
A Parallel and Scalable Framework for Insider
Threat Detection

Abdoulaye Diop, Nahid Emad, Thierry Winter

Abstract—In this article, we propose an innovative method
for the detection of insider threats. This method is based on a
unite and conquer approach used to combine ensemble learning
techniques, which have the particularity of being intrinsically
parallel. Furthermore, it showcases multi-level parallelism prop-
erties, offers fault tolerance, and is suitable for heterogeneous
architectures. To highlight our approach’s efficacy, we present a
use case of insider threat detection on a parallel platform. This
experiment’s results showed the benefits of this method relative
to its improvement of classification AUC-score and its scalability.

Keywords—Bagging, Boosting, High performance computing,
Unite and conquer, Insider threat, User behavior modeling

I. INTRODUCTION

In the information and technology domain, informational
data assets, and intellectual properties are a source of profit.
Companies understand the strategic importance of protecting
their information systems. They use tools to shield themselves
against all kinds of cyberattacks. However, cyber attackers
frequently target these assets and are continually upgrading
and widening their attack options. Usually, the main focus of
security specialists was the defense against external threats.
They used tools based on databases of known threats pat-
terns and experts’ written-rules against cyber attacks. They
monitored and controlled access to their companies’ assets
using identity access management (IAM) software. They also
used security event information management (SIEM) and
intrusion detection systems (IDS) to protect their systems and
networks. However, none of these solutions can stop an insider
attack efficiently. In a company environment, insiders are
mostly employees who misuse their access rights, or hackers
that exploit flaws of the authentication systems. A typical
example of insider activities is the illegal share of confidential
business information to competitor organizations in exchange
for compensation (i.e. industrial espionage). Another common
example is the sabotage of proprietary tools by insiders hired
by a rival company. In 2018 studies from the Ponemon
Institute evaluated the loss related due to insider attacks for
some relatively big companies in the millions of dollars range
[13].

In the cybersecurity domain, user and entity behavior anal-
ysis software are the tools used to stop insiders. Companies
use these tools to determine if employee behavior is normal
or abnormal. Employee behavior is hard to classify because

This project is funded by Atos, and the University of Versailles Paris
Saclay. Abdoulaye Diop is with the Li-PaRAD and Maison de la Simulation
laboratories, and Atos Evidian R&D, Les Clayes-sous-Bois 78340, France (e-
mail:mamadou-abdoulaye.diop@atos.net). Nahid Emad is a member of the
Li-PaRAD and Maison de la simulation laboratories, Versailles 78310 (e-
mail: nahid.emad@uvsq.fr). Thierry Winter is with Atos Evidian R&D, Les
Clayes sous Bois 78340, France (e-mail: thierry.winter@atos.net).

it can change over time, its nature can diverge depending
on their work requirements and their company structures.
These tools mainly use behavior anomaly detection techniques
to detect insiders. Most of the techniques used to identify
malicious activities are based on supervised machine learning
methods. Other approaches use semi-supervised, unsupervised
machine learning, and graph analysis. Their goal is to detect
a divergence from an employee behavior profile or to find
outliers in the all-around company activity data. The pro-
posed solutions are diverse, but they usually face the same
problem of high false-positive/negative (FP/FN), and a lack
of versatility. Depending on the company studied, a method
initially performing well to detect an attack scenario can
present an unstable detection accuracy. It makes sense to
optimize a specific model for a particular company, but the
cost of the software development and maintenance of these
tools can represent a drawback. The data volume can also pose
a challenge to implement a detection model. Machines limited
in their computation power struggle to treat the massive
amount of behavior data. A solution to this issue would be
to build a model somehow adaptive, able to manage different
and extensive data input. This model would have to consider
detection accuracy, detection time, and maintainability con-
straints.

In this article, we propose an approach to counter this issue
based on the use of unite and conquer and the ensemble
learning principles. Our solution uses the collaboration of
multiple machine learning methods to build individual post-
login activity profiles. These profiles are used to identify
a new activity record as regular or abnormal. The base
methods of the ensemble of learners belong to the family
of the unsupervised, supervised machine learning, and graph-
based methods. We show that this approach makes it possible
to obtain significant gains in accuracy relative to the base
methods, which constitute the global method proposed. To
exploit the potential parallelism of the proposed solution,
we implement it with high-performance parallel computing
techniques and show its efficiency also in terms of execution
speed.

The rest of this paper is organized as follows. Section 2
presents some related works and defines our approach and
issued detection models. Section 3 describes the algorithm
and parallel programming models according to which we
implemented the proposed approach. Section 4 presents the
conditions of our experimentation. Section 5 showcases the
results of our experiments and their analysis. Finally, Section
6 concludes this article and gives indications about some
perspective of this work.



II. UCEL ALGORITHM FOR INSIDER THREAT DETECTION

A. Related work

In this section, we first present works done to combine
bagging and boosting and then some example of solution
for insider threat mitigation. Machine learning experts mainly
combine bagging and boosting to deal with the bias-variance
tradeoff. Kotsiantis et al. propose in [11] a bagging and
boosting combination with sum rules voting as the mechanism
collaboration. They build a global ensemble learning method
with separated sub-ensemble, respectively, using bagging or
boosting. They tested their solution on 36 well-known datasets
from the UCI repository of machine learning and used deci-
sion tree (DT) C4.5, decision stump (DS), naive bayes network
(NBN), and a rule learner (OneR) as base classifiers. With
this study, they obtain better results using their approach
compared to individual bagging and boosting with these base
classifiers. Even though this approach helps to fix bias and
variance issues individually, this proposition doesn’t manage
the tradeoff between them.

In the power plant management domain, [10] proposed a
parallel combination of bagging and boosting for a regression
problem. They used artificial neural networks (ANNs) as
base classifiers of their ensemble learning solution for short
term electricity load forecasting. They independently boosted
ANNs on different bags of the training dataset. Here the
sub-ensembles are all boosted ANNs. The final result of
their forecasting is computed by averaging the result of each
base method. They compared their effect against ANN, only
bagged ANN, and only boosted ANN. They had the best
results with their combination of bagging and boosting. In
this approach, there is no collaboration between base methods.
This could represent a missed opportunity to accelerate their
convergence, hence faster training times.

