idea is to find a metric which they have called MWP
(Memory Warp Parallelism) and CWP (Compute Warp Par-
allelism). The analytic model provides good performance
predictions, however, this model requires a deep analysis
and understanding by third-party developers of parallel ap-
plications in CUDA. They have introduced the metrics MWP
and CWP, MWP is related to how much memory parallelism
in the application and CWP is related to the program
characteristics. CWP is used to decide whether performance
is dominated by computation or communication.

Zhang et al. [23] have presented a quantitative per-
formance analysis model, based on micro-benchmarks for
NVIDIA GeForce 200-series GPUs. They have developed a
throughput model for three components of GPU execution
time: the instruction pipeline, shared memory access, and
global memory access. The model is based on a native GPU
instruction set instead of the intermediate PTX assembly
language or a high-level language. Our model uses a high-
level bridging model for parallel computation and is focused
on computation and communication processes for any GPU
application. This encourage developers to use better opti-
mizations in communication and computation.

Kirtzic has proposed the the Parallel GPU model
(PGM) [13]. PGM is an adaptation of the models PRAM,
BSP and parallel phase model. This model offers a general
design and a fine-grained approach. PGM is not a model
to predict time; on the contrary, it is a parallel algorithm
development model. The model can result in significant
increase in performance when algorithms are designed based
on their principles. This parallel GPU method allows parallel
GPU algorithm designers, ranging from the novice to the
expert, to design and implement optimal algorithms that
take advantage of GPU architectures. To achieve optimal
for particular algorithms, knowledge about the architecture
of specific GPUs is required.

Kerr et al. developed a methodology for the systematic
construction of performance models of heterogeneous pro-
cessors [24]. This methodology is comprised of experimental
data acquisition and database construction, a series of data
analysis passes over the database, and model selection and
construction. They developed a framework, named Eiger,
that implements their methodology. Another framework to

construct performance models was presented by Spafford
and Vetter [25]. They used a domain specific language
to develop analytical performance models for the three
dimensional Fast Fourier Transform (3D FFT).

GPU applications can hide computation and communi-
cation latency by executing many parallel threads in an
interleaved mode. When the instruction pipeline is fully
saturated, the performance of the application run close to the
peak performance of the GPU. In contrast, when the pipeline
is under-utilized, the situation lies about the performance of
the application [23], [26].

Based on recent studies about the impact of small cache
hierarchy on performance, it is critical to model the GPU
caches [27]. Also, the models must carefully consider the
effects of memory access divergence, otherwise it can sig-
nificantly decrease the fidelity of the model [28], [29].

Our model is based solely in the BSP model. Scalability,
optimization effects and differences between architectures
are all adjusted by a single parameter λ. Profiling techniques
were used to confirm information about the behavior of
applications and to establish parameters about computation
and communication processes in GPU applications. Our
proposed model offers a simple analytical model can be used
to predict performance of GPU applications. This model
allowed an easy parametrization, well-suited for any GPU
applications in practice.

IV. PROPOSED MODEL

We propose a new simple performance prediction method
for GPU applications based on the BSP model. Similarly to
BSP, our model considers communication and computation
as an abstraction of a parallel system, and takes into account
the main physical properties and optimizations of GPU ar-
chitectures. The performance prediction is based on the cost
of communication and computation, which are determined
independently.

The model focus on the execution time prediction of a
single kernel function. The execution time is split between
computation and data transferring to and from global and
shared memories.

Tk =
t · (Comp+ CommGM + CommSM )

R · P · λ
(3)

In Equation 3, Tk is the approximated execution time of
a kernel function with t threads. It sums the computational
cost (Comp) with the communication cost of global memory
(CommGM ) and shared memory (CommSM ) accesses,
performed by each thread. This cost is multiplied by the
number of threads t and divided by the clock rate R times the
number of cores P available in the GPU. The parameter λ is
used to model the effects of application optimizations, such
as divergence, shared bank conflicts and coalesced global
memory accesses.



