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Abstract—Given a temporal graph G, a source vertex s, and
a departure time at source vertex ts, the earliest arrival time
problem (EAT) is to start from s on or after ts and reach all
the vertices in G as early as possible. Ni et al. have proposed
a parallel algorithm for EAT and obtained a speedup up to 9.5
times on real-world graphs with respect to the connection-scan
serial algorithm by using multi-core processors.

We propose a topology-driven parallel algorithm for EAT on
public transport networks and implement using general-purpose
programming on the graphics processing unit (GPU). A temporal
edge or connection in a temporal graph for a public transport
network is associated with a departure time and a duration time,
and many connections exist from u to v for an edge (u, v). We
propose two pruning techniques connection-type and clustering,
and use arithmetic progression technique appropriately to process
many connections of an edge, without scanning all of them.
In the connection-type technique, the connections of an edge
with the same duration are grouped together. In the clustering
technique, we follow 24-hour format and the connections of
an edge are partitioned into 24 clusters so that the departure
time of connections in the ith cluster is at least i-hour and
at most i + 1-hour. The arithmetic progression technique helps
to store a sequence of departure times of various connections
in a compact way. We propose a hybrid approach to combine
the three techniques connection-type, clustering and arithmetic
progression in an appropriate way. Our techniques achieve an
average speedup up to 59.09× when compared to the existing
connection-scan serial algorithm running on CPU. Also, the
average speedup of our algorithm is 12.48× against the parallel
edge-scan-dependency graph algorithm running on GPU.

Index Terms—Earliest arrival time, temporal graphs, public
transport networks, parallel algorithms, graphics processing unit.

I. INTRODUCTION

Route planning algorithms in road networks and public
transport networks are well studied and are designed to find
various kinds of paths such as shortest paths, fastest paths,
and earliest arrival paths. A public transport network primarily
consists of a scheduled time table information (departure and
arrival times) of public transport vehicles along various routes,
and the underlying road network. A public transport network
can be modeled as a temporal graph that consists of vertices,
edges and connections. The road network structure is captured
by the topology of the graph, i.e., a road that starts from u
and ends with v is represented using an edge from a vertex
u to a vertex v, and is denoted as (u, v). Multiple vehicles
going through a road (u, v) with various departure times and

arrival times are captured using connections; a connection
(u, v, t, λ) is a 4-tuple, which indicates that there is a road
from u to v, there is a vehicle whose departure time at u is t
and the duration time of the vehicle from u to v is λ. Since the
information about edges is implicitly available in connections,
a temporal graph is defined as a weighted directed graph
consists of vertices and connections, where every connection
is associated with a departure time and a duration time. A
path P in a temporal graph is a time respecting path if the
departure time of the outgoing connection is at least the arrival
time of the incoming connection at every intermediate vertex
in P . For a query consists of a source vertex s, destination
vertex d and a departure time ts, a time respecting path from
s to d, whose departure time from s is at least ts and the
arrival time at d is minimum, is referred to as earliest arrival
path, and the arrival time at d is referred to as earliest arrival
time. Given a temporal graph G, a source vertex s, and a
departure time at source vertex ts, the EARLIEST ARRIVAL
TIME (EAT) problem of our focus in this paper is to find the
earliest arrival times from a single source s to the rest of
the vertices [1]. In the goal-directed version of the earliest
arrival time problem, earliest arrival time is computed from a
source vertex to a designated destination vertex [1]. In case
of profile-search problem, the set of non-dominated earliest
arrival paths that depart in a specified time interval are to
be computed [1]. EAT and their variants are well studied in
not only on public transport networks, but also on real world
temporal graphs such as facebook, flicker, dblp and arxiv using
serial computing and multi-core computing [2], [3].