Fauvel et al. proposed in [4] a hybrid ensemble method
called local cascade ensemble (LCE) by combining bagging,
boosting and mixture of expert (ME) [12] methods, in a
decision tree scheme. They use their approach for a milk
production industry to detect the cow estrus cycle. The ME
method is a method based on a divide and conquer strategy.
This method divides the problem space between classifiers,
supervised by a gating network (i.e. a weighted average
scheme). Each classifier is trained with a different part of the
dataset. They use this combination of bagging and boosting to
handle the bias-variance tradeoff, and use the diversification
properties of ME to learn the specificities of parts of the
dataset. Their approach showed better results when compared
with other classifiers and commercial solutions for estrus
detection. This approach is interesting; however, it is based
on a divide and conquer strategy, which is not suitable for
our insider threat detection problem.

These are a couple of examples of the use of the combina-
tion of bagging and boosting. To our knowledge, in the domain
of insider threat detection, there is no work proposing to use
a bagging and boosting combination to solve this. However,
Hall et al. [8] studied the effect of boosting on classifiers
trained to detect insiders’ attack. They create a meta-learner by
aggregating boosted classifiers using a probability vote. They

tested their method by comparing the base classifiers firstly
with their boosted version. They boosted artificial neural
network (ANN), naive bayes network (NBN), support vector
classifier (SVC), decision tree (DT), and logistic regression
methods. They obtained mixed results by comparing the
accuracy and the AUC-score of the base classifiers before and
after boosting. This process improved NBN, SVC, DT, and LR
slightly, not ANN and RF, which showed a slight decrease in
accuracy and AUC-score. Using their meta-learner, they didn’t
get better efficiency. However, they have a better area under
the ROC curve. These mix results might be a consequence
of applying boosting to already high performing classifier, or
not handling the high variance issues by not using the bagging
method.

Despite the fairly recent consideration of the insider threat
problem, significant literature exists on machine learning
techniques and related ensemble learning methods for its han-
dling. The latter mainly use methods based on unsupervised,
supervised machine learning, and graph feature analysis. In the
overall literature, supervised learning approaches showcase
better performance than anomaly detection approaches. Partic-
ularly approaches based on neural networks. Yuan et al. [16]
presented a deep learning approach to detect insiders. They
use a combination of long short term memory (LSTM), and a
convolutional neural network (CNN) to identify the abnormal
behavior in multiple scenarios. They obtained an area under
the curve (AUC) of 0.94 for their classifier. However, to
work properly, they need substantial and balanced data. Since
the activity dataset naturally contains more normal activity
samples than insiders, this method can struggle to perform
well and be susceptible to bias and variance issues.

Due to the nature of insider attack, using unsupervised
learning and anomaly detection seems to be a natural decision
to handle this type of issue. Employee behavior can be con-
sidered as the dominant normal activity class and the insider
action as an anomaly. Tuor et al. [15] proposed unsupervised
online approaches based on a deep neural network (DNN)
and a recurrent neural network (RNN) (i.e. using an LSTM
architecture) as a prospective filter for a human data analyst.
Their best model obtained an anomaly score of in 95.53
percentile for the insider activity. Their goal was to diminish
the workload of a security analyst.

Haidar et al. [7] gave us insight on how to boost two
anomaly detection methods, (i.e. one-class support vector
machine (OcSVM), isolation forest (IForest)) to handle the
behavioral exception, but not the evolution over time. Using
a periodic training scheme combined with a smart windowing
of the training data can solve this problem. However, there
is another problem than anomaly detection based solutions
can face. They cannot characterize the source of the problem,
which means that they can spot unusual or un-popular data
samples, but cannot give insight into their causes.

Graph-based methods are another approach to tackle the
problem of insiders. Based on the graph features analysis, the
detection mechanism is to spot anomalous nodes or subgraphs.
They share the same issue as anomaly detection approaches.
They are also sensitive to exceptions, and they do not give



information on the nature of the anomaly. Chen et al. [1] used
bipartite graphs to map user access logs. They then use the
cosine similarity method to get the similarity between users
and to detect if specific access is malicious or not. They based
their approach on a correlation method used in collaborative
filtering for recommendation systems.

B. Detailed contribution

In our work, we propose a new and customized approach
to combine bagging and boosting. This is inspired by the
previous work in the insider threat detection domain and
the mitigation of high bias and high variance problem. We
opt for the same strategy as the ME method. However, we
diversify the distribution of the training dataset using bagging
and boosting sampling techniques to handle the bias-variance
tradeoff. So contrary to a divide and conquer strategy like
ME, we propose a restarting strategy based on the unite and
conquer approach, mixing individual classifier classification
feedback to improve the training set. Hence in this article, we
propose:

• A new iterative boosting and bagging combination re-
lying on a restarting strategy inspired by the unite and
conquer method, particularly well suited for insider de-
tection problems.

• A fault-tolerant implementation strategy, to maximize the
contribution of the best base methods or their combina-
tion.

• An implementation scheme combining anomaly detec-
tion and supervised learning methods depending on the
available data.

• A custom scalable parallel implementation model that
can deal with high data load, and that take advantage of
the high-performance machine architectures.

C. Motivation

Insiders threat are reported in different types of com-
panies’ work structure (e.g. companies in information and
technologies, finance, healthcare). This heterogeneous nature
of employees’ activity could appear even inside of a given
organization. The insider attack scenarios are also diverse
since they can target different types of assets of a company. As
a consequence of this heterogeneity, a single detection method
might not work to detect insiders in all cases [8].

Using an ensemble learning strategy can represent a so-
lution to this issue. Most of the ensemble method uses a
combination of classifiers to obtain a more accurate final pre-
diction. A combination mechanism can help to detect different
scenarios of an insider attack. For instance, we can compare
the detection performance of the base methods composing the
ensemble of learners. For the final prediction, one option is
to select the best base method regarding a prediction metric.
Another option can be to use a voting scheme to make all the
base methods contribute to the class prediction.