The computational time used by each thread in a kernel is
denoted by Comp. It is determined by the number of cycles
that each thread spends in its computation. FMA operations
can be included in Comp by reading the source code of the
kernel and verifying this possibility with profiling tools.

Communication is evaluated at two levels: global and
shared memory. The execution time for communication
in global and shared memory per thread are given by
CommGM and CommSM , respectively. These are defined
as the sum of load and write transactions over the global
memory and shared memory. This information can be ex-
tracted directly from the source code.

Additionally, to account the effects of cache memories
on recent GPU architectures, the number of L1 and L2
cache hits are subtracted from the number of loads over the
global memory. We have used metrics and events to confirm
information about the number of L1 and L2 cache hits. Their
contribution to the execution time is calculated separately,
multiplying them by their latency times [10][30]. This model
allows an easy parametrization, well-suited for any GPU
applications in practice. For simplification, we do not con-
sider constant and texture memories nor differences between
the latency of load and store transactions. CommSM and
CommGM are defined as:

CommSM = (ld0 + st0) · gSM (4)

CommGM = (ld1 + st1 − L1− L2) · gGM +

L1 · gL1 + L2 · gL2 (5)

gSM , gGM , gL1 and gL2 represent the latency in commu-
nication over shared, global, L1 cache and L2 cache memory,
respectively. Some typical values are 5 cycles for gSM and
gL1, 500 cycles for gGM [9], and 250 cycles for gL2.
ld0 and st0 represent the total number of load and stores

performed by all threads in the shared memory, and ld1 and
st1 represent the loads and stores for global memory. The
number of loads and stores to global and shared memory
are determined by analyzing the CUDA source code. L1
and L2 are determined executing an application execution
profile, resulting in a number between 0 and 1, which is
multiplied by the size of the problem N .

Application optimizations, such as divergence, shared
bank conflicts and coalesced global memory accesses, are
important to define the application performance [28], [31].
We consider the effects of those optimizations using the
λ factor. It is estimated as the ratio between the predicted
execution time of the application with the actual measured
execution time. The λ factor is important since it permits the
adjustment of application performance with the implemented
CUDA optimizations and GPU architectures. Finally, intra-
block synchronization is not computed, since it does not
affect processing time [9], [32].

1 g l o b a l vo id matMul ( f l o a t ∗ Pd , f l o a t ∗ Md,
2 f l o a t ∗ Nd , i n t N) {
3 f l o a t P va l ue = 0 . 0 ;
4 i n t j = b l o c k I d x . x ∗ tWid th + t h r e a d I d x . x ;
5 i n t i = b l o c k I d x . y ∗ tWid th + t h r e a d I d x . y ;
6
7 f o r ( i n t k = 0 ; k < N; ++k )
8 P va l ue += Md[ j ∗ N + k ] ∗ Nd [ k ∗ N + i ] ;
9

10 Pd [ j ∗ N + i ] = P va lu e ;
11 }

Figure 3. Kernel in CUDA of matrix multiplication only with global
memory and no-coalesced accesses.

Consequently, except for the value of λ and effects on
caches L1 and L2, all other parameters are constants. The
effect of usage of caches L1 and L2 must be confirmed
by profiling. λ performs the adjustment of application per-
formance with the implemented CUDA optimizations. Once
defined for the application, the same value should work for
other GPU architectures and input sizes of the application.

V. USE CASES

We have applied the model with two applications, Ma-
trix Multiplication and Maximum Subarray Problem [6],
developed in CUDA using the single-precision format. Both
applications use a single kernel. We have chosen a average
GPU (GTX-680, see table I) to find the parameter lambda
in our simulations of the model. We verified that we could
use the same λ value for all GPU models and a large range
input sizes.

During our evaluation, all applications were executed
using the CUDA profile tool nvprof. Each experiment is
presented as the average of ten executions, with a confidence
interval of 95%.

A. Matrix Multiplication

We have used four different optimization techniques re-
garding the use of the available memories for the matrix
multiplication application: (#1) global memory only; (#2)
global memory with coalesced accesses; (#3) shared memory
without coalesced accesses to global memory; and (#4)
shared memory with coalesced accesses to global memory.

