
Fast Parallel Operations on Search Trees
Yaroslav Akhremtsev

Institute of Theoretical Informatics
KIT

Karlsruhe, Germany
Email: yaroslav.akhremtsev@kit.edu

Peter Sanders
Institute of Theoretical Informatics

KIT
Karlsruhe, Germany

Email: peter.sanders@kit.edu

Abstract—Using (a, b)-trees as an example, we show how to
perform a parallel split with logarithmic latency and parallel join,
bulk updates, intersection, union (or merge), and (symmetric) set
difference with logarithmic latency and with information theo-
retically optimal work. We present both asymptotically optimal
solutions and simplified versions that perform well in practice –
they are several times faster than previous implementations.

I. INTRODUCTION

Sorted sequences that support updates and search in log-
arithmic time are among the most versatile and widely used
data structures. For the most frequent case of elements that
can only be compared, search trees are the most widely
used representation. When practical performance is an issue,
(a, b)-trees are very successful since they exhibit better cache
efficiency than most alternatives.

Since in recent years Moore’s law only gives further im-
provements of CPU performance by allowing machines with
more and more cores, it has become a major issue to also par-
allelize data structures such as search trees. There is abundant
work on concurrent data structures that allows asynchronous
access by multiple threads [4], [10], [16]. However, these
approaches are not scalable in the worst case, when all threads
try to update the same part of the data structure. Even for
benign inputs, the overhead for locking or lock-free thread
coordination makes asynchronous concurrent data structures
much slower than using bulk-operations [8], [9], [21] or
operations manipulating entire trees [1]. We concentrate on
bulk operations here and show in Section VII that they can be
reduced to tree operations.1 The idea behind bulk operations
is to perform a batch of operations in parallel. A particularly
practical approach is to sort the updates by key and to
simultaneously split both the update sequence and the search
tree in such a way that the problem is decomposed into one
sequential bulk update problem for each processor [8], [9].
Our main contribution is to improve this approach in two
ways making it essentially optimal. Let m denote the size
of the sequence to be updated and k ≤ m denote the number
of updates. Also assume that the update sequence is already
sorted by key. On the one hand, we reduce the span for a
bulk update from O(log k logm) to O(logm). On the other
hand, we reduce the work from O(k logm) to O(k log m

k)

1It is less clear how to go the opposite way – viewing bulk operations
as whole-tree operations – in the general mixed case including interactions
between operations.

(to simplify special case treatments for the case k ≈ m, in
this paper we define the logarithm to be at least one) which
is information-theoretically optimal in the comparison based
model. After introducing the sequential tools in Section II, we
present logarithmic time parallel algorithms for splitting and
joining multiple (a, b)-trees in Sections III and IV respectively.
These are then used for a parallel bulk update with the claimed
bounds in Section VI. For the detailed proofs we refer to the
full version of the paper.

Related Work

We begin with the work on sequential data structures.
Kaplan and Tarjan described finger trees in [14] with access,
insert, and delete operations in logarithmic time, and joining
of two trees in O(log logm) time. Brodal et al. described
a catenable sorted lists [3] with access, insert, and delete
operations in logarithmic time, and combination of two lists
in worst case constant time. The authors state that it is hard to
implement a split operation and it will lead to access, insert
and delete operations in O(logm log logm) time.

A significant amount of the research has been done for
operations on pairs of trees, in particular, union, intersection
and difference. A lower bound for the union operation is
Ω(k log m

k) in the comparison based model [5]. Brown and
Tarjan [5] presented an optimal union algorithm for AVL
trees and 2-3 trees. They also published an optimal algorithm
for union level-linked 2-3 trees [6]. The same results were
achieved for the level-linked (a, b) trees [12].

Paul, Vishkin and Wagener gave the first parallel algorithm
for search, insertion and deletion algorithms for 2-3 trees on
EREW PRAMs [20]. The same result was achieved for B-
trees [11] and for red-black trees [19]. All these algorithms
perform O(k logm) work. The first EREW PRAM union al-
gorithm with O(k log m

k) work and O(logm) span was given
by Katajainen et al. [15]. But this algorithm contains a false
proposition and the above bounds do not hold [2]. Blelloch
et al. [2] presented a parallel union algorithm with expected
O(k log m

k) work and O(log k) span for the EREW PRAM
with scan operation. This implies O(log2m) span on a plain
EREW PRAM. Recently, they presented a framework that
implements union set operation for four balancing schemes
of search trees [1]. Each scheme has its own join operation;
all other operations are implemented using it. Experiments in
[1] indicate that our algorithms are faster – probably because

ar
X

iv
:1

51
0.

05
43

3v
2

 [
cs

.D
S]

 1
1

M
ay

 2
01

6

their implementations are based on binary search trees which
are less cache efficient than (a, b)-trees.

II. PRELIMINARIES

We consider weak (a, b)-trees, where b ≥ 2a [12]. A search
tree T is an (a, b)-tree if
• all leaves of T have the same depth
• all nodes of T have degree not greater than b
• all nodes of T except the root have degree ≥ a
• the root of T has degree not less than min(2, |T |)
• the values are stored in the leaves

Let m be an upper bound of the size of all involved trees. We
denote the parent of some node n by p(n). The rank r(n) of
the node n is the number of nodes (including n) on the path
from n to any leaf in its subtrees. We define the rank of a
tree T , denoted r(T), to be the rank of its root. We denote
the left-most (right-most) path from the root to the leaf as the
left (right) spine. We employ two operations to process the
nodes of the tree. The fuse operation fuses nodes n1, n2 using
a splitter key – this key ≤ any key in n1 and ≥ any key in
n2 – into a node n. The split operation splits a node n into
two nodes n1, n2 and a splitter key such that n1 contains the
first bd2c (here d is the degree of n) children of n, n2 contains
remaining dd2e children of n, and the bd2cth key of n is the
splitter key.

Here we explain the basic algorithms for joining two trees
and splitting a tree into two trees that are basis of all our
algorithms. A more detailed description can be found in [17].

a) Joining Two Trees: We now present an algorithm to
join two (a, b)-trees T1 and T2 such that all elements of T1
are less than or equal to the elements of T2 and r(T1) ≥
r(T2). This algorithm joins the trees T1 and T2 into a tree T
in time O(r(T1) − r(T2) + 1) = O(log(max(|T1|, |T2|))) =
O(log |T |). Our main goal is to ensure that the resulting tree
is balanced. First, we descend r(T1) − r(T2) nodes on the
right spine until we reach the node n such that r(n) = r(T2).
Next, we choose the largest key in T1 as the splitter. If the
degree of the root of T2 or n is less than a then we fuse
them into n. If the degree of n after the fuse is ≤ b then the
join operation ends. Otherwise, we split n into n and the root
of T2 and update the splitter key (if necessary). The degrees
of n and the root of T2 are less than b after the split, since
we fuse them if at least one of them has degree less than a.
We insert the splitter key and the pointer to the root of T2
into p(n). Further, the join operation proceeds as an insert
operation [17]. We propagate splits up the right spine until all
nodes have degree less than or equal to b or a new root is
created. The case r(T1) ≤ r(T2) is handled similarly.

