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Abstract—Upcoming exascale compute systems are expected
to be built from heterogeneous hardware architectures. Accord-
ing to this trend, there exist various methods to handle clusters
composed of CPUs, GPUs or other accelerators. Most of these
assume that each node has the same structure—for example a
dual socket system with an accelerator (GPU or Xeon Phi). The
workload is then distributed homogeneously among the nodes.
However, not all clusters fulfill this requirement. They might
contain different partitions with and without accelerators.
Furthermore, depending on the underlying problem to be
solved, accelerator cards may perform better in native mode
compared to offloading. Besides, various aspects such as cooling
may influence the performance of individual nodes. It therefore
cannot always be assumed, that the structure and performance
of each node and hence the performance of every MPI rank is
the same.

In this contribution, we apply a k-d tree decomposition
method to balance load on heterogeneous compute clusters.
The algorithm is incorporated into the molecular dynamics
simulation program ls1 mardyn. We present performance
results for simulations executed on hybrid AMD Bulldozer–
Intel Sandy Bridge, Intel Westmere–Intel Sandy Bridge and
Intel Xeon–Intel Xeon Phi-architectures. The only prerequisite
for the proposed algorithm is a cost estimation for different
decompositions. It is hence expected to be applicable to a
variety of n-body scenarios, for which a domain decomposition
is possible.

Keywords-molecular dynamics; Intel Xeon Phi; AMD Bull-
dozer; heterogeneous; ls1 mardyn; k-d trees

I. INTRODUCTION

Many of the current and upcoming fastest supercom-

puters utilize accelerators. Six out of the current top 101

supercomputers still provide a homogeneous architecture. A

closer look, however, reveals that the two most powerful

supercomputers are already heterogeneous systems. The

Tianhe-2 utilizes Intel Xeon Phi accelerator cards, while the

supercomputer Titan uses Nvidia Tesla accelerators. Due to

power limitations, trends foresee various future supercom-

puting platforms to be heterogeneous. The Summit (Nvidia

Volta) and the Sierra (Nvidia Volta) supercomputers are only

two examples of upcoming heterogeneous supercomputers

and are expected to have a peak performance in the range

1http://www.top500.org/lists/2015/11/

of 150-300 PetaFLOPS2. While heterogeneous computers

allow for an acceptable level of energy efficiency, they come

at the price of more enhanced programming and software

efforts. It therefore becomes important to be able to leverage

both host and accelerator to optimize for time-to-solution or

energy consumption, respectively.
Many current heterogeneous clusters do, however, not

have such an easy structure. Instead they might contain

different versions of hardware from different generations,

or contain a partition with and one without accelerators.

One such system is the SuperMUC Cluster3, that contains

a partition with Sandy Bridge CPUs, one with Haswell

CPUs and another with Ivy Bridge CPUs and Xeon Phi

accelerators. The latter partition is often called SuperMIC.

Only very few current algorithms are able to handle such

heterogeneities.
One of the application fields, that requires considerable

compute power is given by molecular dynamics. Application

scenarios range from simulations of proteins in life sciences

[1] to process engineering [2]. The simulation code ls1
mardyn [2] that we focus on, has been designed for the latter

purpose. ls1 mardyn is able to simulate fluids consisting of

one or multiple different types of molecules. Some of these

fluids tend to form inhomogeneities, e.g. through nucleation.

To handle these a k-d tree-based domain decomposition

had been introduced, see e.g. [3]. Moreover, various efforts

have been made to optimize ls1 mardyn at node level for

both recent (Intel) host and accelerator architectures [3],

[4]. In this paper, we modify the k-d tree-based domain

decomposition and leverage its cost function to efficiently

exploit heterogeneous hardware systems. We present the

load balancing implementation for large molecular systems

as found in process engineering for homogeneous simulated

scenarios on heterogeneous systems.
We start with a brief review on molecular dynamics theory

in Sec. II. We discuss related work on load balancing in

this context and provide details on our implementation in

Sec. III. Performance evaluations for various heterogeneous

2http://energy.gov/articles/department-energy-awards-425-million-next-
generation-supercomputing-technologies

3https://www.lrz.de/services/compute/supermuc/
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hardware combinations are discussed in Sec. IV. We close

the discussion with a short summary and give an outlook to

future work in Sec. V.