A variant of Dijkstra’s algorithm is used to solve EAT
problem by storing a public transport network information
using time-expanded model and time-dependent model [4].
Dijkstra’s algorithm and their variants are vertex-centric al-
gorithms, whereas the connection-scan algorithm (CSA) pro-
posed by Dibbelt et.al. used to solve EAT is an edge-centric
algorithm [1]. This algorithm has become popular due to
the simplicity, spatial data locality, and is versatile to solve
multi-criteria profile queries and minimum expected arrival
time problem [1]. Later, Wu et.al. have used CSA to solve
EAT problem on real-world temporal graphs [2]. There after,
EAT on real world temporal graphs is solved using a parallel
Edge-Scan-Dependency-Graph (ESDG) algorithm on multi-
core processors and obtain 9.5× speedup with respect to the
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connection-scan algorithm [3].
Modern architectures such as multi-core central processing

unit (CPU) and many-core graphics processing unit (GPU) are
used heavily to exploit the various kinds of parallelism and
the performance of various applications. The number of cores
in a multi-core CPU typically varies from 2 to 128, whereas
a many-core GPU consists of hundreds or thousands of cores.
The architecture and design philosophy of multi-core CPU and
many-core GPU are fundamentally different; CPUs are designed
to decrease the latency time, whereas increasing the throughput
is the main focus in GPUs [5] and hence, the adaption of algo-
rithms designed for multi-core architecture to GPU architecture
is a non-trivial task. Various graph problems such as finding
biconnected components and strongly connected components
are explored using multi-core and many-core architectures
[6], [7]. To the best of our knowledge, there is no work
on EAT problem using general purpose graphics processing
units (GPGPU). We propose parallel algorithms to solve EAT
in public transport networks, on many-cores using GPGPU.

We now state our main contributions.
• Data-structures: We exploit the temporal information in

public transport networks such as departure time and
duration time on every connection and propose various
data-structures to retrieve useful connections efficiently.

• Algorithms: We get inspiration from connection-scan
algorithm and propose a few topological driven parallel
algorithms to retrieve useful connections and ignore the
rest of them for solving EAT. Vertex-centric and edge-
centric are well known approaches in algorithmic graph
theory. A variant of edge-centric, called as connection-
type centric is proposed in our algorithms, in which many
connections of same type are processed together.

• Data-enhancement: We exploit the spatial information of
trips (a sequence of locations that are traversed by a vehi-
cle in a public transport system), and propose to add new
artificial connections. Our data-enhancement technique
called sub-trips approximately doubles the speedup of all
the proposed algorithms.

• Speedup: We have implemented the proposed algorithms
on GPU and run various experiments on popular public-
transport data sets such as London, Los Angeles, Paris,
Sweden and Switzerland. With respect to the connection
scan algorithm on CPU, the average speedup is between
2.29× and 59.09×, whereas the average speedup is be-
tween 1.63× and 12.48× when compared to the parallel
ESDG algorithm on GPU.

A. Preliminaries

We use G = (V,C) to denote a temporal graph, where
V and C are vertices and connections in G, respectively. A
connection is a quadruple of (u, v, t, λ), where there exists a
public transport vehicle that starts from u at departure time t
and reaches v at t+ λ. For a temporal graph G, the temporal
diameter of G, denoted by d(G), is defined as the maximum
number of connections in an earliest arrival path from s start-
ing with departure time ts to any reachable vertex from s, over

all vertices s in G and over all times ts ≥ 0. In public transport
data, the departure time of a temporal edge is represented in
seconds. However, we use HH:mm or HH:mm:ss format a
few times to illustrate certain concepts, where HH, mm and
ss denotes the hours, minutes, and seconds of a time stamp,
respectively. For example, 13:20:34 denotes 13 hours, 20
minutes and 34 seconds in a 24-hour format. The state-of-art
serial and parallel algorithms to solve single source earliest
arrival path problem on temporal graphs are connection-scan
algorithm and edge-scan-dependency-graph (ESDG) algorithm,
respectively, and are described below.
Connection-Scan Algorithm: Given a graph G(V,C) and a
query (s, ts) the algorithm calculates the earliest arrival times
in O(|C|) time. The algorithm begins with an initialization
phase in which the earliest arrival time of all vertices except
the source is set to ∞ and earliest arrival time of s is set
as ts. Further connections in C are relaxed in non-decreasing
order of departure time, as shown in Algorithm 1. The final
earliest arrival times are acquired when all the connections are
relaxed.