b) Sequential Split: We now describe how to split an
(a, b)-tree T at a given element x into two trees T1 and
T2, such that all elements in the tree T1 are ≤ x, and all
elements in the tree T2 are ≥ x. First, we locate a leaf y
in T containing an element of minimum value in T greater
than x. Now consider the path from the root to the leaf y.
We split each node v on the path into the two nodes vleft and
vright, such that vleft contains all children of v less than or

equal to x and vright the rest. We let vleft and vright be the
roots of (a, b)-trees. Next, we continue to join all the left trees
with the roots vleft among the path from the leaf y to the root
of T using the join algorithm described above. As the result
we obtain T1. The same join operations are performed with
the right trees, which give us T2. All join operations can be
performed in total time O(log |T |), since the left and right
trees have increasing height. Consider the roots v1, v2, . . . , vk
of the left trees and their corresponding ranks r1, r2, . . . , rk,
where r1 ≤ r2 ≤ . . . ≤ rk. We first join trees with roots v1
and v2. Next, we join v3 with the result of the previous join,
and so on. The first join operation takes time O(r2− r1 + 1),
the next one takes time O(r3 − r2 + 1). Thus, the total time
is

∑k−1
i=1 O(ri+1 − ri + 1) = O(k + rk − r1) = O(log |T |).
c) Sequential Union of a Sorted Sequence with an (a, b)-

tree: Here we present an algorithm to union an (a, b)-tree
and a sorted sequence I = 〈i1, . . . , ik〉 This algorithm is
similar to the algorithm described in [5]. Let lj denote the
leaf where element ij will be inserted (i.e., the leaf containing
the smallest element with key ≥ ij). First, we locate l1 by
following the path from the root of T to l1 and saving this
root-leaf path on a stack P . When l1 is located, we insert
i1 there (possibly splitting that node and generating a splitter
key to be inserted in the parent). Next, we pop elements from
P until we have found the lowest common ancestor of l1
and l2. We then reverse the search direction now searching
for l2. We repeat this process until all elements are inserted.
We visit O(k log m

k) nodes and perform O(k log m
k) splits

during the course of the algorithm according to Theorems
3 and 4 from [12]. Hence, the total work of the algorithm
is O(k log m

k) even without using level-linked (a, b)-trees as
in [12].

III. PARALLEL SPLIT

The parallel split algorithm resembles the sequential ver-
sion, but we need to split a tree T into k subtrees T1, . . . , Tk
using a sorted sequence of separating keys S = 〈s1, . . . , sk〉,
where tree Ti contains keys greater than si−1 and less or
equal than si (we define s0 = −∞ and sk = ∞ to avoid
special cases). For simplicity we assume that k is divisible
by p (the number of processors). If k > p then we split the
tree T into p subtrees according to the subset of separators
S′ = 〈sk/p, s2k/p, . . . , s(p−1)k/p〉. Afterwards, each PE (pro-
cessor element) performs k/p− 1 additional sequential splits
to obtain k subtrees. From this point on we assume that p = k.

Theorem 1. We can split a tree T into k trees with
O(k log |T |) work and O(log |T |) span.

Note that the algorithm is non-optimal – it performs
O(k log |T |) work whereas the best sequential algorithm splits
a tree T into k subtrees in O(k log |T |k) time.

We now describe the parallel split algorithm. First, the PE i
locates a leaf li for each si ∈ S, which contains the maximum
element in T less than or equal to si. Also, we save a first
node ri on the path from the root, where li−1 and li are in
different subtrees. For r1 this means a dummy node above the

2

root. Next, PE i copies all nodes on the path from li to ri, but
only keys ≤ si and their corresponding children. We consider
these nodes to be the roots of (a, b)-trees and join them as
in the sequential split algorithm. We can do this in O(logm)
time, as these trees have monotone or strictly increasing ranks.
Let us refer to the resulting tree as Tright. The same actions
can be done on the path from li−1 to ri, except that we copy
elements greater than si−1 to new nodes. After joining the
new nodes we obtain a tree Tleft. We also build a tree Tcentral
from the keys and corresponding children of the node ri that
are in the range (si−1, si]. The last step is to join the trees
Tleft, Tcentral and Tright.

These operations can be done in parallel for each i, since
all write operations are performed on copies of the nodes
owned by the processor performing the respective operations.
When we finish building the trees T1, . . . , Tk (we use a barrier
synchronization to determine this in O(log k) time) we erase
all nodes on the path in T from the root to each leaf li. Each
PE i then erases all nodes on the path from leaf li to ri,
excluding ri.

Each PE locates necessary leaf, builds trees Tleft, Tright by
traversing up and down a path not longer than O(log |T |))
nodes. Also each PE erases a sequence of nodes not longer
than the height of the tree Tright, which is O(log |T |). There-
fore, Theorem 1 holds.

IV. PARALLEL JOIN

We describe how to join k trees T1, . . . , Tk, where m =∑
i |Ti| and p = k, since this is the most interesting case.

When joining k > p trees, we can assign ≤ dk/pe trees to each
PE. First, we present a non-optimal parallel join algorithm.
Next, we present a modified sequential join algorithm. Finally,
we construct an optimal parallel join algorithm that combines
the non-optimal parallel join and the modified sequential join
algorithms.

Theorem 2. We can join k trees with O(k log m
k) work and

O(log k+logm) parallel time using k processors on a CREW
PRAM.

Note that the algorithm is optimal, since the best sequential
algorithm joins k (a, b)-trees in O(k log m

k) time [18].

A. Non-optimal parallel join.

Let us first explain the basics of the parallel algorithm. The
simple solution is to join pairs of trees in parallel (parallel
pairwise join). After each group of parallel join operations, the
number of trees halves. Hence, each tree takes part in at most
dlog ke join operations. Each join operation takes O(logm)
time. That is, we can join k trees in time O(log k logm).

We improve this bound to O(logm + log k) by reducing
the time for a join operation to a constant by solving the two
following problems in constant time: finding a node with a
specific rank on a spine of a tree and performing a sequence
of splits of nodes with degree b.

We describe the first issue in Section IV-A1: we can retrieve
a spine node with specified rank using an array a where the

a[i] points to the spine node with rank i. The only challenge
is to keep this array up to date in constant time.

We describe the second issue in Section IV-A2: how to
perform all required node splits in constant time. The main
observation is that if there are no nodes of degree b on the
spines then there are no node splits during the course of the
algorithm. So we preprocess each tree Ti such that there are no
nodes of degree b on their left/right spines by traversing each
tree in a bottom up fashion. The preprocessing can be done in
parallel in O(logm) time. Now consider the task of joining
a sequence of preprocessed trees. The only nodes of degree
b that could be on the left/right spines will appear during the
course of the join algorithm. We can take advantage of this
fact by assigning a dedicated PE to each node of degree b.
This PE will split the node when needed.

We describe how to maintain the sizes of the subtrees in
Section IV-A3. This allows us to search for the i-th smallest
element in a tree T in O(log |T |) time. We use the search of
the i-th smallest element in Section VI-A.

Note that we dedicate several tasks to one PE during the
course of the algorithm but this does not affect the resulting
time bound. Finally, we combine the above ideas into the
modified join algorithm in IV-A4. This algorithm joins k trees
in O(log k + logm) time.

Lemma 1. We can join k trees in O(log k+logm) time using
k processors on a CREW PRAM.

