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Abstract—Stochastic gradient descent (SGD) is one of the most
widely used optimization methods for solving various machine
learning problems. SGD solves an optimization problem by iter-
atively sampling a few data points from the input data, computing
gradients for the selected data points, and updating the solution.
However, in a parallel setting, SGD requires interprocess commu-
nication at every iteration. We introduce a new communication-
avoiding technique for solving the logistic regression problem
using SGD. This technique re-organizes the SGD computations
into a form that communicates every s iterations instead of every
iteration, where s is a tuning parameter. We prove theoretical
flops, bandwidth, and latency upper bounds for SGD and its
new communication-avoiding variant. Furthermore, we show
experimental results that illustrate that the new Communication-
Avoiding SGD (CA-SGD) method can achieve speedups of up to
4.97× on a high-performance Infiniband cluster without altering
the convergence behavior or accuracy.

Index Terms—Communication Avoidance, Logistic Regression,
Stochastic Gradient Descent, Binary Classification.

I. INTRODUCTION

Optimization methods are at the core of many machine
learning applications. For example, the areas of computer
vision and natural language processing make use of large ma-
chine learning models that have been trained on vast amounts
data to enable computers to automatically classify images
or translate speech to text. Much of the prediction power is
derived from solving nonlinear optimization problems which
often perform regression (linear and nonlinear) or classification
(binary and multiclass). In order to solve these optimization
problems, we often compute first- or second-order derivatives
and incrementally update the solution until it converges. Such
approaches to solving optimization problems [1]–[3] have
been well-studied, however, with the rise of multi-core/multi-
node processing these optimization methods must now be
parallelized across multiple cores/nodes. As a result, studying
and improving the parallel performance of these optimization
methods is imperative and would impact many application
areas.

In this paper, we will focus on the stochastic gradient
descent (SGD) method [2] for solving binary classification
problems using the logistic regression model. SGD solves the
logistic regression problem by iteratively sampling a few data
points from the input data, computing the gradient of the
logistic loss function, and updating the solution. As a result,
parallel variants of SGD require interprocess communication at

every iteration. On modern computing hardware, where com-
munication cost often dominates computation cost, the running
time of parallel SGD is often dominated by communication
cost.

We model communication cost on a distributed-memory
parallel cluster in terms of two costs: latency and bandwidth.
Our goal is to show that the latency cost of SGD, which
is often the dominant cost, can be improved by a tunable
factor of s by trading a factor of sb additional bandwidth
and computation, where b is a tunable batch size. The main
contributions of this paper are:
• Derivation of a Communication-Avoiding SGD (CA-

SGD) method for solving the logistic regression problem
which reduces SGD latency cost by a tunable factor of s
in exchange for a factor of sb additional bandwidth and
computation.

• Theoretical analysis of the flops, bandwidth, and latency
costs of SGD and CA-SGD under two input matrix par-
titioning schemes: 1D-block row and 1D-block column.

• Numerical experiments which illustrate that CA-SGD is
numerically stable for very large values of s.

• Performance experiments which illustrate that CA-SGD
can attain speedups of up to 4.97× over SGD and can
scale out to 4× as many cores.

A. Logistic Regression

Logistic regression is a supervised learning model used to
predict the probability of data points belonging to one of two
classes (binary classification). This model is widely used in
many applications like predicting disease risk, website click-
through prediction, and fraud detection which often require
classification of data in terms of two classes.

We will now briefly derive the optimization problem for
logistic regression used in this paper. We begin by defining
the logistic function:

σ(θ) =
eθ

1 + eθ
≡ 1

1 + e−θ
.

Now suppose we are given a dataset A ∈ Rm×n with m
data points (rows of A) and n features (columns of A) and
a vector of labels (one label per data point), y ∈ Rm such
that yi ∈ {−1,+1} ∀ i = 1, . . . ,m. Given such a dataset,
the goal is to compute a vector x ∈ Rn of weights for each
feature that maximizes the probability of correctly classifying
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the input data. Using the logistic function, we can model the
probability for each data point as

P (yi|aix) =

{
σ(aix) yi = +1

1− σ(aix) yi = −1,
(1)

where ai is the i-th data point (row) in A and x is the unknown
vector of weights. In this paper we assume the labels are −1
and +1 because this label choice leads to fewer terms in the
optimization problem. This results in a more concise derivation
of communication-avoiding SGD (CA-SGD). Our results also
hold for other mathematically equivalent formulations (i.e.
labels that are 0 and +1, etc.) of the logistic regression
problem.

Since 1 − σ(aix) = σ(−aix) by symmetry of the logistic
function, (1) can be further simplified to,

P (yi|aix) = σ(yiaix).

From this the optimization problem can be defined as

argmax
x

m∏
i=1

σ(yiaix) = argmax
x

m∏
i=1

1

1 + exp(−yiaix)
, (2)

which computes the weghts, x, that maximizes the likelihood
function. Finally, by taking the negative log of the likelihood,
we can cast (2) into the form of empirical risk minimization,

argmin
x

F (A, x, y), (3)

where F (A, x, y) =
1

m

m∑
i=1

log (1 + exp (−yiaix)).