Algorithm 1 Connection-Scan Algorithm
Input: G = (V,C) and Query (s, ts).
/* C is a sequence of connections in G that

are arranged in non-decreasing order based on

their departure time. */
Output: Earliest Arrival Times for all vertices in G.

1: for all vertex u ∈ V \ s do
2: e[u] = ∞
3: e[s] = ts
4: for each (u, v, t, λ) in C do
5: if (e[u] ≤ t and t + λ < e[v]) then
6: e[v] = t + λ

Edge-Scan-Dependency-Graph Algorithm: Ni et al. have
designed a parallel algorithm to solve EAT by introduc-
ing edge-scan-dependency graph (ESDG) [3]. An edge-scan-
dependency graph G̃ of a temporal graph G is defined as
follows. The connections in G are treated as vertices in G̃.
Let c = (u, v, t, λ) and c′ = (u′, v′, t′, λ′) be two connections
in G. Then, there exists a directed edge from c to c′ if they
satisfy the following two conditions:

1. v = u′ and t′ ≥ t+ λ

2. @ (u′′, v′′, t′′, λ′′) ∈ C such that t′′ ≥ t+λ and t′′+λ′′ <
t′ + λ′.

Note that the edge-scan-dependency graph G̃ is a di-
rected acyclic graph. For each vertex v in G̃, level(v) is
defined as follows: if there are no incoming edges to v, then
level(v) = 0; otherwise, level(v) is equal to the length of
a longest path from a vertex whose level is zero to v. In
the parallel edge-scan-dependency graph algorithm, all the
connections within the same level are relaxed (Lines 5 and
6 in Algorithm 1) in parallel, and the connections in different
levels are relaxed in increasing order of their level number.



Arithmetic Progression Technique: We use the following
technique in our algorithm, to represent a sequence S of
positive integer in compact way [8]. In each iteration, an un-
covered smallest number a ∈ S is chosen, and finds a longest
arithmetic progression starting with a and cover maximum
number of uncovered numbers. The same step is repeated
until all the numbers in S are covered. Finally, each arithmetic
progression can be compactly represented using the first term,
last term and the difference between the consecutive terms
in the arithmetic progression. For instance, the arithmetic
progression (10,15,20,25,30,35) can be compactly represented
as (10,35,5).

II. PROPOSED INCREMENTAL PARALLEL ALGORITHMS

In this section, we describe our parallel algorithms that are
developed with incremental improvements. We first propose
a topological driven connection-version algorithm that is in-
spired from connection-scan algorithm. Further, we describe
pruning techniques connection-type, arithmetic progression,
and clustering. Later, we combine these techniques to obtain
a hybrid technique Cluster-AP. Finally, we illustrate a warp-
based algorithm and data-enhancement technique.

For each vertex u ∈ V , we use e[u] in our algorithms to
store the earliest arrival time from the source vertex to u. Our
proposed algorithms use two subroutines, namely INITIALIZE
and RELAX. In the initialization subroutine, shown in Algo-
rithm 2, G is a temporal graph, s is a source vertex and the ts is
the departure time at s. This subroutine sets the earliest arrival
times for all vertices except the source vertex as∞ in parallel.
The earliest arrival time of source vertex is set as ts. Also, we
maintain an array active[] of |V | Boolean flags and set true or
false in each location to denote that the corresponding vertex
is active or passive, respectively. The initialization routine sets
all the vertices except the source as passive in parallel. The
source vertex status is set as active.

Algorithm 2 INITIALIZE(G, e, s, ts)

1: for all vertex u ∈ V do in parallel
2: e[u] = ∞
3: active[u] = false

4: e[s] = ts
5: active[s] = true

Algorithm 3 RELAX(u, v, t, λ)
1: if (e[u] ≤ t and t + λ < e[v]) then
2: e[v] = t + λ
3: active[v] = true
4: return true
5: else
6: return false

The RELAX subroutine described in Algorithm 3 receives
a connection (u, v, t, λ), and finds whether the connection
(u, v, t, λ) reduces the earliest arrival time of v. The RELAX
subroutine identifies whether the connection is useful by

comparing t against e[u], and updates e[v] with t+λ if e[u] ≤
t and t+λ < e[v]. Further, active[v] is set as true and true is
returned in case e[v] is decreased, otherwise false is returned.