We explain how to obtain the result of Lemma 1 in Sec-
tion IV-A4. As a result we obtain an algorithm that performs
join of k trees in O(logm+log k) time, has work O(k logm),
and consumes O(k logm) memory.

1) Fast Access to Spine Nodes by Rank: Suppose we need
to retrieve a node with a certain rank on the right spine of a
tree U . The case for the left spine is similar. We maintain an
array of pointers to the nodes on the right spine of U such that
the i-th element of the array points to the node with rank i
on the right spine. See Figure 1(a). We build this array during
the preprocessing step. We can retrieve a node by its rank in
constant time with such an array. The only problem is that
after a join of U with another tree some pointers of the array
point to nodes that are not on the right spine. We describe how
to maintain the pointers to the spine nodes throughout the join
operations up-to-date.

Suppose that we have joined two trees U and V , where
r(U) ≥ r(V). Let RU and RV denote the arrays of the point-
ers to the nodes on the right spines of U and V respectively.
The first r(V) pointers of RU point to the nodes that are not
on the right spine anymore. Consequently, nodes that were
on the right spine of the tree V are on the right spine of U
now. The first r(V) elements of RV point to the nodes on
the right spine of U with the ranks in [1, r(V)], and elements
of RU with the indices in (r(V), r(U)] point to the nodes on
the right spine of U with the rank in (r(V), r(U)]. Hence, the
interval [1, r(U)] is split into the two subintervals: [1, r(V)]
and (r(V), r(U)]. See Figures 1(b) and 1(c).

Now we show how to retrieve a node by its rank in constant

3

time during a sequence of the join operations. First, we explain
how to maintain the arrays with up-to-date pointers to the right
spine after the join operation. Suppose we join trees U and V
and we need to know the node n ∈ U where r(n) = r(V). We
maintain stacks SU and SV for trees U and V respectively,
which are implemented using linked lists. Each element of
these stacks is a pair (R, I), where R is an array with pointers
to the right spine of the corresponding tree. I is an interval
of the indices of the elements in R, such that R[i] (∀i ∈ I)
points to a node on the right spine of the tree. We maintain
the following invariants for each tree Ti and its corresponding
stack during the course of the algorithm:

1) The stack Si contains disjoint intervals [ri, ri+1 − 1],
for i = 1, . . . , |Si|, r1 = 1, r|Si|+1 = r(Ti) + 1. These
intervals are arranged in sorted order in Si.

2)
⋃

(R,I)∈Si
I = [1, r(Ti)].

3) The element R[i] (i ∈ I) points to the node n on the
right spine where r(n) = i for ∀ (R, I) ∈ Si.

. . .

. . .

. . .

...

(a)

B

A CU V

RU

RV

(b)

B

CU V

RU

(c)

Figure 1: Letter A denotes the first r(V) elements of RU .
Letter B denotes the last r(U)−r(V) elements of RU . Letter
C denotes the first r(V) elements of RV .

Let us first consider the simple case, where each stack
contains only a single element. Next, we extend it to the
general case. The stack SU contains a pair (RU , [1, r(U)]),
and the stack SV contains a pair (RV , [1, r(V)]) after the
preprocessing step. The invariants are true for SU and SV .
After the join operation we add the element of SV on the
top of SU . Consequently, the SU contains (RV , [1, r(V)]) and
(RU , (r(V), r(U)]), and the invariants hold.

Now we describe the general case. Suppose that the stacks
SU and SV contain more than one pair and they satisfy
the invariants from above. We need to find a node with
rank r(V) on the right spine of U . First, we search for
the pair (R, I) ∈ SU , such that r(V) ∈ I . Let SU con-
tains pairs with the following intervals: [ri, ri+1 − 1], where
i = 1, . . . , |SU |, r1 = 1, r|SU |+1 = r(U) + 1. We pop
pairs from the stack SU until we find a pair with interval
I = [rj , rj+1−1] such that r(V) ∈ I . After the join operation
we push the elements of SV on the top of SU . We refer to this
operation as the combination of SU and SV . Consequently,

T1 T2 T3 T4 T5

(a) The sequence of trees.

(R1, I1)
(R2, I2)

(R1, I1) (R1, I1)
(R2, I2)
(R3, I3)

(R4, I4)
(R1, I1)
(R5, I5)

(R1, I1)
1 2 3 4Begin

(b) The elements of the stack S1 during the sequence
of the join operations.

Figure 2: We join T1 with T2, T3, T4, T5. Each Ti has stack Si

with a pair (Ri, Ii), i = 1 . . . 5. We add (R2, I2) to S1 during
the join of T1 and T2. We do the same during the join of
T1 and T3. Next, we pop (R3, I3), (R2, I2) from S1 and add
(R4, I4) to it during the join of T1 and T4. We pop (R4, I4)
from S1 and add (R5, I5) to it during the join of T1 and T5.

stack SU contains all pairs of SV and pairs with intervals
[r(V) + 1, rj+1− 1], [ri, ri+1− 1], where i = j+ 1, . . . , |SU |.
We do not add the pair with the interval [r(V) + 1, rj+1 − 1]
to the stack SU if r(V) + 1 > rj+1 − 1.

Now we show that the invariants hold for the resulting stack
SU . The union of the pairs in SV is [1, r(V)] and all intervals
in the stack SV are disjoint and sorted. The intervals [r(V) +
1, rj+1 − 1], [ri, ri+1 − 1], where i = j + 1, . . . , |SU |, are
disjoint, sorted, and their union is [r(V) + 1, r(U)]. Hence,
Invariants 1 and 2 are hold. We also have popped all pairs
(R, I) ∈ SU , such that no element of R points to a node on
the right spine of U . Hence, Invariant 3 holds. Consequently,
the stack SU satisfies all the invariants after its combination
with SV . See Figure 2.

a) Maintaining the Invariants in Parallel: Here we
present a parallel algorithm to maintain the Invariants 2 and 3
throughout all join operations. More precisely, we show how
to perform a sequence of pop operations on a stack and
a combination of two stacks in constant time on a CREW
PRAM. We demand that each element of the stack has a
dedicated PE for this. Initially, a stack S of a tree contains
only one element and we dedicate it the PE that corresponds
to this tree. Each element e of S contains additional pointers:
Start, StackID, and Update. Start points to the flag that
signals to start the parallel pop operations. StackID points to
the unique id number of the stack containing the element e.
Update is used to update Start and StackID pointers in new
elements of the combination of two stacks. Each element of a
stack has the same Start, Update and StackID. We refer to
this condition as the stack invariant. Additionally, we maintain
a global array UpdateData of size p.

Here we discuss how to combine stacks SU and SV and
maintain the invariants in constant time. The combination can
be done in constant time, since the stacks are implemented
as linked lists. Next, we repair the stack invariant; we set

4

the values of the pointers Start, Update, StackID in the
old elements of SU to the values of the pointers in the new
elements of SU . The PE dedicated to tree U starts the repair
using Algorithm 1. Each PE dedicated to the element s ∈ SU

that was in SV permanently performs Algorithm 2 until it
updates the variables Start,Update,StackID in s. Finally, we
wait a constant amount of time until each PE finishes updating
the pointers of its corresponding element.

Input: old element s ∈ SU , new element s′ ∈ SU

Function Start_Repair_Stack_Inv(s, s′)
UpdateData[s′.StackID].Start = s.Start;
UpdateData[s′.StackID].Update = s.Update;
UpdateData[s′.StackID].StackID = s.StackID;
Set flag pointed to by s′.Update;

Algorithm 1: Starts the repair of the stack invariant of SU

after combination of SU and SV .