Unlike linear regression, (3) does not have a closed-form so-
lution and cannot be solved using direct methods (i.e. through
matrix factorization). However, one approach to solving this
problem is to update the solution iteratively using the gradient
of (3) until the solution converges. The gradient with respect
to x is given by

∇F (A, x, y) = 1

m

m∑
i=1

−ãTi
1 + exp (ãix)

, (4)

where ãi = yiai ∀ i = 1, . . . ,m (i.e. the rows of A scaled
by their corresponding labels). In matrix form we will use the
notation Ã = A◦y, where ◦ represents scaling the i-th row of
A by the i-th element of y. For convenience we can rewrite
(4) in matrix form as

∇F (A, x, y) = − 1

m
ÃT
(
~1�

(
~1 + exp

(
Ãx
)))

, (5)

where � is the elementwise division operation and exp(·) is
now the exponential function applied elementwise to the vector
Ãx. For clarity we will use the notation sig

(
Ãx
)

= ~1 �(
~1 + exp

(
Ãx
))

, which is the sigmoid function applied to

the vector Ãx. We can then rewrite (5) as

∇F (A, x, y) = − 1

m
ÃT sig

(
Ãx
)
. (6)

From (4) the solution vector, xh, for iteration h can be obtained
by,

xh = xh−1 − ηh∇F (A, xh−1, y), (7)

where xh−1 is the solution vector from the previous iteration
and ηh is the learning rate (or step size) at iteration h
which determines by how much the solution moves in the
∇F (A, xh−1, y) direction. This is the well-known gradient
descent (GD) method for iteratively refining the solution,
xh−1, until it converges to the optimal solution. ηh is a
tuning parameter which may drastically affect the convergence
behavior of gradient descent.

Another method often used to solve the logistic regres-
sion problem is Stochastic Gradient Descent (SGD). In-
stead of using the entire matrix A to compute the gradient,
∇F (A, xh−1, y), SGD computes the gradient for only a subset
of the data points (rows) in A. Strictly speaking, SGD samples
only 1 row of A at each iteration. However, we will generalize
this to a tunable batch size of b rows sampled from the matrix
A. The resulting update for SGD with batch size b becomes

xh = xh−1 − ηh∇F (IhA, xh−1, Ihy), (8)

where Ih is a matrix in Rb×m which corresponds to b rows
sampled uniformly at random without replacement from the
identity matrix, Im. As a result, IhA and Ihy simply select b
rows of A and their corresponding b labels from y. Note that
if b = m, SGD is equivalent to gradient descent except with
the rows of A permuted every iteration. The resulting SGD
algorithm is shown in Algorithm 1.

Algorithm 1 Stochastic Gradient Descent
Input: A ∈ Rm×n, y ∈ Rm, η0, b,H ′.
Output: xH ∈ Rn

1: x0 = ~0, Ã = A ◦ y
2: for h = 1, 2 . . . H ′ do
3: choose {ik ∈ [m]|k = 1, 2, . . . , b} uniformly at random

without replacement.
4: Ih = [ei1 , ei2 , . . . , eik , . . . , eib ]

T where eik ∈ Rm is the
k-th standard basis vector.

5: xh = xh−1 +
ηh
m Ã

T ITh sig
(
IhÃxh−1

)
6: end for
7: return xH′

Figure 1 compares the convergence behavior of GD and
SGD for the best ηh setting on the a6a dataset from the
LIBSVM [4] repository. We perform tuning of ηh offline and
show the best setting for GD and SGD, respectively. Note that
many strategies exist for finding optimal, static learning rates
and recent results have also illustrated that adaptive learning
rates work well for convex optimization methods. In this
paper, we focus on introducing the communication-avoiding
(CA) derivation and studying its numerical and performance
characteristics. We leave the effects of various learning rate
strategies on the CA technique for future work.

In Figure 1, we observe that GD (ηh = 1) and SGD
(ηh = 10) on the a6a dataset. We can observe that SGD
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Fig. 1. Comparison of Gradient Descent (GD, blue) and Stochastic Gradient
Descent (SGD, red) loss over 1000 epochs. We select the best learning rate
for GD and SGD through offline tuning.

converges faster than GD over the 1000 epochs. This suggests
that SGD is a better choice of algorithm for applications of
logistic regression. Furthermore, the fast initial convergence
of SGD suggests that it is a much better algorithm if a low-
accuracy solution is sufficient.

When b << m, each iteration of SGD requires less com-
putation than GD (by a factor of m

b ) while one epoch of SGD
performs the same amount of computation as one iteration
(one epoch) of GD. In the distributed-memory parallel setting
with A distributed across several processors each iteration of
GD and SGD requires communication. Since SGD requires
m
b iterations to match GD, SGD requires a factor of m

b more
rounds of communication. On modern parallel hardware where
communication is often the dominant cost, SGD requires
orders of magnitude more communication than GD. This paper
focuses on reducing the communication bottleneck in SGD
without altering the convergence rate and behavior up to
floating-point error.

II. RELATED WORK

Many techniques exist in literature which attempt to reduce
the communication bottleneck in machine learning. For exam-
ple, HOGWILD! [5] uses an asynchronous SGD method for
the shared-memory setting where each thread computes gradi-
ents and updates the solution vector without synchronization.
Due to the lack of synchronization, a thread may overwrite
(and undo) the progress another thread has made. Convergence
of HOGWILD! is not guaranteed, but will converge with high
probability if the solution updates are sufficiently sparse and if
there is bounded delay. In HOGWILD!, the latency bottleneck
is reduced at the expense of convergence rate.

