
Content-defined Merkle Trees for Efficient
Container Delivery

Yuta Nakamura, Raza Ahmad, Tanu Malik
School of Computing

DePaul University
Chicago, IL USA

ynakamu1, raza.ahmad, tanu.malik@depaul.edu

Abstract—Containerization simplifies the sharing and deploy-
ment of applications when environments change in the software
delivery chain. To deploy an application, container delivery
methods push and pull container images. These methods op-
erate on file and layer (set of files) granularity, and introduce
redundant data within a container. Several container operations
such as upgrading, installing, and maintaining become inefficient,
because of copying and provisioning of redundant data.

In this paper, we reestablish recent results that block-
level deduplication reduces the size of individual containers,
by verifying the result using content-defined chunking. Block-
level deduplication, however, does not improve the efficiency of
push/pull operations which must determine the specific blocks to
transfer. We introduce a content-defined Merkle Tree (CDMT) over
deduplicated storage in a container. CDMT indexes deduplicated
blocks and determines changes to blocks in logarithmic time on
the client. CDMT efficiently pushes and pulls container images
from a registry, especially as containers are upgraded and (re-
)provisioned on a client. We also describe how a registry can
efficiently maintain the CDMT index as new image versions are
pushed. We show the scalability of CDMT over Merkle Trees in
terms of disk and network I/O savings using 15 container images
and 233 image versions from Docker Hub.

Index Terms—containerization, runtimes, content-based dedu-
plication, Merkle tree indexing, continuous delivery

I. INTRODUCTION

Containers are lightweight alternatives to virtual machines
and are increasingly used for sharing and deploying appli-
cations. Applications are containerized by using primitives
in the Linux kernel, which partition and isolate kernel re-
sources such as process identifiers, file names, user identi-
fiers, and hostnames. Container engines such as Docker [1]
and Singularity [2] make it easy to build, deliver, and run
such containerized applications. Thus, when a container is
built on a target machine, it can be re-executed in isolation
using encapsulated data and dependencies without the target
environment interfering with the computation.

Containerization improves portability of an application in
a software delivery chain. But before a container runs, the
system must encapsulate and provision all application data,
including a Linux distribution, system dependencies, binaries,
scripts, etc. The operating system downloads and allocates
files on the target file system increasing container provisioning
and start-up times. Docker build-time is indeed the most time-
consuming step in running a containerized application [3], [4].

To improve the storage explosion within containers, current
container engines optimize the use of file-system resource. By
default, engines identify redundancy at the granularity of files.
If a file and its path remains same, the engine adds no new file.
However, if any part of a file is modified or its path is changed,
the entire file is physically copied to produce a new file. A
file-granularity scheme works well as long as most modified
files are small, or not significantly larger than a disk block
(4KB) [5]. However, for large files, identifying redundancy at
the file-granularity level still causes a storage explosion.

Block-based storage has emerged as a viable solution for
the storage explosion problem in containers in which blocks
instead of entire files are deduplicated [6]. To maintain a
competitive deduplication ratio, block-based storage must dis-
tinguish between existent and new blocks, especially as images
are pulled, and modified images pushed. For example, if a
container registry hosts a TensorFlow image, and a client
actively develops it, and changes a few files, then the client
must ship only those blocks corresponding to those changes
to the registry. Clearly, if the client ships the entire files (the
current default), there will be an increase in provisioning and
build times.

Mapping from blocks to images and vice versa requires
hash-based comparisons via an index to determine which
blocks to pull or push and thus reduce network and disk
overhead. Merkle trees [7] reduce the number of hash compar-
isons by composing hash values over a set of blocks. Given
a Merkle tree index on two versions of an image, while the
compositional hashes can detect that two versions are changed,
they cannot precisely determine which blocks have changed
across the two container image versions.

In this paper, we introduce Content-Defined Merkle Tree
(CDMT), a hash-based tree index constructed over content-
defined blocks in a deduplication system. In CDMT, internal
nodes are also content-defined to avoid significant changes
in hash values as a few blocks are modified or added over
time. Intuitively, CDMT has the same advantage over Merkle
tree, which content-defined chunking1 has over fixed length
chunking. Fixed length chunking suffers from the shifted
content problem, since a single byte insertion or deletion com-
pletely changes the boundaries of other chunks and thus their

1A chunk is synonymous to a block

ar
X

iv
:2

10
4.

02
15

8v
1 

 [
cs

.D
B

] 
 5

 A
pr

 2
02

1



hash values. Content-defined chunking, which creates chunk
boundaries based on patterns in content and not fixed length,
avoids this byte-shift problem. Similarly, hashes of internal
nodes in Merkle trees change entirely due to block insertions,
but CDMT, being content-defined, structurally remains resistant
to this change.