Input: new element s′ ∈ SU

Function Repair_Stack_Inv(s′)
if flag pointed to by s′.Update is set then

s′.Start = UpdateData[s′.StackID].Start;
s′.Update = UpdateData[s′.StackID].Update;
s′.StackID = UpdateData[s′.StackID].StackID;

end
Algorithm 2: Updates Start,Update,StackID in the new
elements of SU .
Now we present a parallel algorithm that performs a se-

quence of pop operations on the stack SU . We can perform
any number of the pop operations on a stack in constant time
in parallel, since each element of the stack has a dedicated PE.
Recall that we want to find an element (R, I) in SU such that
r(V) ∈ I . The PE dedicated to the tree U sets the flag pointed
to by Start to start a sequence of pop operations. Each PE
that is dedicated to an element s = (R, I) ∈ SU permanently
performs the function Pop(s). This function checks the flag
pointed to by Start; it exits if the flag is unset. Otherwise, the
function checks if r(V) ∈ I; if r(V) is to the right of I on the
integer axis then we mark the element s as deleted. Next, we
perform another parallel test. Each PE – if its corresponding
element is not marked deleted – checks if the next element
of the stack is deleted. There is only one element that is
not marked deleted, but the next element is marked deleted,
since the intervals of elements of SU are sorted according to
Invariant 1. This element is a pair (R, I) such that r(V) ∈ I .
Next, we make a parallel deletion of the marked elements and
wait a constant amount of time until each PE finishes.

2) Splitting a Sequence of Degree b Nodes in Parallel:
Here we present a modified join operation of two trees U and
V , where r(U) ≥ r(V) (the case r(U) < r(V) is similar),
that performs all splits in constant time in parallel. We demand
the following preconditions:

1) We join a sequence of preprocessed trees; that is, there are
no nodes of degree b on the right spine in the beginning.

2) We know a pointer to the node n ∈ U where r(V) =
r(n).

The algorithm first works as the basic join operation from
Section II. We can perform a sequence of splits of degree-b
nodes in parallel using the fact that there is a dedicated PE
to each node with degree b. This is a case because we assign
the PE previously responsible for handling tree V to a node
v ∈ U after the join operation, if the degree of v becomes
equal to b.

Let us prove that each join operation can increase the length
of a sequence of degree-b nodes by at most one. This fact
allows us to assign a dedicated PE to each degree b node.

Lemma 2. A join operation can be implemented so that
sequences of degree-b nodes grow by at most one element.

Proof: First, we analyze the case when a degree-b node
appears during a join operation. Let node n has degree b− 1
and p(n) is in the sequence of degree-b nodes. Figure 3(a)
shows that if the rightmost child of n splits then we insert a
splitter key into n and its degree is equal to b now. We show
that the sequence of degree-b nodes (where p(n) is) grows
only by an one node by proving the following fact: the new
child of n has degree less than b after the join operation. If the
rank of the new child is greater than r(V) then it has degree
less than b, since it has been split. The case when the rank of
the new child equal to r(V) we further analyze.

Consider two sequences of degree-b nodes in U and V and
a node n′ ∈ U on the right spine such that r(n′) = r(V).
We show that they can not be combined into one sequence
after the join operation. We consider only the case when the
sequence in V contains its root. Otherwise it is obvious that
the sequences will not be combined.

Consider the case when p(p(n′)) is in a sequence of degree-
b nodes and p(n′) has degree b− 1. If the fuse of n′ and the
root of V does not occur then the root of V will be a new
child of p(n′). See Figure 3(b). The length of the sequence
will increase by one, since the degree of p(n′) will be b. If the
root of V has degree b then the sequences of degree-b nodes
will be combined. Hence, our goal to ensure that the degree
of the root of V remains less than b. Thus, we split the root
of the tree V if it has degree b before the join operation and
increase the height of V by one.

Consider the case when p(n′) is in a sequence of degree-
b nodes. The fuse of the root of V and n′ occurs when at
least one of them has degree less than a. We fuse them into
n′ that may result in n′ having degree b. See Figure 3(c).
Consequently, n′ has degree b as well as its parent and the
sequences will be combined. Then we split n′ and insert the
splitter key in p(n′). This split prevents the combination of two
sequences. We also split the nodes in the sequence of degree-b
nodes where p(n′) is, since the degree of p(n′) is b + 1. We
do this in parallel in constant time as further described.

a) Assigning PEs: We now explain how to assign a PE
to a new degree-b node n. Suppose that n has extended some
sequence of degree-b nodes according to Lemma 2. We assign
the freed PE of the tree V to n. Hence, this PE can split n
during some following join operation.

Now let us discuss how we assign a PE to n in more detail.

5

n

p(n)

· · ·

· · ·

new child

(a)

V
n′

p(n′)
· · ·

· · ·

· · ·

p(p(n′))

(b)

p(n′)

n′

· · · V

· · ·
n′

(c)

Figure 3: The growth of a sequence of degree-b nodes.

We extend each node by an additional pointer MetaData to
a special data structure: a flag Start and an integer Rank.
The Start flag signals to all PEs assigned to the nodes of
the same sequence of degree-b nodes to start the parallel split
of this sequence. We assign the pointer MetaData in p(n)
to the pointer MetaData in n. Finally, we command to the
PE that is dedicated to n to perform permanently the function
Split_B_Node(n), which is described further.

b) Splitting a Sequence of Degree-b Nodes: The PE
dedicated to U assigns r(V) to Rank and next sets Start
when we need to perform a split of nodes of a sequence
of degree-b nodes in parallel. Each PE dedicated to a
node n in this sequence permanently performs the function
Split_B_Node(n). This function checks the flag Start; it
exits if the flag is unset. Otherwise, the function starts splitting
n if r(n) ≥ Rank.

Let us consider the parallel split of the sequence of degree-b
nodes more precisely. Each PE splits its corresponding node
y by creating a new node x and coping the first b b2c− 1 keys
from y to x. The last d b2e − 1 keys remain in y. Next, the
PE waits until p(y) is split and then inserts the splitter key
and the pointer to x into p(y). Next, we wait until each PE
finishes. This takes constant time on a PRAM. See Figure 4.
It is crucial that all nodes with the degree b sequence are still
the parents of their rightmost children after the split, because
we know only the parent pointer for each child (we store a
parent pointer in each node). Note that all the nodes which
were on the right spine before the split step remain on the
right spine after it. This property is crucial to access spine
nodes in constant time.

3) Maintaining Subtree Sizes: Here we present a parallel
algorithm to update the size of each subtree in a tree T , where
T is the result of joining T1, · · · , Tk. First, we save all the
nodes where the joins of two trees occurred during the join
operation of k trees. Suppose we join two trees U and V , such
that r(U) ≥ r(V). We save a node n ∈ U on the right spine
that has rank r(n) = r(V). Next, we dedicate the PE that was
previously dedicated to V to node n. Consequently, each of
these nodes has a unique dedicated PE.