In this article, we propose a way to detect insiders in
multiple settings. Our approach combines bagging and boost-
ing techniques by using a unite and conquer strategy. This
approach consists of making collaborate several boosting
methods (i.e. called co-methods) in a bagging context to solve

the problem of insider threat detection. These two ensemble
learning techniques are specifically used to handle the high
bias (i.e. underfitting) and high variance (i.e. overfitting)
problems. A classifier suffers from high bias when it is
unable to fit the structure of the training set. On the other
end, a classifier suffers from high variance when it is too
specialized on the training set. In bagging, several subsets
of the training dataset are stored in bags. A given learning
method is applied in parallel to all these bags. In the case
of classification, the final result will be chosen by a hard
voting scheme. In boosting, a set of different weak learners
is used sequentially to define a strong learner. Each learner
is trained on data, taking into account the previous learner’s
success. After each training cycle, the data sample weights are
redefined by increasing that of miss-predicted data. When all
learners are trained and tested, a weighted voting mechanism
is used to establish the final prediction.

Bagging solves the problem of overfitting by diversify-
ing the training set distribution stochastically and share it
with multiple classifiers. Boosting can handle underfitting by
specializing a classifier list to a training set, capturing its
underlying structure. However, this operation can result in
over-specialization on the training set, increasing the over-
fitting risk. Hence a combination of the two methods can
help to manage the bias-variance tradeoff. Balancing the bias
and the variance is the ability for a classifier to generalize
beyond its training set. This is an essential advantage for
insider threat detection since this behavior analysis system
is bound to analyze new activities records continuously. The
intrinsic parallelism in bagging is an advantage of this method,
mainly when most of today’s applications deal with vast data
quantities and need their processing and analysis on parallel
and distributed architectures.

We call the proposed framework UCEL (i.e. for unite and
conquer ensemble learning). Given several boosting methods
able to learn employees’ post-login behavior individually. The
UCEL framework uses a combination in an extended manner
of bagging and boosting methods to create profiles. Such a
profile is built by learning the usual employee conduct and
work patterns, from activity data recorded on their companies’
information systems. These individual profiles can be used
to analyze and classify the employee’s recent or on-going
activities as a normal activity, unusual, or insider activities.
We name this particular instance of UCEL, a behavior profiler
model (see Fig1). We give more detail about this framework
in the Section 3.F.

D. Unite and conquer based method

The proposed model is based on a combination of bagging
and boosting using a unite and conquer approach. Unite and
conquer is an approach initially used in linear algebra to solve
large-size sparse linear systems and/or eigenvalue problems
[2]. This approach consists of making collaborate several
iterative methods (i.e. also called co-methods) to solve the
same problem. This process accelerates the system’s overall
convergence by making use of intermediate results issued
from an iteration of each co-method by all the others. This
can be seen as a set of collaborative co-methods that share



Fig. 1 Behavior profiler

their restarting cycle parameters to choose the best of them
and to reach convergence more quickly. Precisely, the aim of
this sharing is to combine the intermediate results in order
to define the best restarting information for each cycle of
each of the co-methods allowing the global method to reach
convergence faster. Let P be a large numerical problem to
solve (linear system, eigenvalue problem, etc), L1, L2, . . . , L`

be a set of iterative methods allowing to solve P , Iki be the
initial condition (with k = 0) and restarting condition (with
k > 0) of Li (for i = 1, · · · , `) and Sk

i be the approximated
solution obtained by Li at the end of its k-th iteration/cycle
with Iki initial condition. The main steps of this approach to
solve P are presented in algorithm 1. Let Pm represent the
problem matrix, and Sf the final solution of the problem.

Algorithm 1 Unite and Conquer Algorithm (in: Pm; out: Sf )

1: Start. Choose a starting matrix [I01 , · · · , I0` ],
let k = 0.

2: Iterate. For i = 1, · · · , ` do in parallel
3: Compute Sk

i of Pm by Li with initial condition Iki
4: if (accuracy of Sk

i is good enough) then STOP
5: Share Sk

i information with all other processes j
(j = 1, · · · , ` and j 6= i).

6: Restart. Update initial condition [Ik+1
1 , · · · , Ik+1

` ]
for restarting by f(Sk

1 , · · · , Sk
` ) and go to 2.

The restarting strategy of UC algorithm is its heart and
corresponds to the updating of restarting condition Iki in
the function of the obtained results Sk

1 , · · · , Sk
` (step 6 of

algorithm 1). When the ` processes of step 2 of algorithm 1
are running in an asynchronous way, step 6 will be part of
”Iterate” (step 2) in the same way as ”Share” step. In this
case, the restarting condition of each process is a function of
the most recent available results of all of ` processes. The
success of the approach depends strongly on the quality of
the restarting information at the beginning of a cycle of each

process, which is a combination of the results obtained by all
processes in their previous cycle. In other words, the definition
of the function f , which describes this combination, in step 6,
is of utmost importance for the rapid convergence of the
UC algorithm. When the co-methods are the instances of the
same iterative method, the corresponding unite and conquer
method is also called multiple X, where X is the name of
the co-method. Recall that an instance of an iterative method
represents the method with a given set of parameters (i.e.
inputs). A brief description of the multiple implicitly/explicitly
restarted methods is presented in [2]. As shown in the papers
[3] and [9] in the field of high-performance numerical com-
puting, the asynchronicity of communications between co-
methods (processes of algorithm 1, the possibility of overlap-
ping these communications by co-method computations, the
fault tolerance, and the potential load balancing are among
the properties of these methods making them well adapted
to parallel and/or distributed architectures such as GRID,
supercomputers, or heterogeneous interconnected network of
(super)computers. Finally, the most important feature of this
approach is its simplicity of the concept. It can be applied
to many iterative methods, as we will see an example in
this paper with the collaboration between several boosting
methods in a particular context of the bagging ones.

E. UCEL overview

In summary, UCEL is a multiple training cycle method that
improves each co-methods classification performance during
its iterations. This process is repeated until they reach a
convergence state where their performances are enhanced and
stabilized. Each co-method is trained with a bag of the training
set. Then their performances are tested with the validation
set. Individually the base methods weigh and share their miss
classified data FP/FN sample to the rest of the co-methods.
Following the boosting principle, each time a sample from the
validation set is miss-classified by a co-method, its weight is
increased based on the co-method performance metric at that
iteration. Its chance to be selected to build the next cycles
training data is increased. Bags of the original training data
size are then created from the boosted training dataset and
used for the new cycle. With this process, each co-method
receives feedback on the data samples critical to classify by
their peers correctly, to build better models.