The running time of a matrix multiplication for two
matrices of size N × N is proportional to O(N3) in
the sequential algorithm and to O(N) in CUDA, using
N2 threads. We have adopted tWidth2 threads per block
and defined the number of blocks to be square of (N +
tWidth-1)/tWidth, dynamically devised from the size
of the problem (N ), tWidth is equal in all the optimiza-
tions.

Figure 3 shows the CUDA source code in the first
optimization mode. Non-coalesced accesses occurs because
of irregular references to data in global memory. Lines 7 and
8 of the algorithm show that each thread performs N single
precision fused multiply-add (FMA) arithmetic operations



and N reads from global memory for each matrix. A single
write operation is performed in line 10. We do not consider
the accesses to the registers. All communication in this mode
is performed over global memory; shared memory is not
used.
Comp is determined by the number of multiplications

and/or operations computed by a thread. In this case,
each thread performs N FMA single precision operations.
IEEE 754-2008 floating-point standard [7] states that those
operations needs a single rounding step or cycle. The value
of Comp is the same for the all four optimizations modes,
since they differ only in the memory access patterns.

The number of accesses to global and shared memories
are constants, with ld0 and ld1 being N and st0 and st1
being 1 for all optimization modes. The number of cache hits
varies across executions for different sizes of the problem
because of changes on the rate of coalesced accesses.

With those values, we can compute—using equations 5
and 4—the values of Comp, CommGM , and CommSM ,
that are then multiplied by the number of threads t in the
kernel.

The optimizations actually affect only the performance of
the communication between threads. For the optimization
(#1), we have found empirically λ = 4.35. As explained
above, λ = 1 in the first execution and it is obtained by
the ratio of the predicted execution time of the application
with the actual measured execution time. This means that
the profiling of the application and the source code analysis
gave a preliminary version of the model that were about four
times smaller than the actual execution time.

This model allowed an easy parametrization, well-suited
for any GPU applications in practice. With a few knowledge
of other GPUs, the model extracted of this application can
represent good approximations of the time execution of this
application.

For optimization (#2), we changed the data access pattern,
to permit coalesced access to data in global memory. In
Figure 3 line 8 is changed to

Pvalue += Md[j * Width + k] * Nd[k * Width + i];

and line 10 is changed to

Pd[j * Width + i] = Pvalue;

in this case we have have obtained λ = 23.
Optimization (#3) uses shared memory to load data from

global memory and to process them with a lower latency
of communication. Similarly to the previously examined
optimizations, optimization (#4) is obtained by changing
the coalesced memory access from the source code of
optimization (#3). The source code for optimization (#4) is
shown in Figure 4.

The external loop in lines 11–19 transfers data from global
to the shared memory. The internal loop, in lines 16 and
17, performs the actual matrix multiplication computation.

1 g l o b a l vo id matMul ( f l o a t ∗ Pd , f l o a t ∗ Md,
2 f l o a t ∗ Nd , i n t N){
3 s h a r e d f l o a t Mds [ tWid th ] [ tWid th ] ;
4 s h a r e d f l o a t Nds [ tWid th ] [ tWid th ] ;
5 i n t t x = t h r e a d I d x . x ;
6 i n t t y = t h r e a d I d x . y ;
7 i n t Col = b l o c k I d x . x ∗ tWid th + t x ;
8 i n t Row = b l o c k I d x . y ∗ tWid th + t y ;
9

10 f l o a t Pv a l ue = 0 ;
11 f o r ( i n t m = 0 ; m < N/ tWid th ; ++m) {
12 Mds [ t y ] [ t x ] = Md[Row∗N + (m∗ tWid th + t x ) ] ;
13 Nds [ t y ] [ t x ] = Nd [ Col + (m∗ tWid th + t y )∗N ] ;
14 s y n c t h r e a d s ( ) ;
15
16 f o r ( i n t k = 0 ; k < tWid th ; ++k )
17 Pv a l ue += Mds [ t y ] [ k ] ∗ Nds [ k ] [ t x ] ;
18 s y n c t h r e a d s ( ) ;
19 }
20 Pd [Row ∗ N + Col ] = Pva lu e ;
21 }