Now suppose we have finished joining k trees. Con-
sider k − 1 saved nodes and the PEs dedicated to them.
The PE that made the last join operation of two trees
sets the global flag Join Done and performs the function
Update_Subtree_Sizes. Other PEs permanently per-
form the function Update_Subtrees_Sizes as well. This
function checks the flag Join Done; it exits if the flag is unset.
Otherwise, it updates the subtree sizes of T as follows: each

5 7

10 11 12

15 16 17

y

(a)

5 7

10 1211

15 1716

yx

(b)

7

10 12

15 17

16

115

x y

(c)

Figure 4: We split a sequence of the two 4-degree nodes in
(2, 4)-tree (a). First, we split each of the nodes in parallel (b).
The nodes with keys 7 and 12 remain parents of their rightmost
child. Next, we insert the splitter keys 11, 16 and pointers to
the nodes with keys 10 and 15 into the parent nodes (c).

PE follows up the path from corresponding saved node to the
root of T and updates the subtree sizes. The algorithm works
in O(logm) time on a CREW PRAM.

4) The Parallel Join Algorithm: Now we have presented
the necessary subroutines and can use them to construct the
parallel join algorithm.

Lemma 3. We can join trees U and V , where r(U) ≥ r(V)
(the case r(U) < r(V) is similar), in constant time.

Proof: We retrieve a node u with rank r(V) on the right
spine of U in constant time as described in Section IV-A1.
Next, we insert the root of V as the rightmost child of p(u)
or fuse it with u. Finally, we perform the splits of nodes with
degree ≥ b in constant time as described in IV-A2. Therefore,
we join U and V in constant time.

We have T1, . . . , Tk trees and each of these trees has its own
dedicated PE. Each PE i, where i is odd, performs the modified
join operation of Ti and Ti+1 in constant time according to
Lemma 3. If r(Ti) ≥ r(Ti+1) then PE i + 1 is freed after
this join operation, otherwise PE i is freed. Now the freed PE
performs Algorithm 3 and the other PE performs the next join
operation. Finally, each PE deletes the corresponding stack,
left and right spines when all trees are joined. Therefore,
Lemma 1 holds.

Input: a node n of degree b, a stack element s
Function Main(n, s)

Split_B_Node(n);
Repair_Stack_Invariant(s);
Pop(s);
Update_Subtree_Sizes();

Algorithm 3: Main function, which is performed by all freed
PEs

B. Sequential join of t trees

We present a sequential algorithm to join t preprocessed
trees in O(t) time. This algorithm joins trees in pairs. During
a join operation we, first, access a spine node by its rank;

6

next, we connect the trees and split nodes of degree b. Both
operations can be done in amortized constant time.

a) Fast Access to Spine Nodes by Rank: Consider joining
U and V , where r(U) ≥ r(V) (the case r(U) < r(V)
is similar). We use the same idea as in Section IV-A1 to
retrieve a spine node with rank r(V) in U . We maintain a
stack with arrays of the pointers to the nodes on the right
and left spines for each tree that we have built during the
preprocessing step. Initially, each stack contains one element.
Each tree and its corresponding stack satisfy the invariants
from Section IV-A1that guarantees that the pointers of the
arrays in the stack point to the nodes on the right (left) spine.
To maintain the invariants we, first, perform a sequence of pop
operations on the stack of U to retrieve a spine node; next,
we combine stacks of U and V . See details in Section IV-A1.

We combine two stacks in worst-case constant time, since
each stack is represented using a linked list. Each pop oper-
ation removes an element that was in the stack as a result of
the previous combine operation. Therefore, we can charge the
cost of the sequence of s pop operations to the previous s
combine operations. Hence, the sequence of s pop operations
takes amortized constant time. See the detailed proof of the
amortized constant cost of the sequence of s pop operations
in [7, Chapter 17: Amortized Analysis, p. 460 – 461].

Lemma 4. Consider joining of two trees. We can access a
spine node by its rank in amortized constant time.

Lemma 5. Consider joining of t preprocessed trees
T1, . . . , Tt. We split O(t) degree-b nodes over all operations.

Proof: We use the potential method [7] to prove this fact.
method [7] We define the potential function φ as the total
number of the nodes of degree b on the left and rights spines
of trees to be joined. Suppose that the sequential join algorithm
has joined trees T1, . . . , Ti−1. We denote the result as T and
let φ(T) = φi−1. Then the amortized number of splits that
occurred during the join operation of T and Ti is ĉi = ci +
φi − φi−1, where ci is the actual number of occurred splits.
Note that φi−1 + 1 ≥ φi and ci ≤ |φi − φi−1|, therefore
ĉi = O (1) and

∑t
i=2 ĉi =

∑t
i=2 ci + φt − φ1. Initially, the

trees are preprocessed and do not contain nodes of degree b
on the spines, hence φ1 = 0 and

∑t
i=2 ci ≤

∑t
i=2 ĉi = O(t).

Lemma 6. We can join t trees in O(t) time.

Proof: Consider the join of two trees U and V where
r(U) ≥ r(V). First, we search for a spine node in U to
insert the root of V in amortized constant time according
to Lemma 4. Next, we split the nodes of degree b in the
resulted tree in amortized constant time according to Lemma 5.
Therefore, we join t trees in O(t) time.

C. Optimal parallel join

Now we present an optimal join algorithm with O(k)
work and O(log k + logm) parallel time. First, we pre-
process the k trees using k processors with O(k log m

k)

work and O(logm) parallel time. Next, we split the se-
quence of trees into the groups of size log k and join each
group in O(log k) parallel time by Lemma 6. The work of
this step is dk/ log keO(log k) = O(k). We preprocess the
dk/ log ke resulting trees with O(dk/ log ke log m log k

k) work
and O(logm) parallel time. Next, we join the dk/ log ke
trees using a non-optimal parallel join algorithm with
work O(dk/ log ke logdk/ log ke) and O(logdk/ log ke) par-
allel time by Lemma 1. The total work of the algorithm
is O(k log m

k), the parallel time is O(log k + logm), and
Theorem 2 holds. Note that this algorithm can not maintain
subtree sizes.

V. LIGHTWEIGHT PARALLEL JOIN

The parallel join algorithm from Section IV is optimal on
a CREW PRAM. Because this algorithm is theoretical and
difficult to implement, we suggest an other approach to join
k trees T1, . . . , Tk. We devote the rest of this section to
outlining a proof of the following theorem. The idea is to
replace the pipelining tricks used in previous algorithms [20]
by a local synchronization that can actually be implemented
on asynchronous shared memory machines.

Theorem 3. We can join k trees with expected O(k log m
k)

work and expected time O(logm + log k) using p = k
processors on a CREW PRAM.

We decrease the running time of the parallel join that joins k
trees in O(logm log k) time (see Section IV) by using arrays
with pointers to right (left) spine nodes. We build such arrays
during the preprocessing step for each tree. See details in
Section IV-A.