There are several advantages of using a content-defined tree
index over a Merkle tree index. Given two image versions,
a Merkle tree comparison might conclude that the entire
container image has changed when only a single block may
have changed. On the contrary, a CDMT index detects the
precise blocks changed between two image versions. If the
versions are resident on a client and a registry, then only
the changed blocks are exchanged with a CDMT index, and,
as our experiments show, this precise exchange translates to
smaller network footprint. The CDMT index over content-
defined blocks is useful when data-intensive container images
are part of the delivery chain: small updates on a large-sized
file can require current container engines to duplicate an entire
layer or image version. Typically, an index is much smaller (in
our case ∼Kbs) than data chunks and is thus memory-efficient.
Since the chunks are deduplicated and not compressed, the
content-defined index continues to provide disk I/O savings.
CDMT is write-optimized in that when it indexes new blocks,

the index itself need not be reorganized. CDMT versions inter-
nal nodes using node-copying and organizes the pointers such
that a given version of the container image can be obtained in
linear time. Using node-copying, rebuilding container images
during continuous delivery with small updates is much faster
than reprovisioning the entire image. By maintaining versions
within the CDMT index, the tree serves both as an index over
chunks and as an authentication mechanism to reconstruct the
container image correctly.

The contributions of this paper are as follows:
• We use content-defined chunking for deduplicating

blocks, and show that CDC-based block deduplication re-
duces overall storage size when storing a large number of
images. We compare our CDC-based deduplicated store
against simply storing compressed images—a method
commonly used in container registries for pushing and
pulling images. We also compare it with uncompressed
images within a container which uses union file systems.
We show an improvement of 8x over compressed images.

• We introduce content-defined Merkle trees (CDMT) and
show how they compare image (or image layer) versions,
and detect changes to relevant blocks. CDMT improves
deduplication ratio by 10-15% across versions of images.

• We develop algorithms for efficiently maintaining
content-defined Merkle tree (CDMT) using node-copying
method such that a specific application version is obtained
in time linear in the number of versions.

• We describe how the block-based deduplication and it’s
accompanying index is used to push and pull specific
image versions.

• We conduct a thorough experimental analysis on 15
images and 233 image versions from Docker Hub. Exper-

iments show that deduplication reduces total size and that
the deduplication storage when supported with a content-
defined Merkle tree index efficiently push/pull layers over
the network otherwise network communication of chunks
increase by over 40%.

We organize the rest of the paper as follows: Section II
describes related work. Section III provides background on
content-defined chunking (CDC) and Merkle trees, and de-
scribes the chunk-shift problem in Merkle trees. Section IV
describes an algorithm for creating content-defined Merkle
trees (CDMT), and analyzes the algorithm. Section V considers
how to build CDMT index in container engines, and maintain
them across clients and container registries, especially as
new versions are created. We describe implementation and
experiments in Section VI, and conclude in Section VII.

II. RELATED WORK

The problem of efficiently maintaining encapsulated data in
containers has received significant attention. In this context,
we review storage mechanisms within containers and efficient
maintenance of deduplicated content.

Harter et. al. [6] show that individual containers are
“bloated” due to isolation i.e., breaking down an application
into many smaller processes, each of which when isolated
leads to loading nearly the same set of libraries, and thus
duplication of data. They also show that containers utilize
fewer data than they contain, i.e., containers package software
with more dependencies (to use in a variety of environments
and by a range of applications), while in practice containers
utilize only a limited subset. To counter bloating, Docker [1]
uses compression methods while transporting image layers.
These layers, however, must be uncompressed before use thus
increasing the overall size of containers.

A recent study [3] shows that, even with compression,
containers involve significant copying and installation over-
heads with package installation taking about 80% of the total
time. Compression is efficient for small sized containers but
registries (large-scale aggregation of containers) or a large
container with several layers will benefit from block-level
deduplication as posited in [6]. In this work, we have con-
sidered content-defined chunking as a method for block-level
deduplication.

Destor [8] shows the efficiency of a deduplication system
critically depends on the size of a lookup index, which
determines if a block exists in the deduplicated system. To
the best of our knowledge, ours is the first paper considering
an index over block-level deduplication in container systems,
and assessing the impact of an index on push/pull operations.
Systems like Picky [9] have used Merkle tree for applying
patches and upgrades to published datasets. Merkle trees
are used for hash-based comparisons in cryptoanalysis [10],
version control [11] and block chain systems [12]. We show
that Merkle trees are not sufficient as an indexing structure
over block-based deduplication system.

[13] explores different Docker storage architectures and
how a storage solution impacts system and workload perfor-



mance. They experimentally show Btrfs [14] as being more
space and I/O efficient over AUFS and union file systems for
the same number of Docker layers. While we have not im-
plemented CDMT within a specific storage architecture, CDMT
relies on copy-on-write functionality available as part of the
underlying filesystem. If a copy-on-write block is determined,
CDMT creates internal node copies for that path.

III. PRELIMINARIES

We describe the issue of using Merkle trees within block
deduplicated storage. For this we briefly describe Merkle trees,
and content-defined chunking, which forms the basis for block
deduplicated storage.