We can compare our UCEL approach to classic divide and
conquer based methods such as ME. It is an application of a
divide and conquer strategy followed with a weighted voting
scheme(i.e. probabilistic gating functions [12]) to classify new
data. This means the problem space is divided into homoge-
neous parts, and there is no iterative improvement of expert
(i.e. base methods). Unite and conquer learns the underlying
global structure of data, where divide and conquer approaches
learn the underlying substructure since the data is strictly
divided. Depending on the machine learning problem, these
different characteristics might be an advantage. However, for
our insider threat detection problem, where we want to use in-
sights from each co-method on statistically the same employee
dataset at each iteration, it is not suitable to strictly divide
the data. We can insist on the fact that the UCEL approach



is an improvement of ME. It switches the classic expert’s
consensus methods to predict a sample class by introducing
collaboration between methods. This collaboration mechanism
is based on the statistical data diversification of bagging
and boosting, multiple training cycles, and the convergence’s
acceleration of each co-methods. The combination of bagging
and boosting manage the bias and variance tradeoff since the
training bags are built using a fusion of all the co-methods
feedback information(i.e. performance measure and FP/FN).
ME results would be almost equivalent to the first cycle results
of our UCEL approach if we didn’t apply bagging and strictly
divided the dataset. Lastly, it is important to note that the
error is individual to each base methods with divide and
conquer approaches. With UCEL, each classifier is somehow
responsible for the global error. Hence to decrease the global
error, every co-methods need to be tweaked.

F. User behavior modeling with UCEL

In order to solve the problem of insider attacks, machine
learning methods are used to analyze employee activity data.
This data is used to model employee behavior by learning
from their post-connection data (e.g. after logging on to a
laptop or company server). Depending on the type of data
available (e.g. labeled, unlabeled, or graph-based), we can
use a variety of suitable methods. They vary from supervised
classification methods, unsupervised classification methods
(e.g. distance-based, density-based or hierarchical clustering),
anomaly detection methods, or methods based on graph analy-
sis. In a corporate environment, the vast majority of employees
are not insiders; there is a natural class imbalance in their
activity data. This means that there are many more samples of
good activities recorded than there are of malicious activities.
For example, if we focus on a single employee, insider action
can be seen as a change in his/her usual work practices. These
elements confirm that if we register for an extended period,
the post-logging activities of companies’ employees, we will
most likely have an imbalanced dataset.

With this noticeable class imbalance, anomaly detection
methods seem to be the most suitable for identifying insider
activity. Indeed, due to the lack of abnormal examples, un-
supervised and supervised classification methods might be
inefficient for this kind of datasets. They are not disposing of
enough information to learn the characteristics of abnormal
examples. Hence It is hard to establish a decision boundary
to distinguish normal and abnormal activities. Unsupervised
anomaly detection methods are tuned to work with imbalanced
data. These latter mostly set the majority class as the normal
behavior model. Everything distant to the normal activity
sample distribution (e.g. regarding the mean and the standard
deviation) is then considered abnormal. However, anomaly
detection approaches usually suffer from high FP/FN rates
and only focus on detecting what is unusual in the dataset.
Consequently, they don’t precisely characterize the cause of
the anomaly. Human action is needed to determine the causes
of abnormalities. On the other end, supervised methods can
be trained to detect anomalies related to the specific types
of insider threat attacks, but as we stated before, they need
a balanced and labeled dataset to perform well. Moreover,

the same supervised classifier is not necessarily efficient in
spotting different types of insider threat attacks. Hence, human
action is required to label the data as standard and to choose
and tune supervised classifiers.

Since the flow of activity data is continuous, labeling
activity and balancing data before testing for insider threat
might be more risky and costly for companies than the
operation of characterizing anomalies when they are found.
Hence, we propose to opt at first for semi-supervised anomaly
detection based UCEL method. We can then combine it with
a supervised learning-based UCEL method when we have
enough labeled and balanced data (i.e. using human operators
to label the data or oversampling strategies [14] to deal with
the imbalances).

In a semi-supervised context [6], anomaly detection meth-
ods add samples with known labels to their data distribution
to have extra information to their classification process. This
action improves the decision boundary of classic unsupervised
anomaly detection methods [7]. A behavior profiler with
anomaly detection as co-methods can be alimented with a
continuous feed of FP/FN samples, label by another security
system, or human action. This profiler would work without a
balanced dataset.

Before analyzing employee behavior by the proposed pro-
filers, it is necessary to perform a data pre-processing step. In
this step, we start by selecting samples from the raw activity
data of a single employee and samples from an insider threat
attack scenarios databases. We then perform classic feature
engineering, with dataset cleaning, feature selection, scaling,
and normalization. We finish by building a training, validation,
and testing set from the cleaned data.

The second step is to apply the main principle of unite
and conquer to machine learning. The idea is to design
our classification method using the same architecture of the
unite and conquer methods for restarted iterative methods. We
establish correspondence points between the two techniques.
The system matrix corresponds to the original training dataset.
The subspace becomes a bag of data built with random sam-
pling with replacement (RSR) and weighted random sampling
(WRS). For instance, in the anomaly detection case, the co-
methods or base methods can be mainstream methods such
as: (IForest), (OcSVM), robust covariance (Robcov) and local
outliers factor (LOF). We can also choose co-methods in
the supervised learning case, such as multilayer perceptron
(MLP), gaussian naive bayes (GNB), KNN, SVC, and others.
We can also build a solution using the same method but with
different hyperparameters (i.e. changing the initial condition).
In other words, we can use the instances of the same base
method, which is equivalent to create the particular case
of the UCEL methods called multiple base method such
as multiple IForest or multiple Robcov, etc. However, the
advantage of using co-methods differently is that it helps to
build a heterogeneous consensus on the nature hypothesis of
an analyzed behavior.