A. Connection-Version

The key idea in this parallel algorithm is to provide a one-
to-one mapping between threads and connections, and each
thread relaxes the connection it is mapped to in parallel. At
the beginning of the algorithm, the initialization subroutine
shown in Algorithm 2 is called. Further, in each iteration,
ith thread considers ith connection (u, v, t, λ). If u is active,
e[u] ≤ t, and t+ λ < e[v], then e[v] is replaced with t+ λ, v
is marked as active, as per the definition provided in RELAX
subroutine. Further, u is made as passive. All the connections
whose starting vertex is s are processed in the first iteration,
since s is the only active vertex in the first iteration. In all the
subsequent iterations, the connections originated from active
vertices are processed and propagates earliest arrival times
to the other end vertices. We perform multiple iterations of
relaxing connections until there is no change in the earliest
arrival times of any vertex from the previous iteration. The
formal description of algorithm for connection-version is given
in Algorithm 4. In Algorithm 4, threads relax connections in
parallel, and hence the earliest arrival times at the end of the
first phase need not be correct. However, the correctness of
the algorithm is maintained as we perform multiple iterations.
For an earliest arrival path in G, from s to an arbitrary vertex
x in V (G), having k connections, Algorithm 4 maintains a
loop invariant that, at the end of kth iteration, e[x] is equal
to the earliest arrival time of x. The numbers of iterations in
this algorithm in the worst case is d(G), and thus the running
time of the algorithm is O(d(G)).

Algorithm 4 Connection Version
Input: G = (V,C) and Query(s, ts).
Output: Earliest Arrival Times of all vertices in G.

1: INITIALIZE(G, e, s, ts)
2: flag = true
3: while flag do
4: flag = false
5: for all (u, v, t, λ) ∈ C do in parallel
6: if active[u] then
7: flag = flag or RELAX(u, v, tc, λ)
8: active[u] = false

B. Connection-Type-Version

We observe that only a few connections in each iteration
influence the earliest arrival times in the previous algorithm.
Based on this observation, we launch threads for handling
only useful connections and ignore the rest of them, in this
version. An important idea in this algorithm is to prune
several connections that are not relevant. We introduce a
data structure connection type to achieve pruning. During
the pre-processing time, we partition the connections in C
into connection types, based on the following equivalence



relation R on C: (ua, va, ta, λa)R(ub, vb, tb, λb) if and only
if (ua, va, ta, λa), (ub, vb, tb, λb) ∈ C, ua = ub, va = vb and
λa = λb. In simple words, the connections whose endpoints
and duration are the same, belong to the same connection type.
We use the notation Cu,v,λ to represent a connection type,
i.e., Cu,v,λ denotes the set of connections from u to v whose
duration is λ. In each connection type, all the connections are
sorted according to their departure time in pre-processing time.
We use GETCONNECTION function to obtain a first connection
(u, v, tc, λ) from Cu,v,λ, whose departure time is at least the
earliest arrival time of u, i.e., tc = min

{
t | (u, v, t, λ) ∈

Cu,v,λ ∧ t ≥ e[u]
}

, using linear search.
We have one-to-one mapping between connection types and

threads in this algorithm, i.e., each thread is responsible to pro-
cess the connections in a connection-type. At the beginning,
the steps given in the initialization routine are executed. In
each iteration, ith thread associated with ith connection-type
Cu,v,λ, checks whether the vertex u is active. If u is active, the
thread identifies a connection (u, v, tc, λ) using GETCONNEC-
TION(Cu,v,λ) and the identified connection is relaxed using
RELAX(). Multiple iterations are executed until there is no
change in the earliest arrival times in consecutive iterations.
Relaxation of any connection (u, v, t, λ) ∈ Cu,v,λ such that
t > tc, does not improve e[v], because all the connections
in a connection type have same duration. Thus pruning such
connections in GETCONNECTION improves the running time
without disturbing the correctness of the algorithm.

Algorithm 5 Connection-Type-Version
Input: Connection Types of G and Query(s, ts).
Output: Earliest Arrival Times of all vertices in G.