A. Content-defined chunking

Content-defined chunking (CDC) is a subfile-level dedupli-
cation method that aims to detect redundancy within files [15].
Without the CDC, a deduplication system can partition files
into fixed-width chunks, and use resulting chunk hashes to de-
tect identical chunks across two files. A fixed-width chunking-
based deduplication system suffers from the “byte-shift” prob-
lem in which insertion of a single byte at the beginning of
the file changes the fixed-width partition boundaries, and thus
the hash values of all the chunks, even though the data in
the remainder of the file has not changed. As a result, fixed-
width chunking-based deduplication system suffers from low
deduplication ratio. Content-defined chunking (CDC) aims to
detect redundancy by creating variable-length chunks based
on file content and uses hash fingerprint of variable length
chunks to detect common chunks. Chunks are created if the
chunk content matches a predefined pattern such as 5 least
significant bytes of the hash are 0. If the content matches
the pattern, the chunk is ‘cut’ and its boundary defined. CDC
solves the problem of byte-shift because even if the byte is
inserted at the beginning of the file, as long as the boundary
pattern remains the same, the boundary of chunks is detected,
and most chunks remain unchanged (Since the rest of the file
content has not changed content-defined boundary patterns are
unchanged). CDC uses a rolling hash method [16] to compute
the hash values of variable-length chunks, which enable the
content-based hash to be computed in time linear to the size
of the content.

B. Merkle tree

The Merkle tree is a complete k-ary tree in which values of
internal nodes are one-way hash functions of the values of their
children’s hash value [7]. Thus, leaf values are hash values of
leaf’s content, and Merkle tree computes the hash identifier of
an internal node by applying a one-way hash function on the
concatenation of hash values of its k children.

If any of the leaf nodes change then hash values from
the node to the root change. Version control systems use
this property of Merkle trees to determine if leaf data nodes
have changed. To determine which specific leaf node has
changed, two Merkle trees are compared using an authen-
tication path [7]. Figure 1 shows the authentication path

Fig. 1: A binary Merkle tree. The authentication path for leaf
at index 0 is shown in dashed nodes

(dotted nodes) for the leaf ‘A’ in a binary Merkle tree. The
authentication path of leaf ‘A’ consists of the siblings of all
nodes on the path from this leaf to the root. Given an original
Merkle tree, and a changed Merkle tree, if the authentication
path generates the new root then the corresponding leaf
data must be added. Authentication paths reduce the number
of hash nodes necessary for comparison [7]. Merkle trees
determine if leaf nodes have changed in O(logN) time, where
N represents the number of leaf nodes, which is more efficient
than O(N) key-value lookup over all leaves.

C. The chunk-shift problem in Merkle trees

Merkle trees suffer from a ‘chunk shift’ problem on CDC-
defined variable-length chunks similar to the ‘byte-shift’ prob-
lem that exists if fixed-length chunks are deduplicated. Con-
sider a Merkle tree on variable-length chunks obtained by
CDC as shown in Figure 2a. In this example, for simplicity,
we have used a readable pattern of “abc” as the pattern for
CDC to demarcate a chunk boundary.

The simpler case is when a chunk is modified without
changing the chunk boundary pattern. In this case, the hash
values of the node to the root are modified but there is no
change in the number of CDC chunks. The hash value of most
internal nodes remains same. Given two Merkle trees, one in
which the chunk is modified, and one in which it is not, the
modified chunks can be determined by comparing the hash
values in the authentication paths of modified chunks with the
original hash values.

A chunk-shift arises when the chunk boundary pattern is
itself modified. In this case new chunk blocks are either
created or merged. If the number of underlying chunks change,
the entire Merkle tree is modified, including hash values of
internal nodes, and the height of the tree. In Figure 2, the
second chunk is modified by disrupting the boundary pattern
and inserting the character ‘c’ after “yutanab”. CDC splits the
chunk into two chunks: one with “yutanabc” and the other with
“amuraabc”. Figure 2b shows the resulting Merkle tree on the
new set of chunks. The change in Merkle tree is shown as
grayed boxes, and includes the previous third, fourth and fifth
chunks: their hash values h(C), h(D), and h(E) are same but
since the child order position is changed the internal nodes are



(a) A binary Merkle tree on 5 CDC chunks delimited with chunk
boundary ‘abc’.

(b) The second chunk in Figure 2a after the insertion of ‘c’ splits
into two due to chunk boundary rule. The new chunk on content
“amuraabc” shifts the hash values and changes the previous Merkle
tree almost entirely.

(c) The Merkle tree also changes entirely if the boundary rule is
modified. Figure shows the Merkle tree when ‘d’ is inserted within
the boundary rule of second chunk of Figure 2a.

Fig. 2: The chunk-shift in Merkle tree over CDC chunks

not found in the authentication path. Hash values in an original
and modified Merkle trees, in this case, show all chunks as
changed even though large number of chunks are still the
same. This mismatch happens due to shift in Merkle tree hash
values, which itself occurs due to a shift in the number of
chunks. If nodes are merged due to an elision of pattern, a
dissimilar Merkle tree is constructed, which falsely claims all
chunk nodes as changed. Figure 2c changes the pattern in the
second chunk to only “ab” by elision of a ‘c’ thus merging
the second and the third chunk. When chunks are merged, as
the example shows, the height of the Merkle Tree changes,
and all leaves of Figure 2c are considered modified.