If we focus on some base methods mechanisms, OcSVM
is a variant of support vector machines classifier. SVM is
a large-margin classifier that establishes a planar decision
boundary between positive and negative examples. OcSVM



is one way to apply SVM for outlier detection. The decision
boundary OcSVM opts for a spherical approach instead of
planar approaches, as the support vector data description
methods (SVDD) [6]. The goal is to find in a high dimension
space, which is the minimal circumcising hypersphere that
comprises only the good observations. IForest is a variant of
decision trees and random forest algorithm. It uses a com-
parison of the depth of the tree branches to spot anomalies.
The shorter branches are indicative of anomalies. The robust
covariance/elliptic envelope method uses the assumption that
the normal data belongs to a known Gaussian distribution. The
outliers are spotted when they are too distant from the center
of the distribution. The local outlier factor method studies the
neighborhood of a data sample. It measures the local density
of a given sample with respect to his neighbors. Outliers
samples are detected when they present less density than their
neighbors. The multilayer perceptron (MLP) is a feedforward
ANN used in our case for classification. It is very efficient to
fit a non-linear function to a dataset. K-nearest neighbors is
a sample classification methods that output class membership
of a sample, based on a popularity vote of the neighbor’s
samples. Quadratic discriminant analysis is a classifier using
a quadratic decision boundary to separate the classes. It is
important to note that none of the described classification
methods individually can be considered as well adapted to all
the situations. Each has unique advantages and disadvantages
and can match the specificities of the companies activities.
We proposed their combination using the UCEL framework to
enjoy the benefits of these methods without their drawbacks.
Hence the co-methods methods are chosen to be classic
anomalies detection methods or supervised classification.

Individually the detection methods all operate differently to
detect anomalies. However, they are mostly facing the same
problem of high FP/FN rates, high bias, and high variance. We
start the first iteration by training the co-methods with bags
generated with an RSR on the initial training data. We then
test the co-methods with the validation set by computing the
AUC-score of each co-methods. After that step, we then try to
combine the strength of each co-method and build a weighted
voting classifier with their results. We then test its AUC-score
against the score of the co-methods and the chosen detection
threshold.

The third phase corresponds to the restarting step. We apply
the principle of boosting on the previous training bag if the
detection threshold is not reached. We start by gathering all
the FP/FN of the co-methods and weigh them in the function
of their popularity. The training data of the next iteration
of a co-method is obtained by combining its most accurate
training bag during the previous iterations, with the most
popular FP/FN. Here, we use a RSR and a WRS again to
build the new training bags. All the best bag correspondent
to the co-method and WVC are stored in order to use them
in the following iterations. They are updated when a new bag
presents a better prediction score.

We repeat the same process until the detection threshold,
or the desired number of iteration is reached. The restarting
strategy is a critical part of our model. It launches a new cycle

of classifier training and testing. In theory, the new period has
better starting conditions than the previous ones. For now,
we used a simple restarting strategy. Still, the proposition of
the ones with more effectiveness and sophistication will be
the subject of our future research works (i.e. we can consider
sending in addition to the best bag or the best hyperparameters
in a multi-UCEL case).

Depending on input data, even with the boosting process,
some co-methods might not be efficient do detect the insiders.
Hence, they are not contributing to accelerate the convergence
through the iteration. In those cases, UCEL still provides good
results because the focus is always shifted to the best method
and the best bags. This highlights the fault-tolerance capabil-
ities of this approach. The bags are stochastically selected.
So in the same conditions, the performance might also drop
if the selection is unlucky at that cycle. However, since we
choose the best bag since the first iteration, combined with
the situation where the classifier is mistaken, the precision
is susceptible to oscillate and rise again. The stop condition
for classic unite and conquer consists in reaching the chosen
tolerance. The stop condition of our system is to have a base
classifier AUC-score reaching the chosen threshold. At that
point, the best-trained co-method or the best-weighted voting
classifier is chosen to be the behavior profile.

III. PARALLEL PROGRAMMING MODEL FOR UCEL

One important aspect of the UCEL framework is its intrinsic
multi-level parallelism. That means we can exploit coarse-
grain inter co-methods as well as fine-grain intra co-method
parallelism. Moreover, communications between co-methods
can be synchronous or asynchronous. In this article, we focus
on a synchronous implementation. Despite a loss of time due
to the synchronization, the advantage of this model is the
simplicity of its implementation and the existence of a certain
determinism in the calculations. Another important aspect
of UCEL framework is its heterogeneity. Indeed, the pro-
cesses corresponding to base classifiers could all be different.
Thereby, it is possible to use an adapted hardware processor
for each of them according to their natural parallelism. For
instance, it would be more optimized to use a multicore node
for an IForest method, and a GPU architecture for a neural
network whose algorithm can present a high degree of data
parallelism. In addition, the natural parallelism of the co-
methods allows load balancing of the system by assigning
each of them to a suitable hardware architecture. That is also
to note that an algorithm which represents this framework is
fault-tolerant. Indeed, the disappearance of a co-method, by
any fault, does not prevent the other co-methods from working
and making the algorithm work up to its end. We assume
that the targeted parallel architecture has a set of nodes; each
of them could be itself a parallel processor. For the parallel
implementation of UCEL, we consider a programming model
where the nodes of underlying architecture act as a computing
server (SN) or controller (CN).

Under these hypotheses, each SN trains a classifier al-
lowing predicting classes, selecting miss-classified data, and
computing its AUC-score. Then, all of SN send the set of
their results to the CN, which is in charge of determining



which is the best set among them before sending this set
to all the SN. This computation task of the CN constitutes
a synchronization step and can be seen as a critical section.
Consequently, its execution time will have a significant impact
on the execution speed of the whole algorithm. According to
the best information received, SN update starting conditions
for a new cycle of their corresponding boosting classifier.
In each cycle, if the detection accuracy threshold is reached
by one of the co-methods or by the voting classifier, all the
processes stop. Otherwise, a new cycle is launched where the
best new training bag is created and transferred to SN for a
new cycle.