II. SHORT-RANGE MOLECULAR DYNAMICS

We consider freely moving, rigid molecules, each con-

sisting of one or several interaction sites which interact

via potentials. Plugged into Newton’s equations of (trans-

lational and rotational) motion, the resulting inter- and

intramolecular forces yield molecular dynamics (MD). We

solve these equations with the (rotational) Leapfrog method.

Various intermolecular interactions, such as the Lennard-

Jones potential [5]

U(‖xi−xj‖) := 4ε

((
σ

‖xi − xj‖
)12

−
(

σ

‖xi − xj‖
)6
)
,

with parameters ε and σ, depend on the distance of the

molecular interaction sites ‖xi−xj‖ and decay very rapidly

for ‖xi−xj‖ → ∞. One can therefore restrict considerations

to short-range interactions and disregard all intermolecular

interactions for distances ‖xi − xj‖ ≥ rc, where rc denotes

the cut-off radius.

To achieve linear complexity in the runtime of the evalu-

ation of molecule-molecule interactions, we make use of the

linked-cell method: molecules are sorted into cells of equal

size ≥ rc, and a molecule thus only interacts with another

molecule if both are located in the same or in neighboring

linked cells. Due to the locality of short-range molecular

interactions, parallelization can be achieved via a regular

domain decomposition. If nx×ny×nz = nproc processes are

available, the domain is divided accordingly into nx×ny×nz

block-shaped subdomains of same size. Each subdomain

is surrounded by a ghost layer of linked cells. Updating

the molecule data in the ghost layer once per time step,

each process can locally evaluate the short-range forces.

However, due to the randomized motion of molecules, the

computational load per cell may change considerably. See

amongst others [1] for further details on MD, the linked-cell

method and parallelization.

III. LOAD BALANCING IN MOLECULAR DYNAMICS

A. Related Work

Several works have addressed load balancing in the con-

text of molecular dynamics, with early contributions dating

back to the 90s [6]. In particular, various community codes

have been considered in this regard. The scalable community

software GROMACS [7], [8] supports execution on GPU

and CPU as well as heterogeneous variants. Parallelization

and load balancing is achieved via a combination of the

eighth-shell domain decomposition method with triclinic

cell adjustment and potential staggering. In case of extreme

staggering, additional subdomains may enter the area of po-

tential molecular interactions. The communication between

subdomains thus becomes more extensive and tends away

from the original nearest-neighbor consideration. This issue

and potential overheads can be limited by the user via pro-

viding a minimum allowed subdomain size [8]. The software

NAMD is used for biomolecular simulations. It provides

static load balancing via a recursive bisection algorithm and

Kalé et al. [9] have presented a modified greedy strategy for

dynamic load balancing of biomolecular simulations. Inves-

tigations with regard to topology aware load balancing were

conducted for NAMD and resulted in performance gains of

up to 10% [10]. Results for hybrid CPU-GPU simulations

using the package LAMMPS are reported in [11]. Besides

static load balancing, “up to a 20% reduction in loop time

was achieved with dynamic load balancing of forces” [11]. A

hierarchical parallelization scheme for heterogeneous CPU-

GPU systems is presented in [12]. Dynamic-scheduling-

based multi-threading is employed to balance CPU and

GPU workloads. Various approaches for load balancing of

molecular dynamics based on irregular domain decomposi-

tions are discussed in [13], [14], [15], in particular targeting

highly inhomogeneous and rapidly changing particle loads

per process. Successful runs using Voronoi tessellations

have been reported on up to 65 thousand MPI tasks [14];

however, issues have been encountered when the tessellation

was trapped in local minima of the load balance cost

function. A bulk synchronous parallel architecture model

is developed and tested for various domain decomposition

strategies to statically balance load in molecular dynamics

simulations [16]. To dynamically balance work load among

processes, performance data are measured and—together

with an orthogonal recursive bisection decomposition—are

used to determine the new size of the local computational

subdomains.

B. Load Balancing in ls1 mardyn

Previous Work: In their original purpose k-d trees

are used for associative searching [17] by generating a

partitioning of a k-dimensional domain, cf. Fig. 1: first, the

domain is split along a k − 1 dimensional hyperplane to

generate two subdomains. This splitting is further applied

recursively. Hereby the selection of the splitting hyperplane

plays an important role and depends on the application

domain.