Chunk shift problem defeats the purpose of Merkle tree in

because all the internal nodes from the right of the chunk shift
changes, and in the worst case scenario, the tree height can
change. We show in Experiments (Section VI) that changes to
boundary patterns are common, and so are chunk shifts. We
now describe the design of content-defined Merkle tree which
is resilient to the chunk shift problem.

IV. CONTENT-DEFINED MERKLE TREE

The key idea in the CDMT index is to construct a Merkle tree
in which the internal nodes are robust to chunk shifts. This is
achieved by constructing internal nodes with a variable number
of children such that their hash value matches a predefined
pattern.

To match the predefined pattern, similar to CDC,
CDMTcomputes a a rolling hash over a fixed window consisting
of children hashes, i.e., initially, a fixed window of m children
are assigned to an internal node. If the combined hash values
of all the m children in a window do not meet a predefined
pattern, an additional child is assigned to the internal node, and
the fixed window is rolled over to comprise of the new child
and m−1 previous children and check if the new window hash
meets a predefined pattern. Constructing internal nodes of a
hash index based on a pattern keeps the tree robust to chunk
shifts. We do not construct a formal proof for this robustness
but show it experimentally and through an example below.
A CDMT is not balanced as a k-ary Merkle tree, but owing
to hashes being random, it has low height, which keeps it
efficient for traversal.

We illustrate the robustness of CDMT to chunk shift through
an example (Figure 3). Consider the data chunks as previously
in Figure 2a, with the same data chunk boundary condition of
“abc”. Since the content of internal nodes are hash values,
we consider a boundary forming rule if the last 2 bits of the
hash values are 0, i.e., 00. A resulting CDMT using Blake-
2b [17] hash function is shown in Figure 3a. In this Figure,
the internal nodes are not defined based on the hash value of
the concatenation of hash values of child nodes, but they are
defined if the rolling hash value of the concatenation of child
hash values matches the boundary rule of internal nodes.

Applying CDC-like rule to internal nodes keeps the CDMT
index robust against chunk shifts. This is shown in Figure 3b,
in which even after the insertion of ‘c’ in “yutanabamura”,
the chunk is split into two and the tree structure as a whole
is preserved with only the path from the new chunk ‘umura’
to root node changing (shown in shade). This is because the
rolling hash still splits after h(C) and h(D). Similarly when ‘d’
is inserted such that the insertion breaks the chunk boundary
rule (Figure 3c), in the CDMT index the two child nodes
are merged to the left but the other nodes of the tree are
resistant to the shift as the child hash values appear in the
same order. The efficiency of the CDMT index depends upon
an appropriately chosen window size, which determines the
number of child hashes whose concatenation must be checked
against the pattern rule. In our example, we have assumed
a window size of 2 for internal nodes. Alternatively, if all
children are chosen then the hash changes every time a child



(a) A CDMT tree on 5 chunks delimited with chunk boundary “abc”.
Bold hash values show hashes contributing to parent boundary.

(b) The second chunk after the insertion of ‘c’ splits into two due to
chunk boundary rule. The new chunk’s changes are localized as parent
node is only determined by h(C) and h(D).

(c) The CDMT tree keeps the changes localized when ‘d’ is inserted
and the boundary rule of second chunk merges the parents but does
not cause a chunk shift.

Fig. 3: The shift in CDMT tree over CDC chunks results in
localized changes to parent nodes. In this example, for illus-
tration, chunk boundaries (“abc”) are different from internal
node boundaries (‘00’). The window size is assume to be two.

changes. As we will show in Section VI the CDMT index
performs well with a window size of 8 where updates are
provided by new versions of chunks.

Algorithm 1 show the pseudo-code for building the CDMT
index. The algorithm takes as input a list of hashids of content-
defined chunks L, a pattern matching rule R, and a window-
size of W . We assume the Blake-2b as our hashing function,
which provides maximum efficiency for large-sized datasets.
The algorithm relies on a hashmap hm for quick lookups. The
keys of the hashmap is the hash of the data for leaf nodes and

hash for concatenated hashes of children for the internal nodes
(root node included). Values of the hashmap are the pointers
to the nodes in the memory. The Algorithm maintains the tree
as a queue. The algorithm creates new internal nodes based
on concatenation of hashids of w children (Line 14 and 20).
If the hash of the internal node matches the content-defined
rule (Line 17), then the Algorithm declares a new parent and
inserts into the queue till it finds a new root.