Let ` be the number of learners and bags of size m,
L0 = [L0

1, · · · , L0
` ] be a set of initial learners, W j

i be the set of
miss-classified data issued from the jth cycle of the ith clas-
sifier and, Bj

best be the training set with the best AUC-score
among Bj

1, · · · , B
j
` . This bag is associated with Lbest the most

accurate learner and Wbest the lightest false positive-negative
set (with the smallest cardinal). A classifier is considered as
sufficiently trained if its AUC-score is larger than a precision
threshold θ. The algorithm 2, called behavior profiler, depicts
a parallel implementation of the UCEL framework according
to the above programming model.

Algorithm 2 Parallel behavior profiler
BP (in: TS VS , `, q, θ; out: Bbest, Lbest)

1: Start. Choose `, m, L0 the ` learners, ...
2: Iterate. For i = 1, · · · , ` do in parallel
3: Iterate. For j = 1, · · · , q
4: Training and testing on SNi

Train Lj−1
i on Bj

i , produce Lj
i , test Lj

i on VS and
select W j

i

5: Communication: send from SNi to CN
Send (Bj

i , Lj
i , W j

i ,AUC-score(Lj
i )) from CNi to SN

6: Computation and stopping test on CN
WV Cj = V (Lj

i , AUC(L
j
i ))

Bj
best, L

j
best,W

j
best = f(Lj

i , B
j
i ,W

j
i ,WV Cj)

If (AUC-score(Lj
best) > θ) then STOP all processes

7: Communication: send from CN to SNi

Send (Bj
best, L

j
best,W

j
best) to all node i for i ∈ [1, `].

8: Sampling on SNi

Set the bag Bj+1
i = (1−α)∗W j

best∪(α)∗R
j
i where

Rj
i is the set of (mi − kji ) correctly predicted data

in Bj
best with kji = card(W j

best) and α is the
updated weight given to miss-predicted data.

9: Result.
Set Lbest the best individual co-method or best
weighted combination of co-methods during the
iterations of all ` processes

V is a function that creates a weighted voting classifier
and f a function that selects (Bj

best, L
j
best,W

j
best) as the

best results of each co-method received from all i ∈ [1, `]
processes.

IV. EXPERIMENTS CONDITIONS

We implemented the behavior profiler (BP) with anomaly
detection and supervised methods as co-methods. In order

to evaluate the performances of this BP, we make use of
two main performance metrics. The first one is the AUC-
score allowing measurement of prediction performance and,
consequently, (in)validating the approach. Indeed, from this
information, we can see if BP algorithm improves the classical
insider detection methods in terms of the FP/FN rate reduction
and handling of the bias and variance tradeoff. The AUC
corresponds to the area under the curve of a ROC(receiver
operating characteristic curve). The ROC represents the ratio
of the true positive rate (i.e. equal of the sensitivity, also
known as recall) and the false positive rate (i.e. equal to
1 − specificity, also known as the true negative rate). A
model whose predictions are 100% wrong has an AUC of
0.0; one whose predictions are 100% correct has an AUC of
1.0. AUC is a desirable metrics because it is scale-invariant
and classification-threshold-invariant. This metric allows us
to modify the classification threshold for a more restrictive
insider detection, without having an inaccurate measure. Also,
it performs well with a highly imbalanced dataset. The second
metric is speedup giving the gain of time due to the exploita-
tion of parallelism in the BP algorithm. It highlights the gain
in terms of the framework’s execution time when it is run on
a parallel architecture.

The dataset used for the experiments presented is the open-
source version CERT Insider threat R4.2. The Computer
Emergency Response Team (CERT) dataset is an artificial
insider threat dataset created by the CERT National Center for
Internal Threats (NITC) division. It is a set of data composed
of employees’ normal post-connection activity in a synthetic
context and insider attack scenario perpetrated by synthetic
malicious actors. These scenarios are abnormal and suspicious
activities that can be dangerous for enterprises. The R4.2
version is made up of several user activity data: email.csv,
file.csv, pyschometric.csv, logon.csv and device.csv. We used
all of these files except for pyschometric.csv to create a
set of training, testing, and validation for our experiments.
The profiler learns a behavior using the training set and the
incorrectly classified elements in the validation set. To show
the reliability of the BP, we considered three insider threat
attacks scenarios. All of them are available in the R4.2 version
of the CERT dataset (i.e. in the scenario.txt file).

1) User who did not previously use removable drives or
work after hours, begins logging in after hours, using
a removable drive, and uploading data to wikileaks.org.
He leaves the organization shortly thereafter.

2) User begins surfing job websites and soliciting employ-
ment from a competitor. Before leaving the company,
she/he uses a thumb drive (at markedly higher rates than
their previous activity) to steal data.

3) System administrator becomes disgruntled. Downloads
a keylogger and uses a thumb drive to transfer it to
her/his supervisor’s machine. The next day, she/he uses
the collected keylogs to log in as his supervisor and send
out an alarming mass email, causing panic in the orga-
nization. She/he leaves the organization immediately.

The parallel architectures that used as support for the pre-
sented experiments is GRID5000 (or G5K). Grid’5000 is a



french national and international cluster constituted by several
large homogeneous sub-clusters situated through France but
also in Brazil and Luxembourg. This large-scale and flexi-
ble platform is a testbed for experiment-driven research in
all areas of computer science. It focuses on parallel and
distributed computing. G5K resources are 15000 cores, 800
compute-nodes, and also technologies such as GPU, SSD and
Infiniband. For our experiments, we used mainly used nodes
from the cluster of the Lille site.