Figure 4. Kernel in CUDA of matrix multiplication using shared memory
and coalesced accesses

Like shared memory is limited in GPU architectures, the
implementations of matrix multiplication with shared mem-
ory must be tiled. This technique of splitting our problem
domain into phases is called “tiling”. The size of the tiled
is proportional of the thread per blocks. The tiled process
is executed tWidth times to guarantee that each thread
can access all elements necessary to perform its part of the
multiplication.

The block barrier synchronization before the inner loop
guarantees that all data was loaded in the shared memory
before the calculations are performed, while the barrier after
it guarantees that the shared memory can be safely overwrit-
ten. Intra-blocks synchronizations have a small latency due
to warp scheduler optimizations and processing time is not
influenced by these synchronizations [32]. Consequently, we
can safely ignore these intra-blocks synchronizations.

The devised value of λ for optimization (#3) is 19 and
for optimization (#4) is 67. We used the same λ values
for the five tested GPUs with Kepler architecture (compute
capability 3.0 and 3.5). For the GT-630 GPU, which has a
hybrid architecture between Fermi and Kepler, the λ values
for optimizations (#1), (#2), (#3), (#4) were 3.5, 37, 22
and 96 respectively. Note that higher optimizations levels
results in larger λ values and, consequently, the λ can bwe
considered an estimator of the application optimization level.

B. Maximum Subarray Problem

Let X be a sequence of N integer numbers
(x1, x2, ..., xN ). The maximum subarray problem consists
of finding the contiguous subarray within X which has
the largest sum of elements. The solution for this problem
is frequently used in computational biology for gene
identification, analysis of sequence of protein and DNAs,
identification of hydrophobic regions, among others. The
maximum subarray problem can be solved with O(N)



1 g l o b a l vo id subSeqMax ( i n t ∗ve t , i n t ∗ v e t F i n a l ,
2 i n t ElemPorThread , i n t N Block ){
3 s h a r e d i n t ∗p ;
4
5 f o r ( j = 0 ; j < (N / t ) ; j ++){
6 p = loadSharedmemory ( ve t , N Block , j ) ;
7 s y n c t h r e a d s ( ) ;
8 p r o c e s s I n t e r v a l S e q u e n c e ( v e t F i n a l ) ;
9 }

10 w r i t e R e s u l t i n g V e c t o r s ( v e t F i n a l ) ;
11 }

Figure 5. Kernel simplified in CUDA of sequence maximum problem [6]

comparison operations [33] and a parallel solution for this
problem was developed using Coarse Grained Model [34],
resulting in O(N/t) comparisons, where t is the number of
threads.

In the used implementation, we have created a kernel with
4096 threads divided in 32 thread blocks with 128 threads
on each. The N elements are divided in intervals of N/t
elements, one per block and each block receive a portion of
the array. The blocks use the shared memory for storing
segments of its interval, which are read from the global
memory using coalesced accesses. Each interval is reduced
to a set of 5 integer variables, which are stored in vector of
size 5× t in global memory. This vector is then transferred
to the CPU main memory RAM for later processing.

Figure 5 shows a simplified version of the used algorithm.
In line 5, each thread perform a loop which is iterated for
every element allocated to the thread. On line 6, function
loadSharedMemory loads data from the global memory
to the shared one using groups of 32 threads and coa-
lesced access. Function processIntervalSequence
then processes the next elements from its vector inter-
val, which updates vetFinal with the 5 output param-
eters of the interval. This function uses nested condition-
als, which results in some divergence between threads of
the warp. writeResultingVectors finally copies the
vetFinal data to the CPU memory.