CoCoA [6], [7] is a general framework for reducing the
synchronization cost of solving various machine learning prob-
lems in the distributed-memory setting. CoCoA reduces the
synchronization cost by performing coordinate ascent on only
the locally stored rows of A. After a tunable number of local
iterations, the solution from each processor are sum-reduced
(or averaged). If too many local iterations are performed, then
global convergence will be slow. As with HOGWILD!, the
reduction in latency (by defering communication) comes at the

expense of convergence rate. In contrast, our approach does
not alter the convergence rate of SGD. Instead, we introduce
a tunable communication-avoiding parameter, s, that trades
off additional computation and bandwidth in order to reduce
latency by a factor of s. This means that if latency is the
dominant cost in SGD, then we can reduce it by a factor of s
and attain s-fold speedup with our new CA-SGD method.

Our technique is closely related to the one introduced
in s-step and communcation-avoiding Krylov (CA-Krylov)
methods [8]–[13]. The s-step and CA-Krylov methods work
showed that the recurrence relations in Krylov methods can
be unrolled by a tunable factor of s and the remaining
computation rearranged to avoid synchronization cost in the
distributed-memory parallel setting. While the new methods
have been shown to be faster, they suffered from numerical
instability which subsequent work addressed by introducing
techniques to improve numerical stability [9], [14]–[16].

The same recurrence unrolling technique has been shown to
be effective for primal/dual coordinate and block coordinate
descent methods and quasi-Newton’s method for solving ridge
regression, LASSO, and SVM [17]–[21]. This paper extends
prior results by illustrating that the technique works for solving
the logistic regression problem using SGD where the loss
function is nonlinear instead of linear (linear/ridge regression)
or piecewise linear (LASSO, SVM).

Unlike CA-Krylov methods, our CA-SGD method does not
exhibit any numerical instability even for very large values of
s. This allows CA-SGD to simply select the value of s that
balances the additional computation and bandwidth with the
reduction in latency. The prior work on primal and dual block
coordinate descent focused on piecewise linear problems. The
piecewise linearity ensures that the distributive property can
be applied in order to simplify the communication-avoiding
derivation. However, this is not true for the logistic regression
problem which requires computation of sig

(
Ãx
)

for the
gradient. We will show in Section III that this issue can be
managed by making use of additional memory and communi-
cation properties of matrix-vector multiply (Lemmas IV.1 and
IV.2) for the 1D-block column partitioned algorithm. The 1D-
block row partitioned algorithm, however, requires an entirely
new approach in order to reduce latency by a factor of s.
This new approach for the 1D-block row partitioned case is
described in Section IV.

III. DERIVATION

The Stochastic Gradient Descent (SGD) method is defined
by the solution update,

xh = xh−1 − ηh∇F (IhÃ, xh, y),

where b is the batch size and Ih ∈ Rb×m is a matrix that
contains b rows sampled uniformly at random without replace-
ment from the m-dimensional identity matrix, Im. We will use
the following form in our derivation for the communication
avoiding variant,

xh = xh−1 +
ηh
m
ÃT ITh sig

(
Ãxh−1

)
. (9)



Algorithm 2 Communication-Avoiding SGD
Input: A ∈ Rm×n, y ∈ Rm, η0, b, s,H ′.
Output: xH ∈ Rn

1: x0 = ~0, Ã = A ◦ y
2: for h = 0, 2 . . . H

′

s do
3: for j = 1, 2, . . . s do
4: choose {ik ∈ [m]|k = 1, 2, . . . , b} uniformly at

random without replacement.
5: Ish+j = [ei1 , ei2 , . . . , eik , . . . , eib ]

T where eik is the
k-th standard basis vector.

6: end for

7: Let Y =


Ish+1

Ish+2

...
Ish+s

 Ã
8: G = Y Y T

9: r = Y xsh
10: for j = 1, 2, . . . s do
11: Update xsh+j according to eq. (11).
12: end for
13: end for
14: return xH′

By unrolling the recurrence, we can write xh+1 in terms of
xh−1,

xh+1 = xh−1 +
ηh
m
ÃT ITh sig

(
IhÃxh−1

)
+
ηh+1

m
ÃT ITh+1

sig
(
Ih+1Ãxh−1 +

ηh
m

Ih+1ÃÃ
T ITh sig

(
IhÃxh−1

))
.

(10)

Note that the term sig
(
IhÃxh−1

)
is used twice, once in

(9) and then again to correct the gradient for xh+1 in (10).
Since sig

(
IhÃxh−1

)
has already been computed from (9),

it can be reused in future solution updates. As a result, the
recurrence unrolled solution updates still require only one
sig(·) computation per solution update. This is important
since the exponential operation is more expensive than typical
arithmetic operations.

For convenience we will change the loop iteration counter
from h to sh + j where 0 ≤ h < H ′ is the outer iteration
counter (where communication occurs) and 1 ≤ j ≤ s is the
inner iteration counter (where a sequence of s solution vectors
are computed). By induction we can show that

xsh+j = xsh +

j−1∑
i=1

ηsh+i
m

ÃT ITsh+isig
(
Ish+iÃxsh+i

)
+
ηsh+j
m

ÃT ITsh+jsig
(
Ish+jÃxsh

+

j−1∑
i=1

ηsh+i
m

Ish+jÃÃT ITsh+isig
(
Ish+iÃxsh+i

))
.