V. PERFORMANCE ANALYSIS

A. Model validation

(a) UCEL with multiple Robcov with 10 co-methods

(b) UCEL with 4 different Anomaly Detection co-methods

Fig. 2 Training AUC-score evolution through iterations in
an anomaly detection BP algorithm

Method TT without UCEL TT with UCEL
Robcov 0.61 - 0.53 0.96 - 0.95
4AD 0.75 - 0.52 0.93 - 0.93
MLP 0.96 - 0.50 0.97 - 0.96
5SM 0.98 - 0.98 0.99 - 0.99

TABLE (I) Train and test with and without UCEL

First of all, we focus on scenario 2 to check the benefice of
the UCEL approach to manage the bias and variance tradeoff.
The Figure 2 and Figure 3 depicts AUC-score in the function
of the number of iterations of the UCEL framework. The
curves in the figure represent the evolution of the training
AUC-score of the co-methods. The sub-figure 2(a) and 2(b)
represent respectively a UCEL execution of 10 instances of the
robust covariance classifiers and 4 different anomaly detection

(a) UCEL with multiple MLP with 10 co-methods

(b) UCEL with 5 different supervised co-methods

Fig. 3 Training AUC-score evolution throughout iterations
in a supervised behavior profiler

classifiers use as co-methods(i.e. IForest, OcSVM, Robcov,
LOF). For example for Robcov(k), k represent the kieme

instance of a Robust Covariance classifier. Since the score
is pretty low after the first iteration, we can suspect that,
individually, the co-methods suffer either from underfitting,
overfitting, or poor calibration of the hyperparameters or
don’t have enough sample to establish a correct decision
boundary. UCEL boost their initial low AUC-score through
the iterations.

We are particularly interested in the peak accuracy of the
co-methods or the WVC. In Adaboost [5], the weighted voting
systems weight positively the classifier with low error rates,
and negatively the one with high error rates. In our case,
we focus on the peak AUC-score of the learners. We will
investigate in future work, other weighting and restarting
functions (e.g. additionally to the FP/FN we will send the
best hyperparameters).

Some co-methods showcase a little drop of performance
after reaching their peak or oscillating between low and high
values from an iteration to another. We suspect that this is
due to the choice of the hyperparameters. The OcSVM co-
method doesn’t seem to benefit from this boosting strategy
after the second iteration. We suspect that it is badly tuned.
However, we need to do further investigation, particularly at
the level of its objective function and the establishment of the
decision boundary when we inject new elements. Haidar et al.
[7] have proven the efficiency of an injection of false-positive



to OcSVM classifiers to improve its performance, however not
in an iterative boosting manner. We also know that our model
is sensitive to an unlucky random sampling. These cases can
be spotted when the AUC-score is oscillating.

If the AUC threshold is not reached, UCEL selects the best
method or WVC during the iterations. For this example, we
choose the maximum number of iterations equal to 10. In sub-
figure 2(a) and 2 (b) the precision threshold is never reached,
but the AUC-score increase from 0.50 to 0.96 for (a), and
0.50 to 0.93 for (b). If we focus on the sub-figure(a), UCEL
mostly improves the training accuracy from the methods with
an initially low AUC-score. This is a direct consequence of
the use of this particular combination of boosting and bagging
that improves weak learners’ training errors.

However, the Robcov instances (9) and (10) don’t seem
to be improving a lot by UCEL. This is indicative of a
poor selection of hyperparameters. This implies that tuning
a classifier plays a non-negligible role in the performance
of UCEL. Hence, except for the instances (9) and (10), the
methods starting with low training AUC-score get improved
by the restarting process injection of the wrongly classified
element. This also indicates that even when two of the co-
methods do not contribute to the classification performance,
the UCEL approach still allows the other co-methods to get
better classification results.

Table I shows the result of the training and testing AUC-
score without and with UCEL framework. Let 4AD represents
an execution UCEL with four anomaly detection methods and
5SM a UCEL with five different supervised methods. The
train-test(TT) results showcase high bias and high variance
issues from the best method of the ten Robcov instances, and
the four anomaly detection classifiers without UCEL. This
points out that UCEL helps to manage bias and variance
tradeoff to obtain better testing results.

In the supervised learning case, the sub-figures 3 (a) and 3
(b) respectively present 10 MLP instances in (a) and 5 differ-
ent supervised classifiers in (b). In this case, we also remark
that UCEL only improves the co-methods with starting low
AUC-score and doesn’t improve the ones with an already high
score. This a consequence of boosting and bagging working
well only with weak learners as base methods. Strong learners
can get improvement using this strategy, but not to the same
extent than weak learners [8]. For instance, the KNN, GNB,
and SVM classifiers are not improved by the UCEL process.
Their AUC-score stays rather good and stable through the
iterations. This is also indicative of well-tuned classifiers for
this problem.

However, in (b), the WVC of UCEL using all the co-
methods produces better results than the individual classifiers.
Hence the WVC was then chosen as the best model for the
behavior profiler. In table I, we can observe that the best
method of 10 MLP instances is still suffering from overfitting
since the train test score varies from 0.96-0.50. The UCEL
framework fixes this issue and helps to obtain a train-test score
of 0.97-0.96. In the example with the five supervised learning
methods, the AUC-score is 0.98, so pretty high for the indi-
vidual co-methods. Despite that, UCEL adds an improvement
of 1% to their scores. We can conclude that UCEL helps to

improve the class prediction performance of the training and
the testing error by managing the bias-variance tradeoff. Even
if the classifiers are already performing well, UCEL might add
a slight improvement with its weighted voting mechanism.

Considering the overall performance of UCEL for the
three scenarios of insider attacks, we obtain mostly satisfying
results. Table II presents the test results of 10 Robcov, 4
AD, 10 MLP, and 5SM methods. In most of the scenarios,
we tend to see better classification results for supervised
methods than anomaly detection methods. This confirms the
best strategy is to adopt the use of semi-supervised methods
when the data is imbalanced, and then use supervised methods
when the companies dispose of enough feedback. They’re
also the possibility to apply oversampling techniques to the
imbalanced dataset before using supervised learning methods
[14].

Scenario 10 Robcov 4AD 10 MLP 5 SM
1 0.95 0.95 0.95 0.96
2 0.95 0.93 0.96 0.99
3 0.82 0.64 0.98 0.93

TABLE (II) Test results for 3 types of insider attack

B. Parallel performance analysis

We highlighted that the UCEL approach gives reliable
results to detect insiders. To study the performance of the
parallel version of the behavior profiler, we ran an imple-
mentation of parallel algorithm 2 on the GRID5000 platform.
On the Lille cluster of GRID5000 we used 9 nodes with 4
cores each for our experimentation. The Python language and
the Multiprocessing, Multithreading, and mpi4py APIs and
libraries are used to express the algorithm’ parallelism. The
performance of the implemented BP is measured in terms
of speedup that we can obtain when dataset size increases.
We recall that speedup represents the ratio of the serial and
parallel execution time of an implementation.