Functions processIntervalSequence and
loadSharedmemory are called N_Block/t times,
and function writeResultingVectors is called once.
N_Block is the portion that each block received of the
sequence. The number of cycles used per thread in this
algorithm varies depending on the statical properties of the
input. For the inputs that we generated, we found that a
value of 100 cycles per thread, multiplied by the input size
of each thread worked reasonably well.

For the maximum subarray problem, we have fixed λ
equal to 0.56 for the five GPUs with Kepler architecture.
For the GT-630, which has a different architecture, we used
λ = 1.1.

VI. EXPERIMENTAL RESULTS

We have performed experiments to evaluate the predic-
tions of our model, by comparing these predictions with

measurements of executions of the applications over 6 dif-
ferent GPUs: GeForce GT-630, GeForce GTX-660, GeForce
GTX-680, GTX-Titan, Tesla-K20 and Tesla-K40. Five GPUs
have Kepler architecture (compute capability 3.X) and the
GT-630 board has a mixed Fermi and Kepler architecture
(compute capability 2.1). Table I shows their specifications.

Table I
HARDWARE CHARACTERISTICS OF GPUS WERE USED FOR THE

EXPERIMENTS

Model C.C. GM BW SM/Cores Clock
GT-630 2.1 2 GB 21.3 GB/s 2/96 1620 Mhz

GTX-660 3.0 2 GB 144.2 GB/s 5/960 1058 Mhz
GTX-680 3.0 2 GB 192.2 GB/s 8/1536 1006 Mhz

GTX-Titan 3.5 6 GB 288.3 GB/s 14/2688 876 Mhz
Tesla-k20 3.5 4 GB 208 GB/s 13/2496 706 Mhz
Tesla-k40 3.5 12 GB 276.5 GB/s 15/2880 745 Mhz

The number of computation (Comp) and communication
(gSM , gGM , gL1 and gL2) steps were extracted from the
application source codes, and information about cache hits
in cache L1 and L2 were extracted from profiling. We also
confirmed the usage of FMA and SFU using profiling.

For all simulations, we considered 5 cycles for latency
in the communication in shared memory and 500 cycles are
considered for latency communication in global memory [9].
We used the same latency from shared memory to the L1
cache and half the global memory latency for L2 cache. For
both computational and communication costs, we divide the
total cost for all threads by the clock rate R and the number
of cores in each GPU.

Finally, for the parameter λ, which captures the effects of
thread divergence, global memory access optimizations, and
shared memory bank conflicts, we used the values described
in the previous section.

The source code for the experimental part of the work is
available at https://github.com/marcosamaris/BSPGPU.

A. Matrix Multiplication

We used four optimization modes for the matrix multi-
plication application: (#1) global memory only; (#2) global
memory with coalesced accesses; (#3) shared memory; and
(#4) shared memory with coalesced accesses to global
memory. We measured the execution time using 6 different
GPUs and different matrix sizes N×N . For each experiment
we used the mean execution time of 10 executions.

We compared the measured times (Tm) with the times
predicted by the proposed model (Tk), and used the ratio
Tk/Tm to define the precision of the prediction. We used
Tk values computed as described in Section V.

Figure 6 shows the obtained results. For most cases, the
predicted execution time was within 10% of the measured
time (Tk/Tm between 0.9 and 1.1). We consider this an
excellent result, considering that we used the same λ and
L1 and L2 cache hits for the five Kepler boards. The most



important exception was for Optimization (#1) in the GT-
630 board, which varied between 0.6 and 1.4 of the predicted
time. Using the CUDA profiler we verified that the usage
of L1 cache is high for this board with this optimization
scheme, opposed to other configurations, where cache usage
was low. Cache effects are hard to predict and are more
important for non-optimized applications that, for example,
do not use the shared memory and coalesced access to the
global memory.