First, we assign a PE t to tree Tt. Next, our algorithm works
in iterations. We define the sequence of trees present during
iteration i as T i

1, . . . , T
i
ki

(k1 = k). In the beginning of each
iteration we generate a random bit cit for tree T i

t where t =
1 . . . ki. During an iteration i PE t joins T i

t to T i
t−1 (or T i

t

and T i
t+1 if t = 1), if one of the following conditions holds:

1) r(T i
t−1) > r(T i

t) and r(T i
t) < r(T i

t+1)
2) r(T i

t−1) > r(T i
t), r(T i

t) = r(T i
t+1), and cit = 1

3) r(T i
t−1) = r(T i

t), r(T i
t) < r(T i

t+1), cit−1 = 0, and cit = 1
4) r(T i

t−1) = r(T i
t), r(T i

t) = r(T i
t+1), cit−1 = 0, and cit = 1

These rules ensure that only trees at locally minimal height
are joined and that ties are broken randomly and in such a
way that no chains of join operations occur in a single step.
In the beginning, the join operation proceeds like in basic join
operation II-0a. But we do not insert a new child into the p(n)
(n ∈ T i

t−1 and r(n) = r(T i
t)) if its degree equals b; instead

we take n and the new child, join them, and put the result into
T i
t . We do this in constant time, since the ranks of T i

t and the
new child are equal. The rank of T i

t increases by one. We call
this procedure subtree stealing. This avoids chains of splitting
operations that would lead to non-constant work in iteration i.

Lemma 7. Assume that we joined two trees T i
ti and T j

tj (i < j)
with a tree T , where no keys in T is larger than any key in

7

T i
ti and T j

tj , and no joins with this tree occurred between the
iterations i and j. Then r(T i

ti) ≤ r(T
j
tj).

Proof: Since T i
ti and T were joined then r(T) ≥ r(T i

ti)

and r(T i
ti) ≤ r(T i

ti+1). But r(T j
tj) ≥ r(T i

ti+1). Hence,
r(T j

ij
) ≥ r(T i

ti).
Lemma 7 shows that we join trees in ascending order of

their ranks. Therefore, we do not need to update the pointers
that point to the nodes with rank less than r(T i

ti), since
r(T j

tj) ≥ r(T i
ti); that is, we do not join trees smaller then

r(T i
ti).

Lemma 8. The lightweight parallel join algorithm joins k
trees using expected O(logm+ log k) iterations.

Proof: Consider a tree T i
t where r(T i

t−1) > r(T i
t) and

r(T i
t) < r(T i

t+1). Subtree stealing from tree T i
t may occur

O(logm) times over all iterations. Since the heights of the
trees that steal from T i

t are in ascending order (according to
Lemma 7) and increment by one after each stealing.

Consider a sequence of l trees with heights in ascending
order. The PE dedicated to the smallest tree joins this sequence
performing l iterations, but the total length of such sequences
over all iterations is O(logm).

Consider the “plains” of subsequent trees with equal height.
Let l denote the sum of the plain sizes. A tree t in a plain
is joined to its left neighbor with probability at least 1/4
(if its cit is 1 and that of its left neighbor is 0). Hence, the
expected number of joins on plains is l/4. This means that, in
expectation, the total plain size shrinks by a factor 3/4 in each
iteration. Overall, O (log k) iterations suffice to remove all
plains in expectation. To see that fringe cases are no problem
note that also trees at the border of a plain are joined with
probability at least 1/4, possibly higher since a tree at the left
border of a plain is joined with probability 1/2. Furthermore,
other join operations may merge plain but they never increase
the number of trees in plains.

Combining the results of Lemma 8 and the fact that we do
not need to update pointers to right (left) spines we prove that
the running time of this algorithm isO(logm+log k) in expec-
tation. The work of the algorithm isO(k log m

k) in expectation,
since the PE t (t = 2, . . . , k − 1) performs the number of
iteration that is proportional to max(r(T 1

t−1), r(T 1
t+1)). This

proves Theorem 3.

VI. BULK UPDATES

We present a parallel data structure with bulk updates.
First, we describe a basic concepts behind our data structure.
Suppose we have an (a, b)-tree T and a sorted sequence I for
the bulk update of T . Our parallel bulk update algorithm is
based on the idea presented in [9] and consists of the three
phases: split, insert/union and join.

First, we choose a sorted sequence of separators S from I
and T . Next, the split phase splits T into p trees using sep-
arators S. Afterwards, the insert/union phase inserts/unions
elements of each subsequence of I to/with the corresponding

s1

s1

s2 s3 s4

s2 s3 s4t1 t2 t3 t4

t1 t2 t3 t4

Tree

T

I

Tt1

It1

Tt2

Figure 5: Separators of I and T . Here p = 5. For example,
the elements from It1 and Tt1 lay in intersecting ranges. But
the elements from Tt1 and Tt2 lay in disjoint ranges. As well
as the elements of It1 and Tt2 .

tree. Finally, the join phase joins the trees back into a tree.
The following theorem summarizes the results of this section.

Theorem 4. A bulk update can be implemented to run in
O(|I|p log |T ||I| + log p + log |T |) parallel time on p PEs of a
CREW PRAM.

The algorithm needs O(|I| log |T ||I|) work and O(log |T |)
time using p = |I| log |T ||I| / log |T | on a CREW PRAM. Note
that our algorithm is optimal, since sequential union of T and
I requires Ω(|I| log |T ||I|) time in the worst case. See [12].

A. Selecting the Separators.

The complexity of the algorithm depends on how we choose
the separators. Once we have selected the separators we can
split sequence I and tree T according to them. Depending on
the selection of the separators we will perform either the insert
or union phase.

In Uniform Selection, we select p−1 separators that split I
into p disjoint equal-sized subsequences I = {I1, I2, . . . , Ip}
where

⋃p
i=1 Ii = I (we assume that |I| is divisible by p for

simplicity).
b) Selection with Double Binary Search: We adapt a

technique used in parallel merge algorithms [13], [22] for our
purpose. First, we select p− 1 separators S = 〈s1, . . . , sp−1〉
that split I into p equal parts. Next, we select p−1 separators
Tsep = 〈t1, . . . , tp−1〉 that divide the sequence represented by
the tree T into equal parts. We store in each node of T the sizes
of its subtrees in order to find these separators in logarithmic
time. See the details in [7].

Now consider x ∈ S ∪ Tsep. The subsequence Ix of I in-
cludes all elements ≤ x but greater than y, the largest element
in S∪Tsep that is less than x. Similarly, we define subtree Tx.
We implicitly represent the subsequence Ix and subtree Tx by
y and x. Each PE uses binary search to find y. For example,
PE i calculates the implicit representation of Isi , Tsi , Iti , Tti .
These searches take time at most O(log p), since S and Tsep
are sorted and we can use binary search. Thus, we split I
and T into 2p − 1 parts each: I = {Ix : x ∈ S ∪ Tsep} and
T = {Tx : x ∈ S ∪ Tsep} respectively.

Note that elements of two arbitrary subsequences from I ∪
T lay in disjoint ranges, except for Ix and Tx for the same
x ∈ S ∪ Tsep. Also |Ix| ≤ |I|/p and |Tx| ≤ |T |/p, since the
distances between neighboring separators in S and T are at
most |I|/p and |T |/p, respectively. See Figure 5.

8

c) Split and Insert phases: First, we select p − 1 sep-
arators using uniform selection. Next, we split the tree T
into p subtrees T1, . . . , Tp using the parallel split algorithm
from Section III. Finally, we insert the subsequence Ii into
corresponding subtree Ti, for i = 1 . . . p, in O(|I|/p log |T |)
time on a CREW PRAM.

d) Split and Union phase: Suppose we selected the
separators using selection with double binary search. First,
we split the sequence I into subsequences I. Next, we split T
into subtrees T . For each subtree Tx ∈ T we split T by the
representatives y and x of Tx using the parallel split algorithm
from Section III.