Niethammer et al. provided an implementation of k-d tree-

based domain decomposition for inhomogeneous particle

load balancing and presented scalability results on up to

1000 MPI ranks [18] using the simulation software ls1
mardyn.

The initial implementation of the k-d tree-based load

balancing in ls1 mardyn is able to balance inhomogeneous

particle systems that may arise due to clustering or molecular

droplet formation. First, the domain is split into multiple

subdomains of equal load. These subdomains are then

distributed among the processes. Running the simulation
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Figure 1. Space-partitioning using a 2-d tree. The different colors represent
the different levels of the splitting hyperplanes.

on equally powerful compute cores and using one process

per core yields a balance of potentially inhomogeneous

particle systems over all processes. However, heterogeneous

compute systems have not been taken into account. In the

following, we detail the existing algorithm and extend it to

heterogeneous compute systems.

Initial k-d Tree-Based Load Balancing Scheme: We

employ the k-d splitting of the domain on the linked cell

level, i.e. each linked cell contained in the initial domain

is assigned to one of the partitions. This allows for a

simplified implementation of the load balancing algorithm,

since the computational kernel of the molecular dynamics

simulation remains untouched. To carry out the partitioning,

an estimation of the cost of possible splittings has to be

performed. We do this by assigning a load to each linked

cell. In each cell, all ncell sites within the cell interact with

each other, thus resulting in a O
(
n2

cell

)
dependence of the

load on the particle number. Additionally, each particle site

of the cell has to interact with every site of the neighboring

cells. This yields a total cost Ccell of

Ccell = n2
cell +

1

2

∑
neighbors

ncellnneighbor. (1)

In contrast to intra-cell interactions, more molecules lie

outside of the cutoff radius when two neighboring cells are

considered. We therefore modeled the cost of this calculation

with the factor 1/2. Each subdomain is always split along its

longest edge. This is a communication avoiding scheme in

the sense that subdomains with a high volume to surface

ratio are maintained. To find the optimal k-d decomposition

all combinations of possible splitting hyperplanes have to

be checked. This is however unfeasible for a large amount

of linked cells. It is therefore important to find good

strategies to determine good splitting hyperplanes. For large

subdomains and many processes, a good splitting can be

easily found by splitting the domain in half and assigning

an appropriate amount of processes to each subdomain.

This assignment should be made such that the load ratio

of the two partitions equals the ratio of the number of

their processes. For small subdomains it is important to

determine a close to optimal splitting. Therefore all possible

partitionings are tested and the best is chosen. Once only

one process is assigned to a subdomain, the subdomain is

no longer split. The evaluation is done in a parallel and

recursive way and is depicted in algorithm 1. Hereby each

process only calculates the cost of its cells and parents of

them. In the algorithm the function get1DSubdivisions

Algorithm 1: Parallel algorithm to evaluate the best

partitioning.

1 Function decompose (fatherNode)
input : fatherNode: a KDNode consisting of the

subdomain and the assigned processes

(starting process and numprocs)

output: complete partitioning of fatherNode
2 if fatherNode.numprocs == 1 then
3 fatherNode.calculateDeviation ()

4 return fatherNode

5 subdividedNodes ← get1DSubdivisions
(fatherNode)

6 foreach node in subdividedNodes do
7 if myrank in node.child1.processes then
8 node.child1 ←decompose (node.child1)

9 else
10 node.child2 ←decompose (node.child2)

11 partialAllReduceDeviations ()

12 node.deviation ←node.child1.deviation
+node.child2.deviation

13 return node of subdividedNodes with minimal
deviation

returns one or multiple possible splittings of the subdo-

main, that is associated to the input parameter. The input

parameter (fatherNode) resembles a node of the k-d tree

and is associated to a domain region and a certain range of

processes. The return type of the function is a collection of

subdividedNodes. One subdividedNode is hereby a clone

of the initial (fatherNode), but now owning two children.

Each of the children again owns a domain region and a range

of processes. If the domain and the number of processes is

large enough, a single subdividedNode is returned. Only if

the domain is small, a cost comparison is feasible and the

function returns multiple splittings. Each node provides the

function calculateDeviation. It returns the deviation

of its load from the ideal load. In the initial implementation

we chose a splitting such that the load is equally distributed

among the processes. The “ideal” load for a process is

defined as Cideal,i = Pi
Ctotal

Ptotal
, where C is the load and P the

performance of one or multiple processes. For homogeneous

architectures, the performance of each process Pi is assumed
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to be the same. The ideal load is thus equal for each process.

Adaptions for Heterogeneous Systems: On heteroge-

neous systems, the processes run at different levels of per-

formance. We therefore adapted the original implementation

[18], [19]. The changes are hightlighted in this paragraph.