Algorithm 1: The CDMT Build Algorithm
Input : Queue S of CDC hashids, Rule R,

WindowSize W
Output: T a CDMT Tree

1 List T1 = T2← null
2 Tree T ← null
3 Hashmap hm ← null
4 while S.size() > 0 do
5 s = S.pop()
6 if s /∈ hm then
7 hm.insert(s)
8 end
9 T1.push(s)

10 end
11 T = T1.Copy()
12 repeat
13 t = T1.pop ()
14 new parent = NewParent().AddChild(t)
15 new parent.AddinWindow(t)
16 if new parent.NumChildreninWindow() =

window size then
17 new parent.hash id =

HashFunction(new parent.Children())
if (new parent.hash id matches R) &
(new parent.hash id /∈ hm) then

18 T2.push(new parent)
19 else
20 new parent.RollWindow()
21 end
22 end
23 if T1.size() == 0 then
24 T2.push(new parent)
25 end
26 T = T2.Copy()
27 T1 = T2
28 until (T1.size() > 1)
29 return T

We would like to emphasize that the content-defined rule
can be any string but should be preferably content-related [18].
A common pattern is to look at last k bits of the hash of
the concatenated hash value being zero. In the worst case, if
we assume the algorithm detects this pattern for every data
chunk, then the number of internal nodes are same as data
chunks. Here, the algorithm will be in an infinite loop because
it generates an internal node for every leaf node, and the stack



size does not reduce. However, for such a condition to arise,
the hash function must be heavily skewed in the distribution
of the range. If we assume a hash function with good pseudo-
randomness, on average, such a pattern in which last k bits
of a hash are all 0 will only exist in (1/(2k)) data chunks.
Therefore, eventually the number of internal nodes in each
level would be less than the total number of data chunks and
we will find the root node. The complexity of the algorithm
is O(N), assuming that 1 parent node is created for each 4
nodes (N + (1/4)N + (1/16)N + ...) = (4/3)N .

V. CDMT TREE IN CONTAINERS

We focus on storage organization of Docker images as
Docker is the most popular choice of container engines.
We consider this storage from the semantics of user oper-
ations and the internal organization. Docker images contain
all information needed to run the packaged software [19].
Images are themselves divided into a series of layers. Every
layer, identified by a hash identifier, is a set of files. Docker
commands such as push and pull operate at the granularity of
images. Thus a user can pull or push from a central server or
registry for the ubuntu:latest image. Internally, Docker engine
operates at the granularity of layers. Thus given an image,
it checks if any of its constituent layer is already present. If
any of the layers is present, it does not pull that layer. Docker
represents layers as gzip-compressed tar files over the network
and on the registry machines.

Layers in a docker image are read only except for a write-
able layer at the top. Modifications or changes made to files in
existing layers are stored in the write-able layer. Changes to the
write-able layer must be committed and pushed to a registry,
which creates a new tagged version of an image. Docker also
supports the branching concept where two images may share
the same set of parent layer and their ancestors. While a
client may make several commits, the Docker registry only
recognizes commits that are ‘tagged’; only ‘tagged’ images
can be pushed or pulled from the hub, and not the intermediate
versions.

Internally, Docker supports different storage drivers; drivers
represent layer data in different ways. In this paper, we focus
on drivers which store layer data by deduplicating it at subfile
granularity (such as Btrfs). By default, Docker chooses the
AUFS driver, which uses OverlayFS to store data. OverlayFS
is a union file system, which does not store data directly on
disk, but uses another file system (e.g., ext4) as underlying
storage. Since union file systems support COW (copy-on-
write) at file granularity i.e., the entire file is duplicated, and
has been shown to have several performance problems [5] [6],
we do not consider the AUFS storage driver.

Our prototype implementation of the Btrfs driver consists
of a deduplicated storage with three components: (i) a con-
tainer store, which stores unique CDC-defined chunks in a
log-structured storage, (ii) a fingerprint index which records
fingerprints of a chunk and also maps fingerprints of chunks to
their physical locations. This index is used to identify duplicate
chunks, and (iii) a recipe store that stores in list format the

logical fingerprint sequence of each layer. A recipe is used to
reconstruct a layer during restore.

In our prototype CDMT is the fingerprint index, which
determines which chunks to store in the deduplicated stor-
age. Traditional deduplication storage systems implement the
fingerprint index as a key-value index in which the key is a
fingerprint and the value points to the chunk.

Due to fingerprints being completely random, such an
index exhibits poor random access performance for lookup
operations2.

We assume a container registry or server, which hosts all
versions of an image along with one CDMT index per image
type. We assume the deduplicated storage is resident on a
client, which supports push and pull interfaces. The push and
pull operations specify images to be pulled or pushed, but
operate at the granularity of chunks and use a CDMT index
within the client deduplicated storage to determine which
chunks to push and pull. The pull and push operations on
the client use the CDMT index to determine specific chunks as
follows:

1) Pull: In the pull operation, the client specifies an image
version to the server, and the server sends the CDMT index
for the specific image version, which the client compares with
CDMT index on the client, and based on the index comparison
the client pulls specific blocks for an image. To compare the
pull operation performs a breadth-first search over the two
CDMT indexes. The input variable root is the root node on the
client side. The CDMT index it compares with is the CDMT
index of the specific image version the client wants to pull,
and hash map is assumed to have the identifier for each version
for all the nodes. Algorithm 2 describes the comparison.