1: INITIALIZE(G, s, ts)
2: flag = true
3: while flag is true do
4: flag = false
5: for all Connection Type Cu,v,λ do in parallel
6: if active[u] then
7: (u, v, tc, λ) = GETCONNECTION(Cu,v,λ)
8: flag = flag or RELAX(u, v, tc, λ)
9: active[u] = false

C. Connection-Type-AP-Version

We obtain an improvement to the previous algorithm by
combining the idea of connection-type with arithmetic pro-
gression. The main ingredient in this algorithm is to represent
all the connections in every connection type in a compact
form using arithmetic progression (AP). This approach is based
on the observation that departure times of buses and trains
often follow a common pattern. For a moment, let us assume
that the departure times of connections belong to the same
connection-type are 8:00, 8:15, 8:30, ...,18:00; As
this sequence follows an arithmetic progression, all the depar-
ture times can be represented using a single AP tuple with three
terms as (8 : 00, 18 : 00, 15), indicating there are connections
having departure times from 8:00 to 18:00 for every 15

minutes. In general, the departure times of all the connections
in a connection type need not follow an AP. However, all the
connections in a connection type Cu,v,λ can be represented
compactly by using a set Tu,v,λ of AP tuples [8]. For every
connection (u, v, t, λ) ∈ Cu,v,λ, there exist at least one AP tu-
ple (startT ime, endT ime, difference) ∈ Tu,v,λ, such that
t = startT ime+ i× difference, where i ∈ {0, 1, 2, . . . , k}
and k = endTime−startT ime

difference . Also, note that the expansion of
all AP tuples in Tu,v,λ results in Cu,v,λ without any additional
departure times. All the AP tuples in every connection type
are arranged in increasing order with respect to their first
term, in preprocessing time. Given a set Tu,v,λ of AP-tuples
that corresponds to a connection-type, the GETCONNECTION-
FROMAPS algorithm, shown in Algorithm 6 identifies an
useful connection based on the earliest arrival time of u.
In GETCONNECTIONFROMAPS algorithm, from each AP, we
consider the first departure time which is at least e[u], and
finds a minimum departure time among them.

Now, we shall look at Connection-type-AP algorithm. The
key task of each thread in this algorithm is to process all
the AP tuples in a connection-type and identifies a useful
connection, using Algorithm 6. The steps in Connection-type-
AP algorithm are identical to the steps in Algorithm 5 except
Line 7. In this approach, GETCONNECTION function in Line 7
of Algorithm 5 is replaced with GETCONNECTIONFROMAPS
function, which is described in Algorithm 6 .

Algorithm 6 GETCONNECTIONFROMAPS

Input: u, v, λ, Tu,v,λ
/* u and v are two vertices in G and λ is the

duration of the connections in Cu,v,λ. */
/* Tu,v,λ is set of AP tuples in connection type

Cu,v,λ. */
Output: (u, v, tc, λ)

1: tc = ∞
2: for all (startT ime, endT ime, difference) ∈ Tu,v,λ do
3: if startT ime < e[u] ≤ endT ime then
4: i = d e[u]−startT imedifference e
5: tc = min(tc, startT ime+ i× difference)
6: if e[u] ≤ startT ime then
7: tc = min(tc, startT ime)

8: return (u, v, tc, λ)

D. Cluster-AP-Version

We propose a hybrid technique to search a connection
efficiently, using three ideas connection-type, arithmetic pro-
gressions and clustering. The main idea in this algorithm is to
partition all the connections belong to every connection type
into 24 parts, where each part represents an hour of the day.
Further, we represent all the connections in each part in a com-
pact format using an arithmetic progression, which is described
in the previous section. We partition all the connections in each
connection-type Cu,v,λ into clusters C[0]u,v,λ, . . . , C[23]u,v,λ,
where C[i]u,v,λ denotes the set of connections whose departure



time t ∈[i:00:00, i:59:59]. Let T [i]u,v,λ denote the
set of AP-tuples correspond to the connections in C[i]u,v,λ .
Partitioning all the connections into connection-types based
on their duration time, and then further partitioning them
into 24 clusters based on the departure time, and finally
representing them using arithmetic progression happens during
the prepossessing time.