We extended the algorithm by splitting the domain according

to the performance of the processes. First the processes

assigned to a subdomain are separated into two groups, that

provide roughly the same performance. Then the domain is

split such that the loads of the newly created subdomains are

distributed according to the ratio of the performance of the

process groups. This results in two partitions with almost

equal load. The process groups are then assigned to the

two subdomains. Those subdomains are then split further,

until each subdomain is assigned to exactly one process.

For scenarios with a homogeneous particle distribution, it

is sufficient to split the domain, such that the ratio of the

size of the subdomains and the performance ratios of the

process groups match. Only one rebalancing step at the

start of the simulation is necessary in this case. Still, the

performance at which each process calculates the site-site

interactions has to be known. These performance values

can be provided statically within the program. Since the

values typically depend on the underlying scenario and

hardware, this however requires a user to carry out prior

simulations of the considered scenario (or very similar ones)

on the current hardware and derive respective performance

estimates. We follow a different approach by employing a

dynamic evaluation of the process performance at runtime.

The performance is measured by counting the achieved

floating-point operations (FLOPs) per second during the

linked cell traversal in software. An alternative approach

would be to rely on hardware counters. These, however,

tended to be rather inaccurate on Intel’s Ivybridge and

Sandy Bridge processors and have been deactivated for the

Haswell generation. Instead of measuring the performance,

one could assume, that a simple time measurement for each

process is sufficient. This however is not always the case. To

understand this, let us assume, that we have a slow process

and a fast process. When assigning the same amount of load

to both processes, the slow process will take longer. After

the first rebalancing step the load is distributed according

to the performance ratio of the two processes. The time

both needed to perform the force calculation is therefore

almost equal. Using just the ratio of times, one would then

assume, that both processes provide the same performance.

However, this is obviously not the case. A proper ratio of

the work accomplished per unit time can be extracted only

if the workload of the respective process is known. This

again results in a performance measurement and can only

be evaluated, if the previously allocated work is known. In

the following we make use of performance measurements.

We thus do not need to take previously allocated work or

a history of performance values into consideration. Instead

we measure the performance directly.

Implementation in ls1 mardyn: In every rebalancing

step of the k-d decomposition, the entire tree is generated

anew. One rebalancing step can be split into six steps,

including necessary particle transfers of leaving and halo

particles:

1) Exchange leaving molecules.

2) Delete halo molecules.

3) Collective call to accumulate the number of particles

for each cell.

4) Construct the new tree as described previously.

5) Communication of the particles, that are now owned

by different processes. This is done using point-to-

point operations.

6) Exchange halo molecules.

In step 3 an all-to-all reduction is necessary to accumulate

the number of particles for each cell. Although the size of

this collective call scales with the amount of linked cells,

it does not pose a problem, since only one value is needed

per cell. Even for a million linked cells, only a few MB of

data are transferred. Additionally this step is required, only

if rebalancing has to be performed. If no rebalancing should

occur for the specific time step, a simple exchange of both

leaving and halo molecules is sufficient. No collective calls

are used.

Further details can be found in [18], [19].

IV. RESULTS

A. Test Environment

We ran our simulations on two different compute clusters

to evaluate our load balancing approach. The MAC-Cluster4

is a general purpose cluster with various different partitions,

of which we use the following:

BDZ A partition with 19 nodes each consisting of a

quad socket system using AMD Bulldozer Opteron

6274, 256 GB RAM and QDR infiniband. Each

socket has 16 cores with a frequency of 2.2 GHz.

The higher boost frequency can only be reached for

at most 8 cores. The Bulldozer processors are able

to utilize the AVX instruction set and additionally

FMA4.

SNB A partition with 28 nodes. Each node contains two

Intel Sandy Bridge-EP E5-2670 as a dual socket

system and 128 GB RAM. Each socket provides

8 cores with hyperthreading enabled. The clock

frequency is fixed at 2.6 GHz. The interconnect

is of QDR infiniband type. AVX is supported by

the Sandy Bridge architecture.

WSM One quad socket node using four Intel Westmere-

EX Xeon E7-4830 (8 cores, hyperthreading,

2.13 GHz) and 512 GB RAM. As interconnect,

4http://www.mac.tum.de/wiki/index.php/MAC Cluster
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Figure 2. k-d decomposition of the domain on the SuperMIC cluster after
10 time steps and one rebalancing step. Four processes have been used on
the host, as well as on the two accelerator cards.