2) Push: Push occurs in two situations: the push of a new
image and push of an already committed image. In the pushing
a new image, the client pushes all the chunks to the server
along with its specific CDMT index. For pushing an image
which the client has already committed, the client requests the
CDMT index of the last version from the server, and compares
it with the client CDMT index to determine the chunks that
have changed. Algorithm 2 compares the two indices. It sends
to the server the chunks corresponding to the image, the layers
to which they belong, and the new CDMT index. The server
maintains a single CDMT index for different images versions
as described in the next section.

A. Maintaining the CDMT Index

The client pulls a container image, updates the image layers,
and pushes a new version of the image to the server. Most
container engines on a client use copy-on-write (COW) such
that a block is never overwritten but simply versioned. While
maintaining CDMT, we distinguish the versioning of a block
due to COW and versioning of a block due to a push, which
creates a new branch or tagged version on the server. We
illustrate this through an example (Figure 4). Figure shows

2Deduplication systems, such as [8] use a cache to speed up the index but
caches suffer from the same chunk shift problem addressed in this section



Algorithm 2: CDMT compare
Input : hash map hm, root node of T1 and T2,

versions v
Output: chunks that are different between T1 and T2

1 create a FIFO Queue queue of T1 and T2
2 push root into queues
3 while queue is not empty do
4 node current = Queue.pop(queue) if current.fp is

not in the version v then
5 if current has children then
6 push all the children of the current into

queue
7 else
8 yield current
9 end

10 end
11 end

two container images, C1 and C2, in which one container
is a branch of the other, or simply shares layers. C1 is an
image consisting of four layers (L0-L3), and C2 consists of
five layers (L0-L1,L4-L6). As shown, the file f1, but different
versions, resides in layers L0 and L2, and the file f2, but
different versions, resides in the two different branches. The
container C1 only sees the latest version of f1 from L2 due to
COW. However, C1 and C3 belong to two different branches
and each container sees the most recent version of the file f2
in its respective branch.

Fig. 4: The layered filesystem in containers. Containers C1

uses files f1@v2 and f2@v1; container C2 uses file f1@v1
and f2@v2

The client within the deduplicated storage determines the
source of versioning, i.e., if versioning occurs due to COW or
versioning occurs due to branching. Versioning due to COW
overrides old dependencies with new dependencies (for e.g.,
one layer using gcc6.1 and the other used gcc7.2; these new
versions are informed by COW. Versioning due to branching
is a user-defined operation (for e.g., modifications in example
Figures 2 and 3); the system determined these versions because
of explicit push/pull calls.

We illustrate the two types of versioning in the CDMT index.
Figure 5 shows a versioning due to layering, and versioning
due to branching both maintained as part of the same CDMT
index.

To maintain versioning due to layering, we add a modifi-
cation history to every internal node of the CDMT index. The
left most branch of the CDMT index in Figure 5 depicts this
modification history. Thus, each internal node knows what its
value was at any previous point in time. This technique of
storing versions within an internal node requires space equal
to the number of hash bits for every modification. However,
we must find the right version at each node as we traverse
the structure, and this takes time proportional to the number
of modifications. So if m modifications are made, then each
access operation has O(log m) slowdown. In most cases,
clients work with the most recent version However, since we
only have to look at the most current version every time due
to layering the expensive access time is not incurred unless
old versions are heavily accessed.

To maintain versioning due to branching, we add a modi-
fication history to the CDMT index. For this we make a copy
of any CDMT node before changing it, and we cascade the
change back through the data structure, i.e., all nodes that
pointed to the old node are modified to point to the new node
instead. These modifications cause more cascading changes,
and so on, until the root. We maintain the root as an array
of roots where each root corresponds to a ‘taggable‘ container
branch, and the nodes pointed by a specific version of root are
the nodes corresponding to that specific branch. Maintaining
versioning due to branches only adds O(log m) additive lookup
time, where m is the number of modifications, and amounts
to finding the specific branch.

Fig. 5: Versioning due to layering for f1 and versioning due
to branching for f2. Layering leads to new hash versions in
internal nodes. Branching leads to new hashing nodes.

VI. EXPERIMENTS

Our experiment dataset consists of container images from
15 different application across four categories. The categories
include programming languages, web frameworks and servers,
databases and data science. We base our choice of images on
applications which are being actively developed and thus have
a large number of versions so that we can assess the impact of
push/pull operations during container delivery. Table I shows
the 15 applications, the number of versions considered for
each image, and the average number of layers per application.
Finally, the Table shows the total size of an application across
all versions (layers are duplicated). The images were down-
loaded from Docker Hub between 8th and 14th of July, 2020



TABLE I: The dataset: 15 applications sourced from Docker Hub.

Application # of versions Avg. # of layers
per version Total size(Gb)

golang 8 5.3 2.5
node 17 3.2 1.3

tomcat 17 6.3 3.2
httpd 17 5.0 2.0

python 18 4.9 1.7
tensorflow 10 24 24

r-base 9 8 35
redis 13 6 0.83
rails 18 17 53

nginx 34 3.4 1.1
postgres 19 8.9 1.1
django 8 8 4.2
pytorch 10 7.9 89
mysql 16 12 7.4

deepmind 19 15 100
Total 233 8.4 320

(for golang, node, tomcat, python, tensorflow, R-studio/r-base,
radis, and rails), and between 10th and 20th October 2020 (for
httpd, nginx, postgres, django, pytorch, and deepmind).