Now, we shall look at the main steps in this algorithm.
The number of threads that we launch in this algorithm is
equal to the total number of connection types. Each thread
that indents to process the connections in Cu,v,λ, extracts the
hour information k from e[u], i.e., k = e[u]/3600 and then
process all the AP-tuples in T [k]u,v,λ. Suppose the kth part
does not have any connections, then the first connection from
the next non-empty part is treated as an useful connection.
The correctness of the algorithm is not affected with this
heuristic, as the connections whose departure time is at least
e[u] are not ignored. In practice, the running time is improved
as the connections belong to all the previous hours of e[u] are
ignored.

E. Edge-Version

In all the approaches illustrated so far, every thread relaxes
at most one connection in an iteration. In this approach, we
explore the behavior by decreasing the number of threads to
be launched and increasing the amount of work per thread,
i.e., multiple connections are relaxed by a thread. In the pre-
processing time, all the connections are partitioned into edges,
i.e., all the connections starting from a vertex u and ending
with a vertex v are associated with an edge (u, v). Further
the connections associated within each edge are grouped into
different connection-types based on their duration time and
clustered them based on their departure time.

We have a one-to-one mapping between threads and edges
in the edge-version algorithm. At the beginning, we perform
initialization as given in Algorithm 2. Then each thread,
process all the connections associated with an edge efficiently.
In particular, each thread explores all the connection types
on an edge, identify a single useful connection from each
connection-type using Cluster-AP approach and relaxes the
identified connections. All the edges are processed for multiple
iterations until there is no change in the earliest arrival times
in consecutive iterations.

F. Warps-Version

When a kernel call is made, multiple blocks of threads are
assigned to a streaming multiprocessor (SM) in a GPU. These
blocks are further divided into warps, where each warp is a
group of 32 threads, and all the threads in each warp execute
the same instruction at any point in time. Each thread has its
own instruction counter and hence it is possible for a thread
to choose different execution path than the other threads, this
phenomenon is called thread divergence. Thread divergence
within a warp, severely affects the execution time. Also, the
thread divergence is more likely to happen in graph algorithms,
and so in the proposed algorithms. The divergence of a

thread in our algorithms depends on the source vertex of the
connection/connection-type/edge associated with the thread. A
thread terminates its processing if the corresponding source
vertex is passive, otherwise, the processing is continued. Also,
a memory access is required to know whether a vertex is active
or passive. The end vertices of connections being processed by
the threads of a warp need not be same, and hence the memory
accesses are scattered. These scattered memory accesses add
a penalty to the execution time. We propose a mechanism to
reduce the thread divergence and scattered memory accesses.

In this algorithm, we keep a one-to-one mapping between
warps and edges. The algorithm begins with executing the
steps given in the initialization routine. We use all the threads
in a warp to process all the connection-types of an edge. We
divide the connection-types ct0, ct1, . . . , ctk in an edge into
dk/32e groups, so that group-i consists of connection-types
ct32×i, . . . , ct32×i+31, where i ∈ {0, dk/32e−1}, and the last
group has at most 32 connection-types. Further, we iterate all
the threads in a warp for dk/32e times, where the connection-
types in the ith group are processed in ith iteration. The
organization of connections in connection-types is the same as
that of in the Cluster-AP approach, and hence the process of
relaxing the connections in a connection-type is same. Multiple
iterations are performed until the earliest arrival times do not
change in consecutive iterations.

We recall that all the connection-types of an edge share
a same source vertex. Also, all the connection-types of an
edge are processed by threads belonging to the same warp.
All the threads in a warp terminate if their common source
vertex is inactive; otherwise, all of them proceed to process the
connections in a connection-type. Thus, the thread divergence
is reduced and the scattered memory accesses are eliminated.

G. Sub-trips

The focus of all parallel algorithms described so far is
to reduce the run-time complexity of each iteration, where
the number of iterations in all these algorithms is equal
to the temporal diameter. In this approach, we reduce the
temporal diameter, subsequently the number of iterations of
the algorithm, by adding few artificial edges in an organized
way, during the preprocessing time. In a public transport
system, each vehicle goes through a sequence of bus-depots,
and typically the scheduled departure times and arrival times
at each bus-depots are known. We exploit this information to
reduce the temporal diameter.