FDR infiniband is used, which, however, only

provides performance comparable to that of QDR

infiniband, since it is connected via PCIe 2.0. The

Westmere architecture is only able to utilize SSE

instructions. AVX instructions are not supported.

For our test scenarios all Turbo Boost (Intel) / Turbo

Core (AMD) properties of the individual partitions of the

MAC-Cluster have been disabled. Concerning single-process

performance, we expect the Sandy Bridge architecture to be

the fastest. Bulldozer and Westmere are slower, with slight

differences in performance between them due to AVX and

SSE instructions and molecular dynamics specifics.

The second cluster SuperMIC5 consists of 32 nodes each

with a dual socket system of Intel Ivy Bridge-EP E5-2650

v2 (2.6 GHz). Additionally, each node of the SuperMIC

cluster is equipped with two Xeon Phi 5110P coprocessor

cards. These coprocessors each consists of 60 cores clocked

at 1.1 GHz with 4 hyperthreads each. The host provides

64 GB of memory, the coprocessors include 8 GB each.

The compute nodes are connected via Infiniband FDR14.

Both clusters are hosted by the Leibniz Supercomputing

Centre in Munich.

Except for the BDZ nodes, all executables have been

compiled with the Intel C++ Compiler (ICC, version 16.0.0).

For the BDZ nodes the GNU Compiler Collection (GCC)

version 4.9.3 has been used. The used MPI version is

Intel MPI version 5.0 (MAC-Cluster), resp. version 5.1

(SuperMIC). The code has been compiled with appropriate

vector support for each node.

B. Test Scenarios

In this paper we restrict considerations to scenarios with

homogeneous particle distributions. This implies, that the

5https://www.lrz.de/services/compute/supermuc/supermic/

Figure 3. k-d decomposition of the domain on the SuperMIC cluster after
119 time steps and 6 rebalancing steps. Four processes have been used on
the host, as well as on the two accelerator cards.

workload for each cell is approximately constant. The fol-

lowing scenarios are considered:

E512k This scenario contains 512 000 ethane (C2H6)

molecules. Ethane is modeled as a pair of two

Lennard-Jones sites with a fixed distance between

the two pseudo atoms. The molecule density is

chosen such that roughly 37 molecules (74 sites)

exist within each cell. The whole scenario consists

of 25× 25× 25 linked cells.

LJBig The second scenario is used for large simulations

on many nodes. It contains around 344 million

single-centered Lennard Jones molecules. It con-

sists of 200 × 200 × 200 linked cells. Each cell

contains approximately 43 molecules.

C. Performance Measurement

As described in section III-B, we measure the perfor-

mance by calculating the FLOPs per second during the

force calculation and the inherent cell traversal. This can

be done statically or dynamically. In the dynamic case, the

performance is given by its average during two rebalancing

steps. The rebalancing is then accomplished according to

the generated performance ratios. To point out limitations

of this performance-based recursive rebalancing, consider

Figs. 2 and 3. The first rebalancing step yields an appropriate

partitioning of the domain, cf. Fig. 2. Repeatedly rebalancing

and remeasuring the performance, however, may influence

the partitioning drastically, cf. Fig. 3, yielding highly im-

balanced simulations with regard to simulation time—but

balanced subdomains with regard to performance. This is

due to the FLOP rate being dependent on the subdomain

size, reaching its maximum only for particle numbers bigger

than some threshold nprocess. Assume two processes run-

ning on identical platforms. Each process holds a different
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Start Simulation

Assume equal

performance

Rebalance according

to performance

Start Timer

Force calculation

Stop timer and

update performance

Other calculations

during time step

Rebalance according

to performance

Force calculation

Other calculations

of time step

Figure 4. Schematic overview of the performance measurements. The
red path indicates the junction that is taken for the dynamic measurement,
while the green path indicates the static method. Note that for the dynamic
measurement not in every time step a rebalancing is necessary. Instead
rebalancing can be done after a certain interval of steps.

number of particles np1 and np2 with np1 < np2 < nprocess.

Since process 2 is running at a higher FLOP rate, it will

obtain linked cells and therefore particles from process 1.

With less particles, the performance of process 1 drops. In

each rebalancing step more and more particles are migrated

from process 1 to process 2. Holding enough particles

per process, that is in the case np1,np2 > nprocess, both

processes are expected to show similar performance and

a valid balancing of the load is achieved. The static case

circumvents this problem by measuring the performance

only once. This measurement is conducted at the beginning

of the simulation. We call this the static way. The two

different techniques are displayed in Fig. 4.