We perform all experiments on a machine running Linux
kernel 2.6.32-754.33.1.el6.x86 64 CentOS 6.10, having In-
tel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz, 3 terabytes of
hard drive and 64 GB of internal memory. We perform some
preprocessing on image data before conducting our experi-
ments. Image versions are uncompressed for deduplication as
the specific tar archive format changes the order of files and
inserts file headers. In CDC our window size is 2 and for
Merkle trees our chosen k is 4.

A. Block-based deduplication reduces storage size

Using the 233 image versions, we show that block-based
deduplication reduces total storage size. Figure 6 shows the
ratios of the size of the raw data to the size of the compressed
or deduplicated data. We average the compression ratio over
all versions for each software, and similarly compute the
deduplication ratio over all versions. Note the higher the value,
the more reduction in size. Compression ratios only reach
as high as 3.5 but deduplication ratio reach as high as 20
for deepmind. Deduplication is not better for every image,
though for more than half the number of images deduplication
performs better than gzip compression. T. Harter et. al. [6]
choose compression as better for a single version, but as we
show deduplication is better over multiple versions and is an
important consideration for container registries. For clients,
we consider global deduplication where images are dedupli-
cated by aggregating different applications together. Figure 7
captures the performance of global block deduplication as the
number of images in the dataset grow. Figure shows global
deduplication ratio to be about 7.7 when compression ratio is
about 2.5, showing the advantage of block-based deduplication
also in clients.

B. The CDMT index reduces network and disk I/O

We compare the advantage of using CDMT index over
Merkle trees in block-based deduplication storage. Figure 8

Fig. 6: The performance of compression ratio by deduplication
and gzip compression algorithm on individual images.

Fig. 7: The performance of global deduplication and gzip
compression as the dataset increases.

Fig. 8: The comparison of the CDMT index and Merkle Trees
generated for the same versions, averaged over all images.
CDMT indexes for two versions have higher ratio of common
nodes detected because nodes are not cut due to the chunk
shift problem as in Merkle Trees.



TABLE II: Amount of disk I/O and network I/O over as new
container versions are pulled

Application Block-based
deduplication ratio

Total non-deduplicated
size (gb)

golang 0.34 1.7
node 0.70 0.41

tomcat 0.74 0.88
httpd 0.64 0.73

python 0.50 0.90
tensorflow 0.55 9.8

r-base 0.95 1.8
redis 0.71 0.25
rails 0.92 4.5

nginx 0.76 0.28
postgres 0.64 0.42
django 0.83 0.76
pytorch 0.80 19
mysql 0.74 2.1

deepmind 0.95 5.3

compares the CDMT index with with Merkle trees and shows
that CDMT indexes detect common data blocks significantly
more than Merkle trees. Merkle Tree has a very low number
of common nodes except for nginx, tomcat, node. This obser-
vation shows chunk-shift happens fairly often, if not all the
time, making Merkle Tree inefficient as an index over CDC-
defined chunks.

We translate this result further in terms of push and pull
operations on a container. In particular, we consider a client
which pulls different versions of an application and upgrades
it. Table II reports the block-based average deduplication ratio,
i.e., the average number of common blocks determined using
CDMT tree (column 1) and determines how many blocks the
client pulls in terms of data size (column 2). The second
column shows the amount of network traffic that will occur if
the client identifies the correct number of deduplicated blocks,
and the client pulls only the non-deduplicated blocks over the
network. As we show identifying common blocks Figure 8
is possible through CDMT but not via Merkle tree. The first
column of Table II when multiplied by the total size of an
image indicates the amount of disk space saved.

C. Reduction in Comparisons

We further determine if authentication paths in CDMT are
useful for determining if a matching node was found. For
this experiment, we define a comparison ratio as the number
of nodes compared with the CDMT index divided by the
number of nodes of compared using simple key-value search
for finding matching chunks. When the ratio is over 1 it shows
the number of comparisons will be more with CDMT index,
i.e., authentication paths are not being useful, and less than 1
shows the number of comparison will be smaller with CDMT
index over content-defined chunks, i.e., authentication paths
are helpful and we can skip traversing the entire tree below
that node in the authentication path. When the ratio is over
1 then key-value search is sufficient. For versions that have
high similarity a lower comparison ratio can save a significant
number of comparisons. Figure 9 shows this relationship
between comparison ratio and deduplication ratio with the

Fig. 9: Relationship between comparison and deduplication
ratios using CDMT. As versions increase in similarity, the
number of comparisons required to identify common data
chunks decreases nearly linearly.

CDMT index. We observe that as versions of images become
increasingly similar, the number of comparisons to detect
matching chunks between them decreases nearly linearly. The
result is especially remarkable as the CDMT index is not a
balanced tree like Merkle tree whose traversal is known to
have sub-linear time complexity [20].