Now each PE i unions Isi with Tsi and Iti with Tti (si, ti ∈
S∪Tsep) using the sequential union algorithm from Section II.
This algorithm unions Ix ∈ I and Tx in O(|Ix| log |Tx|

|Ix|) time.

Hence, the union phase can be done in O(|I|/p log |T ||I|) time,
because |Ix| ≤ |I|/p and |Tx| ≤ |T |/p for any x ∈ S ∪ Tsep
and because for |Tx| ≥ e|Ix|, |Ix| log |Tx|

|Ix| is maximized for
the largest allowed value of |Ix|. For the remaining cases, we
can use that the log term is bounded by a constant anyway.

e) Join Phase: We join the trees T1, . . . , Tk (k = p
or 2p − 1) into the tree T in O(log p + log |T |) time on a
CREW PRAM using the non-optimal parallel join algorithm
from Section IV. We use the non-optimal version, because it
maintains subtree sizes in nodes of trees.

VII. OPERATIONS ON TWO TREES

Theorem 5. Let U and T denote search trees (|U | ≤ |T |)
that we identify with sets of elements. Let k = max{|U |, |T |}
and n = max{k, p}. Search trees for U ∪ T (union), U ∩
T (intersection), U \ T (difference), and U 4 T (symmetric
difference) can be computed in time O(k/p log n

k + log n).

f) Union: Computing the union of two trees U and T
can be implemented by viewing the smaller tree as a sorted
sequence of insertions. Then we can extract the elements of U
in sorted order using work O(k) and span O(log n). Adding
the complexity of a bulk insertion from Theorem 4 we get
total time O(k/p log n

k + log n).
g) Intersection: We perform a bulk search for the ele-

ments of U in T in time O(k/p log n
k + log n) and build a

search tree from this sorted sequence in time O(k/p+ log n).
h) Set Difference T \ U : If |T | ≥ |U | we can inter-

pret U as a sequence of deletions. This yields parallel time
O(k/p log n

k + log n). If |U | > |T |, we first intersect U and
T in time O(k/p log n

k + log n) and then compute the set
difference T \U = T \ (T ∩U) in time O(k/p log n

k + log n).
i) Symmetric Difference: We use the results for union and

difference and apply the definition U4T = (U \T)∪(T \U).

VIII. EXPERIMENTS

In this section, we evaluate the performance of our parallel
(a, b)-trees and compare them to the several number of con-
testants. We also study our basic operations, join and split, in
isolation.

j) Methodology: We implemented our algorithms using
C++. Our implementation uses the C++11 multi-threading
library (implemented using the POSIX thread library) and
an allocator tbb::scalable_allocator from the Intel
Threading-Building Blocks (TBB) library. All binaries are
built using g++-4.9.2 with the -O3 flag. We run our
experiments on Intel Xeon E5-2650v2 (2 sockets, 8 cores with
Hyper-Threading, 32 threads) running at 2.6 GHz with 128GB
RAM. To decrease scheduling effects, we pin one thread to
each core.

Each test can be described by the size of an initial (4, 8)-tree
(T), the size of a bulk update (B), the number of iterations
(I) and the number of processors (p). Each key is a 32-
bit integer. In the beginning of each test we construct an
initial tree. During each iteration we perform an incremental
bulk update. We use a uniform, skewed uniform, normal and
increasing uniform distributions to generate an initial tree and
bulk updates in most of the tests. The skewed distribution
generates keys in smaller range than a uniform distribution.
The increasing uniform distribution generates the keys of a
bulk update such that the keys of the current bulk update are
greater than the keys of the previous bulk updates.

k) Split algorithms: We present a comparison of the
sequential split algorithm and the parallel split algorithm from
Section III. We split an initial tree into 31 trees using 30
sorted separators. The sequential algorithm splits the pre-
constructed tree into two trees using the first separator and
the split operation from Section II-0b. Next, it continues to
split using the second separator, and so on. Figure 6 shows
the running times of the tests with a uniform distribution
(other distributions have almost the same running times). The
parallel split algorithm outperforms the sequential algorithm
by a factor of 8.1. Also we run experiments with p = 16 and
split an initial tree into 16 trees. The speed-up of the parallel
split is 4.6.

104 105 106 107

Tree size

0

20

40

60

80

100

120

140

T
im

e
 o

f
sp

lit
,
µ
s

Sequential split

Parallel split

Figure 6: Comparison of split algorithms. T =
√

10
i
, i =

8, . . . , 14, and p = 31

l) Join algorithms: We present a comparison of different
join algorithms. We join 31 trees using the following three
algorithms: (1) SJ is a sequential join algorithm. It joins
the first tree to the second tree using join operation from
Section II-0a. Next, it joins the result of previous join and

9

the third tree, and so on. (2) PPJ is a parallel pairwise join
algorithm that joins pairs of trees in parallel from Section IV.
(3) PJ is a parallel join algorithm from Section V. Figure 7
shows the running times of the tests with a uniform distribution
(other distributions have almost the same running times). The
PJ algorithm is worse than the SJ and the PPJ algorithm by
a factors of 1.9 and 3.4, respectively. The PPJ algorithm has
a speed-up of 1.8 compared to the SJ. This can be explained
by the involved synchronization overhead. In the experiments
with p = 16 and 16 trees the PPJ and SJ algorithms show the
same running times. We explain this by the fact that hyper-
threading advantages when there are a lot of dereferences of
pointers and the number of trees is nearly doubled.

104 105 106 107

Tree size

0

5

10

15

20

T
im

e
 o

f
jo

in
,
µ
s

SJ PPJ PJ

Figure 7: Comparison of join algorithms. T =
√

10
i
, i =

8, . . . , 14, and p = 31

Additionally, we measure the number of visited nodes
during the course of the join algorithms to show the theoretical
advantage of the the PJ algorithm over the the SJ and the PPJ
algorithms. Figure 8 shows the results of the tests with two
initial trees, which are built using a uniform and a skewed
uniform(suffix ” SU”) distribution.

The PJ algorithm visits significantly less nodes than the
SJ algorithm (by a factor of 2.8) on the tests with a uniform
distributions. But it visits almost the same number of nodes as
the PPJ algorithm. The PJ SU algorithm visits less nodes than
the SJ SU and the PPJ SU algorithms (by factor of 3.9 and
1.3, respectively). We explain this by the fact that a skewed
uniform distribution constructs an initial tree that is split into
31 trees, such that the first tree is significantly higher than
other trees. Therefore, the algorithms SJ and PPJ visit more
nodes than the algorithm PJ during the access to a spine node
by rank. This suggests that the PJ algorithm may outperform
its competitors on instances with deeper trees and/or additional
work per node (for example, an I/O operation per node in
external B-tree).

m) Comparison of parallel search trees: Here we com-
pare our sequential and parallel implementations of search
trees and four competitors:

1) Seq is a (4, 8)-tree with a sequential bulk updates from
Section II-0c;

2) PS PPJ is a (4, 8)-tree with a parallel split phase, a
union phase and a parallel pairwise join phase;

3) PWBT is a Parallel Weight-Balanced B-tree [8];

104 105 106 107

Tree size

20
40
60
80

100
120
140
160
180
200

V
is

it
e
d
 n

o
d
e
s

SJ

SJ_SU

PPJ

PPJ_SU

PJ

PJ_SU

Figure 8: Visited nodes of the join algorithms. T =
√

10
i
, i =

8, . . . , 14, and p = 31

4) PRBT is a Parallel Red-Black Tree [9];
5) PBST is a Parallel Binary Search Tree [1] (we compile

it using g++-4.8 compiler with Cilk support).
Figure 9 shows the measurements of the tests with a uniform

distribution, where T = 100M,B = 16,
√

10
i
, i = 4, . . . , 14

(I = 10000 for B = 16, . . . , 100K and I = 4G/B for B =
316227, . . . , 10M) and p = 16 (we use 16 cores, since the
insert phase is cache-efficient and hyper-threading does not
improve performance). We achieve relative speedup up to 12
over sequential (a, b)-trees. Even for very small batches of
size 100 we observe some speedup. Note that the speed-ups
of the join and split phases are less than 12. But they do not
affect the total speed-up, since the time of the insertion phase
dominates them.