D. Reference Run

To get an overview of the desired efficiency, the per-

formance on two Sandy Bridge nodes has been measured.

The measurement has been performed for both the standard

domain decomposition method (cf. Fig. 5) and the k-d

decomposition algorithm. For the former the domain is split

into a grid of nproc subdomains, with nproc being the number

of processes. For 13, 17, 19, 23, 26, 29, 31 processes, a

simulation is not possible: in these cases, the domain of

25 × 25 × 25 linked cells is not big enough as we need

at least 2 cells per process in each dimension. Hence, at

most 11 processes can be used per dimension. In both cases,
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Figure 5. Parallel efficiency of the grid-like domain decomposition for the
E512k dataset using two different Sandy Bridge nodes. The x-axis indicates
the number of processes used on the first node, the y-axis the number of
processes on the second node. White gaps indicate that a measurement
could not be performed. The lowest efficiency is measured at 65%.
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Figure 6. Parallel efficiency of the homogeneous k-d decomposition (hom-
kDD) for the E512k dataset using two different Sandy Bridge nodes. The
domain is split into subdomains with equal load. The lowest efficiency is
measured at around 65 %.

we assume all processes to execute at equal performance.

We refer to the k-d decomposition method, that assumes

equal FLOP-rates on all processes as homogeneous k-d
decomposition (hom-kDD). For the k-d decomposition the

domain does not have to be split into this grid anymore.

Instead a tree is constructed. In contrast to the standard grid-

based domain decomposition, arbitrary numbers of processes

are supported by this method, cf. Fig. 6.

In a second experiment, we compared the performance of

the k-d decomposition from above and the performance-
balanced k-d decomposition for heterogeneous systems

(pb-kDD) on the SNB-SNB system. Figure 7 shows the

arising performance ratio. The heterogeneous version in-

cludes performance measurements of the single processes

and distributes the load accordingly. Similar performance

is obtained in this scenario as expected, since all ranks
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Figure 7. Performance ratio of the performance-balanced k-d
decomposition (pb-kDD) for the E512k dataset and hom-kDD. Since two
Sandy Bridge nodes are used and they consist of the same hardware, no big
performance improvements could be measured. The maximum decrease in
performance could be measured at 10%.

run on equal hardware. Fluctuations in the performance

measurements, however, yielded a maximum decrease in

the overall performance by 10%. Even small deviations can

result in a different tree structure, which results in a different

time-to-solution.

E. Load Balancing on Heterogeneous Architectures

The homogeneous k-d decomposition has difficulties to

cope with heterogeneous hardware. Assume there exist nfast

processes on the faster hardware and nslow processes on the

slower hardware. If both types of processes have to handle

the same load, the faster processes will finish before the

slower ones. Due to communication, however, the faster

processes will not be able to do anything while waiting for

the slower processes to catch up. In the end both types of

processes will have done the same work after the same time.

The performance of the processes is therefore limited by

the slower processes. The overall performance Ptotal,hom can

therefore be assumed as

Ptotal,hom = Pslowestntotal, (2)

where Pslowest is the minimum of the individual perfor-

mances.

This is shown in Fig. 8. Here major performance drops

can be measured when adding a single Westmere process to

a large amount of processes on a Sandy Bridge node. E.g.,

the addition of a process on a Westmere node to 14 Sandy

Bridge processes results in an increase of time-to-solution of

around 20%, while the parallel efficiency drops by roughly

15%.

The introduction of pb-kDD indeed increases the overall

performance. Here the overall performance Ptotal,inhom is

bounded by the sum over all processes.

Ptotal,inhom =
∑

Ptypentype (3)
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Figure 8. WSM-SNB: Parallel efficiency of hom-kDD for the E512k
dataset. The domain is split into subdomains with equal load. The lowest
efficiency (55%) is measured, when many ranks are started on Sandy Bridge
cores, but only few on Westmere cores.
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Figure 9. WSM-SNB: Performance ratio of pb-kDD and hom-kDD for
the E512k dataset. For most configurations a performance improvement
could be measured. The most significant performance decreases could be
measured for scenarios, where all ranks belong to the same node.