Fig. 4 Parallel behavior profiler on GRID’5K (8 co-methods
run on 9 nodes)

Figure 4 shows a significant speedup which reaches 4.3
when the mpi4py library is used. This is because the co-
methods are working in parallel for their training and testing
phase. This confirms that mpi4py is more fit to benefit from
cluster hardware than the other one. Even though the execution
is always faster for the parallel implementation, we can



Fig. 5 Parallel behavior profiler strong scalability on
GRID’5K (10 co-methods)

notice a limitation on the speedup gains when the number
of data records increases past 500000. A small drop in the
performance might occur due to the stochastic nature of the al-
gorithm used. However, after 500000 records, the performance
loss is continuous, and for all the parallelization libraries. This
drop in performance is probably due to the multiplications
of the communications at the synchronization steps. The co-
methods have relatively different execution times. So the
synchronization imposes the faster methods to wait for the
slowest before restarting a cycle. Clearly, we can conclude that
a better execution time can be obtained when behavior profiler
model is run in a high performance mode. However, the
synchronizations in UCEL algorithms, limit those benefits. We
will take into account the asynchronous communications in
the future implementation of our BP model. Figure 5 presents
the strong scalability test of supervised BP. We run this test
using a UCEL implementation with 10 MLP as co-methods,
and a fixed activity dataset size of 500000 entries. The result
of this test highlights that the speedup of our parallel behavior
profiler rises from 1 to approximately 4.5 when we increase
the number of processing cores. This figure demonstrates the
scalability character of the UCEL implementation.

VI. CONCLUSION

User behavior analysis software has become essential tools
to counter insider threats. Based on the analysis of user post
logging activities, these tools’ goal is to detect insiders in
a company environment. In this work, we presented a new
detection method based on the application of a unite and
conquer approach to ensemble learning techniques. It helps
us address issues that insider detection software faces today,
such as high FN/FN rates and versatility. We highlighted that
this framework, called UCEL, gives reliable results to detect
insiders. Indeed, we have shown that UCEL increases the
performances of all weak learners, composing the behavior
profiler. On the other hand, UCEL doesn’t have a beneficial
impact on strong learners. But the presence of these latter,
as co-methods, has a positive impact on the global method’s
results. We studied three insider attack scenarios, and we
showed that the UCEL framework is reliable and gives good
results. Besides, the study of these scenarios confirmed that
the best detection strategy is to adopt semi-supervised methods

when the data is imbalanced and then to use supervised
methods when the companies dispose of enough labeled data.
To study the performance of a parallel version of our behavior
profiler, we ran a kind of parallel client-server implementation
of the algorithm 2 on the GRID5000 platform. The presented
results show that we can obtain up to 4.3 speedup. Neverthe-
less, due to a synchronization step after each iteration, this
speedup decreases when the dataset size increases. The solu-
tion to this issue is to use asynchronous communications in
the algorithm. Indeed, asynchronous communications would
allow overlapping communications with computation.

REFERENCES

[1] You Chen, Steve Nyemba, Wen Zhang, and Bradley Malin. Special-
izing network analysis to detect anomalous insider actions. Security
informatics, 1(1):5, 2012.

[2] Nahid Emad and Serge Petiton. Unite and conquer approach for high
scale numerical computing. Journal of computational science, 14:5–14,
2016.

[3] Nahid Emad, S-A Shahzadeh-Fazeli, and Jack Dongarra. An asyn-
chronous algorithm on the netsolve global computing system. Future
Generation Computer Systems, 22(3):279–290, 2006.

[4] Kévin Fauvel, Véronique Masson, Elisa Fromont, Philippe Faverdin,
and Alexandre Termier. Towards sustainable dairy management-a
machine learning enhanced method for estrus detection. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3051–3059, 2019.

[5] Yoav Freund and Robert E Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of computer
and system sciences, 55(1):119–139, 1997.

[6] Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward su-
pervised anomaly detection. Journal of Artificial Intelligence Research,
46:235–262, 2013.

[7] Diana Haidar and Mohamed Medhat Gaber. Adaptive one-class
ensemble-based anomaly detection: an application to insider threats.
In 2018 International Joint Conference on Neural Networks (IJCNN),
pages 1–9. IEEE, 2018.

[8] Adam James Hall, Nikolaos Pitropakis, William J Buchanan, and
Naghmeh Moradpoor. Predicting malicious insider threat scenarios
using organizational data and a heterogeneous stack-classifier. In 2018
IEEE International Conference on Big Data (Big Data), pages 5034–
5039. IEEE, 2018.

[9] Haiwu He, Guy Bergère, and Serge Petiton. A hybrid gmres/ls-arnoldi
method to accelerate the parallel solution of linear systems. Computers
& Mathematics with Applications, 51(11):1647–1662, 2006.

[10] AS Khwaja, A Anpalagan, M Naeem, and B Venkatesh. Joint bagged-
boosted artificial neural networks: Using ensemble machine learning to
improve short-term electricity load forecasting. Electric Power Systems
Research, 179:106080, 2020.

[11] S Kotsiantis and P Pintelas. Combining bagging and boosting. Inter-
national Journal of Computational Intelligence, 1(4):324–333, 2004.

[12] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a
literature survey. Artificial Intelligence Review, 42(2):275–293, 2014.

[13] Ponemon. 2018 coast of insider threat global organizations,
ponemon insitute research report. Managed Security services,
https://www.observeit.com/ponemon-report-cost-of-insider-threats/(Last
accessed 4), 2018.

[14] Naghmeh Moradpoor Sheykhkanloo and Adam Hall. Insider threat
detection using supervised machine learning algorithms on an extremely
imbalanced dataset. International Journal of Cyber Warfare and
Terrorism (IJCWT), 10(2):1–26, 2020.

[15] Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and
Sean Robinson. Deep learning for unsupervised insider threat detection
in structured cybersecurity data streams. The Workshops of the The
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[16] Fangfang Yuan, Yanan Cao, Yanmin Shang, Yanbing Liu, Jianlong Tan,
and Binxing Fang. Insider threat detection with deep neural network.
In International Conference on Computational Science, pages 43–54.
Springer, 2018.