D. Construction time for CDMT

CDMTs are lightweight to construct and transmit over the
network. For this experiment, we treat the images for each
software in our dataset as versions of each other. We convert
each version into its corresponding chunks using our hashing
algorithm and then construct the CDMT index. The hashing
time is the computation time for both setting the boundary and
computing the hash value for each chunk. The indexing time
is building the CDMT index per version using Algorithm 1.
We compare hashing versus indexing time in Figure 10. In
this experiment, content-defined Chunking(CDC) is performed
using Rabin fingerprint in which hash value are computed
through linear congruence of polynomials. The chunk bound-
ary computation is linear-time over the number of characters
in the data. After CDC sets the chunk boundary, Blake2b [17]
is used to compute the hash value of the chunk because it is
secure and provides maximum efficiency for large data sets.
As the Figure shows the time taken to construct the CDMT
index for each image (over all the versions) is only a fraction
of the time needed to produce all its hashes. This motivates us
to reduce the hashing time, either to change the hash function
for setting boundaries, or only hashing a fraction of the nodes.
We plan to consider these strategies in future work.

VII. CONCLUSION

Containerized applications have become popular, and host-
ing containers on a local data hub is widespread. Due to
isolation of virtualized applications, storage requirements of
containers can be high. In this paper, we have argued for
block-based deduplication of container storage but also shown



Fig. 10: Time taken to construct the CDMT index for the
versions of an image is significantly less than time taken to
create content-defined hashes for the same image.

that we must support the deduplication layer with a content-
defined Merkle tree index to efficiently push/pull layers over
the network. We have shown the efficiency of our approach
over namespaced containers. The CDMT tree is general and
can also apply to aggregations of virtualized images.

ACKNOWLEDGMENT

This work is supported by National Science Founda-
tion under grants CNS-1846418, NSF ICER-1639759, ICER-
1661918 and a Department of Energy Fellowship.

REFERENCES

[1] “Docker,” https://www.docker.com/, 2019, [Online; accessed 8-Jan-
2019].

[2] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PloS one, vol. 12, no. 5, 2017.

[3] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1–17.

[4] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
rapid virtual machine cloning for cloud computing,” in Proceedings of
the 4th ACM European conference on Computer systems, 2009, pp. 1–
12.

[5] X. Wu, W. Wang, and S. Jiang, “Totalcow: Unleash the power of copy-
on-write for thin-provisioned containers,” in Proceedings of the 6th Asia-
Pacific Workshop on Systems, 2015, pp. 1–7.

[6] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in 14th
{USENIX} Conference on File and Storage Technologies ({FAST} 16),
2016, pp. 181–195.

[7] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology — CRYPTO ’87, C. Pomerance,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378.

[8] Y. Zhang, D. Feng, H. Jiang, W. Xia, M. Fu, F. Huang, and Y. Zhou,
“A fast asymmetric extremum content defined chunking algorithm for
data deduplication in backup storage systems,” IEEE Transactions on
Computers, vol. 66, no. 2, pp. 199–211, 2016.

[9] D. Hintze and A. Rice, “Picky: Efficient and reproducible sharing of
large datasets using merkle-trees,” in 2016 IEEE 24th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 2016, pp. 30–38.

[10] J. L. Muñoz, J. Forne, O. Esparza, and M. Soriano, “Certificate revoca-
tion system implementation based on the merkle hash tree,” International
Journal of Information Security, vol. 2, no. 2, pp. 110–124, 2004.

[11] S. Vaidya, S. Torres-Arias, R. Curtmola, and J. Cappos, “Commit
signatures for centralized version control systems,” in IFIP International
Conference on ICT Systems Security and Privacy Protection. Springer,
2019, pp. 359–373.

[12] K. Zhang and H.-A. Jacobsen, “Towards dependable, scalable, and
pervasive distributed ledgers with blockchains.” in ICDCS, 2018, pp.
1337–1346.

[13] V. Tarasov, L. Rupprecht, D. Skourtis, D. H. A. Warke1, M. Mohamed,
and et. al., “In search of the ideal storage configuration for docker
containers,” in IEEE 2nd International Workshops on Foundations and
Applications of Self* Systems (FAS*W), 2017.

[14] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”
ACM Transactions on Storage (TOS), vol. 9, no. 3, pp. 1–32, 2013.

[15] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” ACM SIGOPS Oper. Syst. Rev., vol. 35, no. 5,
pp. 174–187, 2001.

[16] M. O. Rabin et al., Fingerprinting by Random Polynomials. Center for
Research in Computing Techn., Aiken Computation Lab, Univ., 1981.

[17] “The blake2 cryptographic hash and message authentication code
(mac),” 2020. [Online]. Available: https://tools.ietf.org/html/rfc7693

[18] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Q. Liu, and Y. Zhang,
“Fastcdc: a fast and efficient content-defined chunking approach for data
deduplication,” in USENIX Annual Technical Conference, 2016.

[19] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, 2014.

[20] P. Berman, M. Karpinski, and Y. Nekrich, “Optimal trade-
off for merkle tree traversal,” Theoretical Computer Science,
vol. 372, no. 1, pp. 26 – 36, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397506008693