(11)

Note that we omit the expansion of xsh+i in (11) for clarity
and will show how it is handled in Section IV. The resulting
CA-SGD algorithm is shown in Algorithm 2.

IV. ANALYSIS OF ALGORITHMS

Note that CA-SGD requires the matrix-matrix multiplica-
tions Ish+jÃÃT ITsh+i in addition to the matrix-vector multi-
plications using ÃT Ish+isig(·) and Ish+iÃxsh+i. Unlike prior
work on ridge regression, LASSO, and SVM [18]–[21], the
nonlinear vector operation sig(·) prevents simplification of
(11). We will show in this section that CA-SGD can reduce
the latency cost despite the nonlinearity under two data par-
titioning schemes (1D-block column and 1D-block row). Due
to the nonlinearity in (11) we will rely on the communication
properties of the distributed matrix-vector products v = Ax
and w = AT v in order to avoid communication in the xh
update step.

Lemma IV.1. Given a matrix A ∈ Rm×n stored in 1D-block
column format across p processors and a vector x ∈ Rn
distributed across the p processors, the matrix vector product
v = Ax with v replicated on all processors requires O (m)
words moved and O (log p) messages.

Proof: Computing Ax requires that each row of A be
multiplied by x. With the given partitioning, each proces-
sor can multiply the portion of row elements stored locally
with the corresponding locally stored elements of x. Each
processor produces a partial vector v(i) ∈ Rm ∀ i ∈
{1, 2, . . . , p} s.t. v =

∑p
i=1 v

(i). Computing
∑p
i=1 v

(i) and
replicating v on all processors requires one all-reduce with
summation which costs O (m) words moved and O (log p)
messages. Note that the MPI implementation makes run-
time decisions about the optimal routing algorithm based on
message-size and number of processors [22]. This proof selects
bandwidth and latency bounds with the lowest latency cost.

Lemma IV.2. Given a matrix A ∈ Rm×n stored in 1D-block
column format across p processors and a vector v ∈ Rm
replicated on all p processors, the matrix vector product
w = AT v with w distributed across the p processors does
not require comunication.

Proof: A similar cost analysis to Lemma IV.1 proves this
lemma.

From Lemmas IV.1 and IV.2 we can see that in (11) comput-
ing Ish+iÃxsh+i requires communication, whereas apply the
sigmoid function and computing ÃT ITsh+jsig

(
Ish+iÃxsh+i

)
does not.

We will now analyze the computation and communication
costs of SGD and CA-SGD. We assume that A is sparse with
nonzeros distributed uniformly between the rows and that the
vectors y and x are dense. We will use the notation fmn to
refer to the number of nonzeros in A, where 0 < f ≤ 1.
This allows us to bound the number of nonzeros of IhÃ by
nnz(IhÃ) = fbn. Furthermore, we will also assume that the
nonzeros are distributed uniformly between the processors.
Note that logistic regression requires an exp(·) operation



and element-wise division on b-dimensional vectors. This
operation requires more floating-point operations to compute
than typical arithmetic operations. We will model this by
introducing the parameter ω to represent the cost of a single
sig(·) operation. The elementwise sig(·) operation on a b-
dimensional vector, as a result, costs ωb flops.

Theorem IV.3. Given a matrix A ∈ Rm×n stored in 1D-block
column layout on p processors, labels y ∈ Rm replicated on
all processors, and x ∈ Rn partitioned across p processors,
H iterations of SGD (Alg. 2) with batch size b requires
O
(
H fbn

p +H n
p +Hωb

)
flops, O (Hb) words moved, and

O (H log p) messages sent.

Proof: Each iteration of SGD requires computation
of IhÃxh−1 which costs fbn

p flops and produces a b-
dimensional vector on each processor which must be sum-
reduced. The all-reduce with summation requires b words
moved and log p messages. Computing sig(IhÃxh−1) costs
ωb flops and no communication. The matrix-vector product
ηh
m Ã

T ITh sig
(
IhÃxh−1

)
costs fbn

p multiplications and does
not require communication (from Lemma IV.2). Finally, updat-
ing xh costs n

p flops and does not require any communication.
Multiplying each cost by H gives the results of this proof.

We will now show that our new CA-SGD algorithm can
asymptotically reduce the communication cost.

Theorem IV.4. Given a matrix A ∈ Rm×n stored in 1D-block
column layout on p processors, labels y ∈ Rm replicated on
all processors, and x ∈ Rn partitioned across p processors,
H iterations of CA-SGD (Alg. 3) with batch size b requires
O
(
H f2sb2n

p +H n
p +Hsb2 +Hωb

)
flops, O

(
Hsb2

)
words

moved, and O
(
H
s log p

)
messages sent.