The performance ratio is thus

Ptotal,inhom

Ptotal,hom

=

∑
Ptypentype

Pslowestntotal

. (4)

An upper bound of this ratio is Pfastest/Pslowest and is obtained

for limnfastest
→∞, nslowest > 0.

Figure 9 shows the performance ratio for the E512k

dataset. The maximal obtained performance improvement is

above 30%. This is slightly below the maximal expected

value of 1.5, that has been calculated by the ratio of the

execution times of sequential simulations on the specific

hardware (768 s for WSM, 507 s for SNB). The maximum

value is a theoretical value, that has been calculated in the

limit of a big number of ranks, it is therefore not expected

to be reached. Additionally that number does not include

any estimation on communication cost. Especially, inter-

node communication has not been accounted for. However,
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Figure 10. SNB-BDZ: Performance ratio of pb-kDD and hom-kDD for
the E512k dataset. A maximum improvement of up to 80% is achieved.

Figure 11. WSM-SNB-BDZ: Performance ratio of pb-kDD and hom-kDD
for the E512k dataset. The total number of processes is 16. Speedups of
more than 1.5 could be measured.

the measurement of 1.3 already suggests that our method

runs at reasonable performance on the specified hardware.

Figure 10 shows the benefits of the heterogeneous version

of the k-d tree-based decomposition over the homogeneous

version for the combination of one Sandy Bridge node with

one Bulldozer node. On the Bulldozer node a sequential

execution time of 976 s could be measured. The Sandy

Bridge processes are thus performing 1.9 times faster than

the Bulldozer processes. This is a larger factor than for the

SNB-WSM case. Possible reasons for that include the not
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Figure 12. Time to solution on one node of the SuperMIC cluster. Shown
is the performance development, when using only one rank on the host and
#KNC ranks on one of the accelerator cards.

as heavily optimized GCC compiler in comparison to the

Intel compiler, that has been used for the Intel architecture.

Since the performance difference is greater compared to the

SNB-WSM measurements we expect and confirmed bigger

potential speedups. The heterogeneous algorithm is able

to increase the performance by up to 80%, thus reducing

the needed total time by 45%. The speedup is close to

the theoretically calculated maximal value of 90% and

resembles a significant gain in efficiency.

Besides of configurations with two different nodes, more

nodes can be utilized. In the used MAC-Cluster only three

different types of nodes exist. In Figure 11, the perfor-

mance ratio between the heterogeneous and the homoge-

neous version of the load balancing algorithm is shown

for a combination of one node from each node type of

the MAC-Cluster. Hereby the total number of processes is

kept constant at 16 which corresponds to the bottom-line

of non-hyperthreaded single-node Sandy Bridge usage. For

almost all configurations a significant improvement could

be measured. Only if only one type of node has been used

(right, top and left corner) or if very few Sandy Bridge

cores (1 or 2) have been utilized, performance decreases

could be measured. These however were of lower single-

digit percentage.

F. Host-Accelerator Load Balancing for Xeon-Xeon Phi

As an extreme case for performance differences between

two ranks within the simulation the Xeon Phi accelerator

cards have been used. The measurements have been per-

formed on the SuperMIC cluster. A process on the host is

roughly 5 times faster than a process on the accelerator.

Figure 12 shows the performance development, when adding

ranks on the accelerator to a single rank on the host. Using

the homogeneous version of the domain decomposition a

significant performance drop can be seen, when adding a

single rank on the accelerator. With the addition of more
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ranks the time to solution decreases. The heterogeneous ver-

sion outperforms the homogeneous one significantly. How-

ever even when using performance-aware load balancing,

adding a single process on the host leads to a performance

decrease. Explanations can be found in the far lower speed

of those ranks or imperfect load balancing. The time that the

processes spend in communication is increased by a factor of

more than five in this case. The graph shows that adding only

few components with a relatively slow speed can decrease

the performance of the homogeneous k-d decomposition.

Using the heterogeneous algorithm, the minimum require-

ments for the added components are relaxed.

G. Large-Scale Run

To confirm, that the load balancing scheme also works

for big scenarios and a comparably large amount of ranks,

we simulated the LJBig scenario, using 15 Sandy Bridge

nodes, 8 Bulldozer nodes and one Westmere node. On

each of the Westmere and Bulldozer nodes, 64 processes

have been used. On each Sandy Bridge node, 32 processes

have been started. The whole simulation thus included 1056

ranks. We measured a speedup of 1.3 when comparing

the time-to-solution of the heterogeneous version to the

homogeneous version. The maximum theoretical speedup

of 1.4 can be calculated through the performance ratios

of ranks on the different architectures (1.5:1 (SNB:WSM),

1.9:1 (SNB:BDZ)) and by applying Eq. (4). The observed

speedup of 1.3 thus agrees very well with the expected

performance gains.