Figure 6. Tk/Tm of four optimizations of matrix multiplications over 6
different GPUs

To determine if our model can capture the required
parameters to predict the execution time of application,
we evaluated the case where we could adjust the λ in-
dependently for each GPU. The only exception was the
model for optimization (#1) on the GT-630 board, were we
adapted the parameter L1 hit rate, which was in the range
of 65% and 10%. Figure 7 shows that the rate between the
predicted and measured times for all the optimization of
matrix multiplication in all the GPUs were between 0.9 and
1.1. The values of λ used for each simulation are show in the
Table II. In all cases, the error did not increase or decrease
significantly with different matrix sizes, which permits a
precise performance prediction for all sizes using a single
performance measurement.

These results show that we can use the model in the

scenarios with different GPU types of the same architecture
and with only one GPU type. In both cases the model can
predict applications execution time from measurements on
a single board with a single input size. With different GPU
types, the prediction is less precise, since the optimal λ value
is different for each board. But it can still produce adequate
predictions. When using a single board, the prediction errors
were always below 5%.

Figure 7. Tk/Tm of four optimizations of matrix multiplications with
different values of λ, see table II

B. Maximum Subarray Problem

We compared the execution time predictions of our
model with the measured execution times for the maximum
subarray problem. Similarly to the matrix multiplication
application, we used the same value λ = 0.56 for all boards
with Kepler architecture, and used a different value λ = 1.1
for the GT-630 board.

Figure 8a shows that the rate between the predicted
and measured times for the all the GPUs were between
0.8 and 1.2, showing a good prediction capability of the
model. Moreover, this ratio remained nearly constant for
all input sizes, which shows that the prediction accuracy is
independent of the problem size. With the GT-630 board the
difference was larger, between 0.8 and 1.2. We should note



Figure 8. a. Tk/Tm of SubSeqMax in all GPUs. b. Tk/Tm of SubSeqMax
in all GPUs with different values of λ, see table II

that we use a large range of input sizes, from 220 to 228,
resulting in a difference of 256 times between the smallest
and largest inputs.

We also evaluated the scenario where we used different
λ values for different boards, with the used values shown in
Table II. Figure 8b shows the results using these different
λ. Similarly to the matrix multiplication, the predicted
execution times were closer to the measured times, with
predictions errors inferior to 5% in nearly all cases and this
error were stable with different matrix sizes. This scenario
is less general than using the same λ values for all GPUs,
but is applicable in the case were the user needs to predict
the execution times using different input sizes on a single
board. The presented model is simple enough in order to be
clearly understood and applied to different types of GPU-
based parallel executions.

Table II
VARIATION OF THE PARAMETER λ FOR EACH ONE OF APPLICATIONS IN

THE GPUS USED

Opt. (#1) Opt. (#2) Opt. (#3) Opt. (#4) SubSeqMax
GT-630 3.5 37 22 96 1.1

GTX-660 4.8 21 20 70 0.61
GTX-680 4.15 24 20 72 0.76
GT-Titan 4.5 22 18 52 0.55
Tesla-K20 4.35 22 18.5 66 0.63
Tesla-K40 4.65 24 19.5 65 0.52

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a BSP-based model for predict-
ing the performance of GPU applications. The BSP model
offers a solution to tackle parallel problems in massively
parallel architectures. We used the model to predict the per-
formance of matrix multiplication with four different opti-
mization levels and a coarse grained solution of subsequence
maximum problem. All the applications were developed in
CUDA and they were executed on 6 different GPU boards.

By considering two levels of memory, shared and global
memories, we could accurately model the performance of
these applications using several GPU models and problem
sizes. The usage of two adaptable parameters λ was suf-
ficient to model the effect of data coalescing during read

and write operations to the global memory. A similar set of
parameters also model the effects of cache hits, computation
and communication process of any GPU application. In the
majority of the scenarios, the time measured were around
0.8 to 1.2 times the model predicted execution time.

As future work, we will consider the scenario of multiple
kernels and multiple GPUs, where global synchronization
among kernels and one extra memory level, the CPU RAM,
need to be considered. We presented a simple analytical
model to predict performance of GPUs applications with op-
timal accuracy. Another future work will focus on improving
statistical learning algorithms for performance prediction of
applications accelerated with GPUs.
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