Proof: Each iteration of CA-SGD begins by computing

the matrix vector product


Ih

Ih+1

. . .
Ih+s

 Ãxh−1. This computation

requires O
(
fsbn
p

)
flops. In addition to the matrix vector prod-

uct, the Gram matrix


Ih

Ih+1

. . .
Ih+s

 ÃÃT [ITh ITh+1 . . . ITh+s
]

must be computed. This costs O
(
f2s2b2n

p

)
when computing

pair-wise inner products1. There are s2b2 possible inner prod-
ucts and each costs O

(
f2n

)
flops. Once the partial matrix-

vector products and Gram matrices are computed, an all-
reduce with summation is required to combine the partial
products. This communication requires s2b2+sb words moved
and log p messages. Then, we can compute s gradient vectors
each of which requires a b-dimensional elementwise sig(·)
operation. This costs ωsb flops and no communication. In
order to complete the gradient computation, a matrix vector

1Note that the diagonal blocks of the Gram matrix are not required.

product with blocks of ÃT are required which costs O
(
fsbn
p

)
flops and no communication (from Lemma IV.2). Note that
after the first gradient is computed, the subsequent s − 1
gradients require additional computation in order to correct for
missed solution updates. This additional computation requires
s2b2 flops (there are (s−2)(s−1)

2 total matrix vector products).
Once all gradients have been computed, the solution vector
xsh+s can be computed by taking a sum over all s gradients
which requires O

(
sn
p

)
flops. Unlike SGD, each iteration of

CA-SGD computes s gradients. Therefore, Hs outer iterations
of CA-SGD are required to perform the equivalent of H SGD
iterations. Multiplying the costs by H

s gives the results of this
proof.

We will now assume that A is stored in 1D-block row lay-
out, y is distributed across the processors, and x is replicated
on all processors. Note that under this partitioning scheme
choosing b rows of A uniformly at random may cause load
imbalance2, so assume that each processor will chose an equal
number of local rows (i.e. b ≥ p s.t. b/p ∈ Z+). This variant
of SGD interpolates between sequential SGD when p = 1
and GD when p = m. Note that this variation has not been
discussed in prior work [18]–[21].

Theorem IV.5. Given a matrix A ∈ Rm×n stored in 1D-
block row layout on p processors, labels y ∈ Rm distributed
across all processors, and x ∈ Rn replicated on all processors,
H iterations of SGD (Alg. 2) with batch size b requires
O
(
H fbn

p +Hn+H ωb
p

)
flops, O (Hn) words moved, and

O (H log p) messages sent.

Proof: Each iteration of SGD requires computation of
IhÃxh−1 which costs O

(
fbn
p

)
flops since each proces-

sor selects b
p rows from locally stored data. Computing

sig(IhÃxh−1) requires each processor to perform the sig(·)
operation on a b

p -dimensional vector which costs ωb
p flops. The

matrix-vector product ηh
m Ã

T ITh sig(IhÃxh−1) costs O
(
fbn
p

)
flops and requires an all-reduce with summation. The all-
reduce communicates n words using log p messages. Finally
updating xh costs n flops and no communication since all
processors have a copy of xh−1 and a copy of the gradient.
Multiplying by the number of iterations H provides the results
of this proof.

From this proof we can observe that SGD with 1D-block
row layout also requires one round of communication for each
iteration. We will now prove the computation and communi-
cation cost of CA-SGD with 1D-block row layout.

Theorem IV.6. Given a matrix A ∈ Rm×n stored in 1D-
block row layout on p processors, labels y ∈ Rm distributed
across all processors, and x ∈ Rn replicated on all processors,
H iterations of CA-SGD (Alg. 3) with batch size b requires
O(H f2sb2n

p +Hn+H sb2

p +H ωb
p ) flops, O(Hfbn+Hb+H n

s )

words moved, and O(Hs log p) messages sent.

2Some processors may have more than the average number of rows chosen
from locally stored data while other may have no rows selected.



TABLE I
PROPERTIES OF THE LIBSVM DATASETS FOR NUMERICAL EXPERIMENTS

Name m n nnz(A) nnz(A)/(mn) σmax σmin > 0
a6a 11, 220 123 155, 608 0.1137 47.9015 0.9972

Mushrooms 8, 124 112 170, 604 0.1875 289.8993 1.2841
w7a 24, 692 300 288, 148 0.0389 9.8112 0.6846
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(c) Relative Solution Error vs. Epochs
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(d) Mushrooms Loss vs. Epochs
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(e) Training Accuracy vs. Epochs
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(f) Relative Solution Error vs. Epochs
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(g) w7a Loss vs. Epochs
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(h) Training Accuracy vs. Epochs
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(i) Relative Solution Error vs. Epochs

Fig. 2. Comparison of SGD and CA-SGD convergence behavior on the a6a, mushrooms, and w7a (see Table I) for various values of s. The loss function,
relative solution error, and training accuracy are reported over 100 epochs of training.

Proof: Each iteration of CA-SGD requires computation

of Y xsh where Y =


Ish+1

Ish+2

. . .
Ish+s

 Ã which costs O
(
fsbn
p

)
flops

and no communication. The resulting sb-dimensional vector
is partitioned across p processors. We must also compute
the Gram matrix G = Y Y T . Since Y is 1D-block row
partitioned across p processors with each processor storing sb

p
rows, computing G requires communication. By using an all-
gather routine [22], each processor can obtain the necessary
rows of Y from other processors in order to compute G.