V. SUMMARY & OUTLOOK

Summary: We presented a k-d tree-based load bal-

ancing implementation for short-range molecular dynamics.

Using it, we achieve good efficiency on heterogeneous

systems. We showed this on systems contain Sandy Bridge,

Westmere and Bulldozer nodes or a combination of Xeon

and Xeon Phi processors. Compared to an implementation

that ignores the heterogeneity, it is possible to achieve sig-

nificant speedups by measuring the performance, detecting

performance differences between processes, and allocating

the workload dynamically. These speedups are bounded

by the performance ratio of the fastest and the slowest

process. Our implementation behaves well within the borders

of the theoretical limits of our newly introduced simple

performance model. The presented implementation needs

only a single rebalancing step, as long as homogeneous

particle distributions are simulated. The time consumption

of the algorithm does therefore not play any significant role.

The algorithm has been validated for simulations containing

up to ca. 350 million particles, 8 million linked-cells and

1000 processes.

While there exist various plans for heterogeneous super-

computers, there also exist some for homogeneous ones, e.g.

the Aurora supercomputer. It will use the third generation

of Intel Xeon Phi “Knights Hill” as host processors, without

any additional Xeon processors. It will provide similar

performance as the Summit or Sierra systems6. In either

case upon an extension of an existing cluster, there will

exist clusters composed of different partitions. Our shown

algorithm is able to leverage the full potential of almost any

heterogeneous form a cluster can take.

Outlook: In this paper we focused on load balancing for

homogeneous particle systems computed on heterogeneous

systems. We expect that our load balancing scheme will also

work when using heterogeneous particle distributions. We

will investigate this in the near future. It is sufficient to

rebalance only once for homogeneous particle distributions.

In contrast, scenarios which involve heterogeneous particle

distributions require dynamic balancing of load, with a

rebalancing triggered every 10–100 time steps [6], [7], [10],

[14], [11], [12]. For heterogeneous particle systems, we

therefore need multiple rebalancing steps. The easiest way

to do this is by measuring the performance of the individual

processes in the beginning. The rebalancing steps are then

carried out according to the calculated cost function and the

initially generated performance measures. The performance

measurements at the startup of the simulation are susceptible

to fluctuations, especially, if only small scenarios are used.

Hence it might be useful to remeasure the performance

during the simulation. This relaxes the influence of dy-

namic effects, such as cooling, Turbo Boost/Core or even

other processes running on the same node, that hinder

the performance. For these dynamic measurements some

problems occur (see Sec. IV-C) and need to be circumvented.

This can be achieved by modifying either the performance

measures, to e.g. include the time spent waiting for the

first communication after the force calculation is completed,

or by measuring the performance on fixed reference cells.

Additionally the partitioning of the process groups can be

easily extended, such that any tree-like structure of a cluster

can be resembled and speedups achieved. Since a k-d tree

structure has been available in ls1 mardyn, we used it. Still,

comparison with other load balancing approaches or other

existing implementations, such as Zoltan [20], would be

interesting and shall be investigated in future. Other aspects

of the simulation that require improvement are the extension

of the cost function to include different types of molecules

and sites, as well as time spent for communication. The cost

function further does not take the different kinds of neighbor

cells into account: more interactions have to be calculated in

neighboring cells, that share a face, than for cells, that share

an edge or a corner. However, one should note, that the

evaluation of that cost function should still be kept simple

and efficient.

Additionally, we plan to include communication hiding

6http://energy.gov/articles/us-department-energy-awards-200-million-
next-generation-supercomputer-argonne-national
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and other optimizations, such as neutral territory methods

and a hybrid MPI-OpenMP parallelization using our recent

OpenMP approach [4], in our simulation code and adapt the

load balancing scheme accordingly. Since the k-d approach

is applicable for multiple other simulation scenarios it is of

interest to verify its usability for other simulation codes.
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[9] L.V. Kalé, M. Bhandarkar, and R. Brunner, Load Balancing in
Parallel Molecular Dynamics, in Solving Irregularly Structured
Problems in Parallel, ser. Lecture Notes in Computer Science,
Springer, pp. 251–261, 2005, vol 1457.
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