On average, our algorithms are 1.8 times faster than a
PWBT. We outperform the PWBT since a subtree rebalancing
(linear of the subtree size) can occur during an insert operation.
Also our data structure is 5.5 times faster than a PRBT, 5.7
times faster than a PBST and 10.7 faster than a Seq. Note that
the PRBT and the PBST failed in the last four tests due to the
lack of memory space. Hence, we expect even greater speed-
up of our algorithms compare to them. For small batches, the
speedup is larger which we attribute to the startup overhead
of using Cilk.

Additionally, we run the tests for the PS PPJ and the fastest
competitor the PWBT with the same parameters using a nor-
mal, skewed uniform and increasing uniform distributions to
generate bulk updates. They perform faster in these tests than
in the tests with a uniform distribution due to the improved
cache locality. Although a subtree rebalancings in PWBT last
longer than in the tests with a uniform distributions, they occur
less frequently. On average, the PS PPJ is 2.0, 2.6 and 2.1
times faster than the PWBT in tests with a normal, skewed
uniform and increasing uniform distributions respectively.

Figure 10 shows another comparison of the PS PPJ with
the PWBT. This plot shows the worst-case guaranties of the
PS PPJ. The spikes on the plot of the PWBT are due to the
amortized cost of operations. We conclude that the PS PPJ is
preferable in real-time applications where latency is crucial.

10

101 102 103 104 105 106 107

Bulk size

101

102

103

104

105

T
im

e
 p

e
r

e
le

m
e
n
t,

 n
s

PS_PPJ
PWBT
PRBT

Seq
PBST

Figure 9: Bulk updates algorithms.

0 50 100 150 200 250 300 350 400
Number of operation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 o

f
o
p
e
ra

ti
o
n
,
s PS_PPJ PWBT

Figure 10: Running time of all operations. T = 100M,B =
10M and I = 400

REFERENCES

[1] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun, Parallel ordered sets
using join, CoRR abs/1602.02120 (2016).

[2] Guy E. Blelloch and Margaret Reid-Miller, Fast set operations using
treaps, 10th ACM Symposium on Parallel Algorithms and Architectures,
SPAA, 1998, pp. 16–26.

[3] Gerth S. Brodal, Christos Makris, and Kostas Tsichlas, Purely functional
worst case constant time catenable sorted lists, ESA, LNCS, vol. 4168,
Springer, 2006, pp. 172–183.

[4] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun, A
practical concurrent binary search tree, 15th Symposium on Principles
and Practice of Parallel Programming (PPoPP), ACM, 2010, pp. 257–
268.

[5] Mark R. Brown and Robert E. Tarjan, A fast merging algorithm, J. ACM
26 (1979), no. 2, 211–226.

[6] Mark R. Brown and Robert E. Tarjan, Design and analysis of a data
structure for representing sorted lists, SIAM J. Comput. 9 (1980), no. 3,
594–614.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, Introduction to algorithms, third edition, 3rd ed., The MIT Press,
2009.

[8] Stephan Erb, Moritz Kobitzsch, and Peter Sanders, Parallel bi-objective
shortest paths using weight-balanced B-trees with bulk updates, 13th
Symposium on Experimental Algorithms (SEA), LNCS, vol. 8504,
Springer, 2014, pp. 111–122.

[9] Leonor Frias and Johannes Singler, Parallelization of bulk operations
for STL dictionaries, Euro-Par Workshops, LNCS, vol. 4854, Springer,
2007, pp. 49–58.

[10] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit, A
provably correct scalable skiplist, 10th International Conference On
Principles Of Distributed Systems (OPODIS), 2006.

[11] Lisa Higham and Eric Schenk, Maintaining B-trees on an EREW PRAM,
Journal of Parallel and Distributed Computing 22 (1994), no. 2, 329–
335.

[12] Scott Huddleston and Kurt Mehlhorn, A new data structure for repre-
senting sorted lists, Acta Inf. 17 (1982), 157–184.

[13] Joseph F. JaJa, An introduction to parallel algorithms, Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1992.

[14] Haim Kaplan and Robert E. Tarjan, Purely functional representations
of catenable sorted lists., 28th ACM Symp. on Theory of Computing
(STOC), 1996, pp. 202–211.

[15] Jyrki Katajainen, Efficient parallel algorithms for manipulating sorted
sets, 17th Annual Computer Science Conf., U. of Canterbury, 1994,
pp. 281–288.

[16] Philip L Lehman and Bing Yao, Efficient locking for concurrent oper-
ations on B-trees, ACM Transactions on Database Systems (TODS) 6
(1981), no. 4, 650–670.

[17] Kurt Mehlhorn and Peter Sanders, Algorithms and data structures: The
basic toolbox, Springer, 2008.

[18] Alistair Moffat, Ola Petersson, and Nicholas C. Wormald, Sorting and/by
merging finger trees, Algorithms and Computation, LNCS, vol. 650,
Springer, 1992, pp. 499–508.

[19] Heejin Park and Kunsoo Park, Parallel algorithms for red-black trees,
Theoretical Computer Science 262 (2001), 415 – 435.

[20] Wolfgang Paul, Uzi Vishkin, and Hubert Wagener, Parallel dictionaries
on 2–3 trees, 10th Interntaional Colloquium on Automata, Languages
and Programming (ICALP), vol. 154, Springer, 1983, pp. 597–609.

[21] Jason Sewall et al., PALM: Parallel architecture-friendly latch-free
modifications to B+ trees on many-core processors, PVLDB 4 (2011),
no. 11, 795–806.

[22] Yossi Shiloach and Uzi Vishkin, Finding the maximum, merging, and
sorting in a parallel computation model., J. Algorithms 2 (1981), 88–
102.

11

	I Introduction
	II Preliminaries
	III Parallel Split
	IV Parallel Join
	IV-A Non-optimal parallel join.
	IV-A1 Fast Access to Spine Nodes by Rank
	IV-A2 Splitting a Sequence of Degree b Nodes in Parallel
	IV-A3 Maintaining Subtree Sizes
	IV-A4 The Parallel Join Algorithm

	IV-B Sequential join of t trees
	IV-C Optimal parallel join

	V Lightweight Parallel Join
	VI Bulk Updates
	VI-A Selecting the Separators.

	VII Operations on Two Trees
	VIII Experiments
	References