In addition to communicating Y we also communicate the
vector Y xsh. This costs O

(
f2s2b2n

p

)
flops and communicates

O ((s− 1)fbn+ sb) words using log p messages3. Each pro-
cessor computes blocks of G such that G is stored in 1D-block
cyclic row layout with each processor storing b

p consecutive
rows in each b × b upper triangular block of G). We can
now compute all s of the sig(·) vectors shown in (11) which
requires s2b2+ωsb

p flops on each processor (the resulting b-

3If the message size for the all-gather is large, then many MPI implementa-
tions will switch to a 1D-ring routing algorithm. CA-SGD reduces the latency
cost by a factor of s in both situations.



dimensional vectors are partitioned across all processors). We
can now compute the gradient by multiplying the local sb

p

columns of ÃT with the local sbp elements of the sig(·) vectors.
This costs fsbn

p flops and no communication. The resulting
s gradient vectors on each processor are n-dimensional and
must be sum-reduced in order to update the solution vector.
The all-reduce communicates n words4 using log p messages.
Once all processors have a copy of the s gradient vectors,
they can be summed to obtain the update to the solution
vector, which costs sn flops. Combining the costs results
in O

(
f2s2b2n

p + sn+ s2b2

p + ωsb
p

)
flops and communicates

O (fsbn+ sb+ n) words in O (log p) messages per outer
iteration. Multiplying the per iteration costs by H

s gives the
results of this proof.

These proofs show that CA-SGD reduces the latency cost by
a tunable factor of s at the expense of additional bandwidth
and computation cost. If latency is the dominant cost, then
CA-SGD can attain s-fold speedup over SGD. This section
primarily focuses on 1D layouts of A, however, 2D layouts
of A might yield better performance for large, (nearly) square
matrices. In this setting we can combine a divide-and-conquer
local SGD algorithm with our (1D-column layout) CA-SGD
method. We leave the analysis, implementation, and perfor-
mance comparison of this 2D layout variant for future work.

V. EXPERIMENTAL RESULTS

Prior work on CA-Krylov methods [8], [9], [14]–[16] illus-
trated that applying the CA-technique can result in numerical
instability due to the additional computation and rearragement
of the solution updates. This held true for even modest values
of s and required development of residual replacement and
orthogonal basis functions. However, unlike prior work, we
will show that CA-SGD is numerically stable for very large
values of s. Then we will show the practical performance
tradeoffs and scaling properties of CA-SGD with an MPI im-
plementation targeting a high-performance Infiniband cluster.

A. Numerical Experiments

We will now show how the convergence behavior of SGD
compares to CA-SGD as s is varied. The datasets used in the
experiments are binary classification problems obtained from
the LIBSVM repository [4]. Table I summarizes properties
of the datasets tested in this section. The SGD and CA-SGD
methods have been implemented in Python using NumPy for
linear algebra subroutines. Figure 2 illustrates the loss function
convergence, relative solution error, and training accuracy of
SGD and CA-SGD. From Figures 2a, 2d, and 2g we can
observe that CA-SGD converges at the same rate as SGD
and to the same final loss value for all datasets and values
of s up to 512. Similarly, Figures 2b, 2e, and 2h show that
CA-SGD attains the same training accuracy as SGD for all

4Note that we perform local summations on the s gradient vectors to
obtain one partially summed vector that is subsequently sum-reduced across
processors. However, doing so means we can only obtain the final solution
vector xsh+s and not the intermediate solutions xsh+j ∀ j = 1, 2, . . . , s−1.

values of s. The loss convergence and training accuracy figures
experimentally validate that CA-SGD is simply a mathematical
reformulation and computes the same sequence of partial
solutions (up to floating-point error) as SGD.

The next set of experiments aim to quantify the floating-
point error in the partial solutions computed by CA-SGD
when compared to SGD. To show this, we will plot the
relative solution error of CA-SGD with respect to SGD.
For these experiments relative solution error is defined as,
‖xh − x′h‖2 / ‖xh‖2, where h is the epoch of training, xh
is the SGD solution vector, and x′h is the CA-SGD solution
vector. We will also plot the machine precision, εmach, of the
target computer as a reference line. Figures 2c, 2f, and 2i
illustrate the results of this experiment. For the mushrooms
and w7a datasets, we observe that the relative solution error
is below machine precision over all epochs of training, which
means there is negligible accumulation of floating-point error
from CA-SGD for all values of s that were tested. The
relative solution error for the a6a dataset is greater than
machine precision but only by a constant factor and is still
accurate up to 15-digits. For all datasets we observe that as
s increases, the relative solution error also increases. This is
to be expected since large values of s require computation of
larger Gram matrices and additional matrix-vector products.
However, despite the additional computation we see that CA-
SGD is numerically stable.

For other datasets that have similar singular value spread,
CA-SGD is likely to remain numerically stable. Furthermore,
if techniques like data normalization and regularization are
incorporated into the logistic regression model, the datasets
become more well-conditioned. As a result, we do not expect
CA-SGD to exhibit numerical instability for most practical
applications and desired accuracies. In addition, numerical
analysis of CA-SGD would be helpful in provide bounds on
error accumulation.

B. Performance Experiments

To show the practical tradeoffs between SGD and CA-SGD,
we implement both algorithms in C++ with MPI for parallel
processing. The input matrix is stored in CSR 3-array format
and partitioned in 1D-block column layout. Since SGD and
CA-SGD only operate on b and sb rows of A, respectively,
we reimplemented a subset of sparse BLAS-1 and BLAS-2
so that they operate only on the sampled rows. This avoids
the overhead of explicitly copying sampled rows of A into
a buffer at every iteration. In addition, we implement a new
sparse BLAS-3 kernel to compute the Gram matrix required
by CA-SGD. Since the Gram matrix is symmetric, we only
compute and store the upper-triangular portion.

The experiments were performed on a high-performance
cluster provided by the Maryland Advanced Research Com-
puting Center. The compute nodes are dual-socket 2.5GHz
Intel Haswell 12-core processors (24 cores per node) which
are interconnected by an Infiniband network using a fat-tree
topology. The code is built with the Intel 18.0.3 C++ compiler
and OpenMPI 3.1 [23]. We experimented with hybrid OpenMP
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Fig. 3. Strong scaling comparison between SGD (b = 1) and CA-SGD on the news20, real-sim and url datasets (see Table II). We report the mean running
times (blue points) and the standard deviation (error bars) over 5 trials. CA-SGD results are annotated with the value of s that achieved the fastest running
times.

TABLE II
PROPERTIES OF THE LIBSVM DATASETS FOR PERFORMANCE

EXPERIMENTS

Name m n nnz(A)
news20 19, 996 1, 355, 191 1, 674, 113
real-sim 72, 309 20, 958 3, 709, 083

url 2, 396, 130 3, 231, 961 277, 058, 644

and MPI configurations but found that flat MPI performed
best. Table II summarizes the LIBSVM [4] datasets used for
the performance experiments. All matrices and vectors are
stored in double-precision format. The datasets were chosen
to illustrate the SGD vs CA-SGD methods at various machine
scales (real-sim being small scale, news20 being medium
scale, and url being large scale).

1) Scaling: This benchmark is intended to show how CA-
SGD and SGD behave as the number of cores is varied. As
the number of cores increase, the SGD running time becomes
more latency dominant. Since CA-SGD reduces latency cost
by s, we expect to see performance improvements over SGD.
Figures 3a-3c illustrate the strong scaling (left y-axis in blue)
and speedups (right y-axis in red) for the datasets in Table II.
Each plot in Figure 3 shows the SGD (solid blue) and CA-
SGD (dashed blue) running times with batch size of 1 for
each dataset. Both methods were trained for 100 epochs and
we report the mean running time and standard deviation (error
bars) over 5 trials. The CA-SGD running times are annotated
with the value of s that achieved the best performance.

In Figure 3a we can observe that at small scale (p = 24
and p = 48) the computational cost dominates with s = 2
resulting in the best CA-SGD running times. Since the latency
cost increases with the number of cores, we can see that CA-
SGD can use larger values of s at larger core counts. This
eventually leads CA-SGD (p = 192 and s = 8) to attain an
average speedup of 2.27× over SGD (p = 96). Finally, at
p = 384 we see that CA-SGD performance degrades despite
increasing s. This is because the additional computation and
bandwidth costs dominate the reduction in latency cost. Figure
3b shows the scaling results for the smaller real-sim dataset.
This dataset has fewer columns per core which means that

the latency cost is more dominant at smaller scales. This is
evidenced by the fact that we can start at s = 4 for this
dataset. As the number of cores increases, we observe that
s becomes larger and the speedup from CA-SGD increases.
However, at p = 96 we see the additional computation and
bandwidth costs begin to dominate and performance of CA-
SGD degrades. For the real-sim dataset, CA-SGD (p = 48
and s = 16) achieves an average speedup of 3.41× over
SGD (p = 12). Figure 3c illustrates scaling results for the
larger url dataset. Due to the size of this dataset, SGD and
CA-SGD can scale to larger numbers of cores (potentially
higher latency costs). For this dataset, CA-SGD (p = 768
and s = 16) achieves an average speedup of 4.97× over SGD
(p = 192) and scales to 4× as many cores. The scaling results
in this section suggest that CA-SGD can achieve large average
speedups of up to 4.97× over SGD and scale out further
on a parallel cluster. These experiments further validate the
theoretical analysis and illustrate that reducing latency at the
expense of bandwidth and computation can lead to significant
performance improvements.

2) Running time breakdown: This benchmark is intended
to show a breakdown of how much time is spend on compu-
tational kernels and communication routines in the SGD and
CA-SGD algorithms. We will compare SGD vs. CA-SGD and
at two different core counts. At smaller core counts, latency
is less dominant so the benefits of CA-SGD will be less
pronounced. However, once we transition to large core counts,
the latency reduction of CA-SGD should result in larger
speedups. We report the running time breakdown of SGD vs
CA-SGD with b = 1 for several values of s on the news20
dataset. We obtained the running time breakdown by using the
Tuning and Analysis Utilities (TAU) to instrument our code
[24]. Since TAU generates profiles for each MPI process, we
show the average over all MPI processes. Some operations
such as the row sampling, scalar operations, loop overheads,
and memory management are grouped into overhead.

Figures 4a and 4b illustrate the running time breakdown of
SGD and CA-SGD at p = 48 and p = 192, respectively.
Note that the MPI Allreduce times include bandwidth and
latency costs. Compute Gram Matrix, sparse dot, sparse scal,
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Fig. 4. Running time breakdown of SGD and CA-SGD (with b = 1) on the news20 dataset (see Table II) for p = 48 and p = 192. Overhead includes the
time spent on row sampling, scalar operations, loop overhead, and memory management. SGD does not require the sparse gemv nor the compute Gram matrix
operations. CA-SGD replaces the sparse dot with sparse gemv computations. Note that MPI Allreduce in the legend is a combination of the bandwidth and
latency costs analyzed and the remaining legend items except Overhead correspond to the flops cost analyzed in Section IV.

sparse gemv, and axpy correspond to the flops cost analyzed
in Section IV. At small scale (Fig. 4a), the computation cost
(axpy) dominates the communication cost (MPI Allreduce).
As s increases we begin to see a reduction in MPI Allreduce
times due to a reduction in latency cost. However, starting
at s = 8 the additional computation and bandwidth costs of
CA-SGD dominate and cause the running times to grow. In
the best case (at s = 2) CA-SGD achieves a communication
speedup of 1.58× and an overall speedup of 1.12× over SGD.

At large scale (Fig. 4b), the communication time is domi-
nated by latency due to synchronization with 4× more cores.
Since latency dominates, CA-SGD achieves speedups for a
wider range of values for s. At s = 8 CA-SGD attains a
communication speedup of 6.5× and overall speedup of 2.6×
over SGD. In both figures we see cases where CA-SGD is
much slower than SGD. In those cases, the additional band-
width cost of CA-SGD is the bottleneck and not the additional
computation. This suggests that if a candidate parallel cluster
is bandwidth-limited, then the maximum values of s and the
speedups attained by CA-SGD will be limited.

3) Batch size vs s: This benchmark will explore how setting
b > 1 affects the speedups CA-SGD can obtain over SGD.
From the previous results with b = 1 we see that the additional
bandwidth and computation cost introduced by s > 1 does
degrade CA-SGD performance when s is too high (e.g. s > 16
for the url dataset). The performance results thus far compare
SGD, which samples a single row every iteration, to its CA-
SGD variant. As expected, SGD is latency dominated which
results in large speedups for CA-SGD. If the batch size is
increased then the sb additional bandwidth and computation
costs will likely dominate. We should expect that s must be
decreased in order to compensate for increasing the batch size,
b. Figure 5 illustrates a speedup heatmap comparing SGD
(with s = 1 and b ≥ 1, bottom-left corner) and CA-SGD (with
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Fig. 5. Comparison of SGD vs CA-SGD for various batch sizes and values of
s on the url dataset with p = 384. All speedups are relative to SGD (s = 1
and b = 1). As s and b increase, the bandwidth cost for CA-SGD increases
by a factor of sb. Speedups relative to SGD with b > 1 can be obtained
by dividing CA-SGD (s > 1, b > 1) speedups by the corresponding SGD
(s = 1, b > 1) speedup.

s > 1 and b ≥ 1) on the url dataset with p = 384. Speedups
are relative to SGD with s = 1, b = 1 (bottom left corner)
which means that speedups greater than 1× in column s = 1
are due exclusively to increasing batch size. Speedups greater
than 1× in row b = 1 are due exclusively to communication-
avoidance. For data points with s > 1 and b > 1, speedups
greater than 1× are due to a combination of larger batch
sizes and communication-avoidance. Note that for b > 1, the
speedups are due to using BLAS-2 (with increasing matrix
sizes) instead of BLAS-1 functions. The heatmap illustrates
that CA-SGD is most effective for small batch sizes where
latency dominates.

In these experiments, we focused on square and rectangular
sparse matrices stored in CSR format. However, in some



situations the input data may be dense. In the dense case,
CA-SGD becomes more compute-bound due to the additional
elements present in the matrix. As a result, CA-SGD speedups
over SGD will be more modest than for sparse matrices.
Given that CA-SGD achieves better speedups for latency-
dominated/distributed environments, it is well placed to attain
large speedups over SGD in cloud environments and when
using programming models like Spark/MapReduce (due to
the higher latencies in those settings). CA-SGD is unlikely to
attain large speedups in shared-memory environments where
inter-core latencies are orders of magnitude lower than inter-
node latencies. However, exploring and quantifying the per-
formance difference between CA-SGD and SGD on shared-
memory would be interesting. We intend to study the perfor-
mance evaluation of CA-SGD on the various hardware and
programming environments in future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we derived a communication-avoiding variant
of SGD for solving the logistic regression problem. We proved
theoretical bounds on the computation and communication
costs which showed that CA-SGD reduces latency costs by a
tunable factors of s. We showed that CA-SGD is numerically
stable and achieves speedups of up to 4.97× over SGD on
a high-performance Infiniband cluster. When latency is the
dominant cost CA-SGD can achieve large speedups despite
the additional bandwidth and computation costs. However, as
the computation and bandwidth costs increase (by increasing
batch size), the speedups decrease. This suggests that CA-SGD
might perform even better on cloud/commodity resources.
Implementing and benchmarking CA-SGD on cloud resources
and programming models would be very interesting.

1) Implications for neural networks: Backpropagation in
neural networks introduces a set of nested recurrence relations
with nonlinear activation functions at each layer and hidden
unit. Since logistic regression can be interpreted as a single-
layer neural network, we can likely apply our technique to
feedforward neural networks (FNN) with nonlinear activation
functions. The extension to convolution layers should also be
straighforward given that convolutions are linear operations.
However, for practical applications to CNNs we need to
assess whether the s-step derivation can be applied to batch
normalization and pooling layers. While we believe that the
s-step technique can be extended to FNNs and CNNs, hand
deriving CA-variants for each individual FNN/CNN model
is unscalable. Therefore, it is critical to develop tools and
techniques that can help automate the CA-derivation process.
Finally, as models get wider and deeper, they become more
compute and bandwidth bound. This suggests that our ap-
proach is most impactful when large models are scaled out
to a latency-bound setting.
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