A trip in a temporal graph is a sequence of connections
connecting a sequence (v1, . . . , vk) of vertices, such that
for every two consecutive connections (vi, vi+1, ti, λi) and
(vi+1, vi+2, ti+1, λi+1), ti + λi ≤ ti+1, where 1 ≤ i ≤
k − 2. A sub-path of a trip is referred to as sub-trip. We
divide each trip into sub-trips of non-overlapping sequence
of connections, and add artificial connections between the
end vertices for each sub-trip as follows: for a sub-trip
on a sequence (vi, vi+1, ti, λi), (vi+1, vi+2, ti+1, λi+1), . . . ,
(vj , vj+1, tj , λj) of connections, where i < j, we add an
artificial connection between vi and vj+1, whose departure
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time is ti and duration time is tj + λj − ti. These new
connections work as short-cuts and help to reduce the temporal
diameter of the graph.

We reduce the temporal diameter of a temporal graph,
by dividing each trip of length k into k

r − 1 sub-trips of
length r, and a last sub-trip of length k%r. We choose
r =

√
k, to minimize the number of sub-trips in each trip

along with the number of connections in each sub-trip. All
the parallel algorithms described in this paper can be run on
the updated graph. Note that the sequence of connections in
a trip are traversed by the same vehicle and the sequence of
connections in all the trips are available in the input data-
sets in General Transit Feed Specification GTFS format. The
connection sequences of all these trips are being used to create
sub-trips.

III. IMPLEMENTATION DETAILS AND OPTIMIZATIONS

In this section, we first describe a hierarchical representation
to store temporal graphs for handling public transport networks
and provide a preprocessing algorithm to obtain the hier-
archical representation. We further propose implementation
details to avoid read/write conflicts and handle race conditions.
Finally, we conclude this section with a few heuristics that
support to terminate our algorithm at an early stage.

A. Graph Representation - Preprocessing Algorithm

We inspire from the compressed sparse row (CSR) repre-
sentation and propose the following representation to store the
connections of a temporal graph G in a hierarchical manner.
Three arrays CT [], CL[] and AP [] are used in this represen-
tation for efficient searching and are shown in Fig. 1. Let x
denote the number of connection-types in G. and y denote the
maximum number of clusters per connection-type over all the
connection-types in G. For simplicity, y is assumed as 24 in
this illustration and this is configured in our implementation to
handle various data-sets having more than 24 clusters. We use
the leftmost array CT [], so that for each i ∈ {0, x − 1}, the
end vertices and the duration of ith connection-type in G are
stored in CT [i]. The rightmost array AP [] is used to store

the arithmetic progressions associated with all the clusters
of all connection-types. The intermediate array CL[] holds
the starting index of the first AP from the jth cluster of ith
connection-type; i.e., for each i ∈ {0, . . . , x}, and for each
j ∈ {0, . . . , 23}, the APs from jth cluster of ith connection-
type are available in the range [CL[24∗i+j], CL[24∗i+j+1])
of positions in AP .

Now, we shall look the preprocessing algorithm to obtain
the hierarchical representation from G. For each edge e in
G, all the connections of e are grouped into connection-
types if their end vertices and duration are same; further
all the connections in each connection-type are partitioned
into clusters, so that the connections whose departure time
t ∈ [j:00:00, j:59:59] are placed in cluster-j; further
arithmetic progressions are obtained to cover all the connec-
tions in each cluster of each connection-type [8]. For each
i ∈ {0, x − 1}, and for each j ∈ {0, y − 1}, we store the r
APs of cluster-j of connection-type-i consecutively in AP []
in increasing order, based on their first-term and the position
of the first AP among r APs is stored in CL[24 ∗ i+ j].

B. Avoiding read/write conflicts

In the connection version algorithm, a thread ti relaxes
a connection ci = (u, v, tλ) if active[u] is true and update
active[u] with false. The number of threads launched in this
version is equal to the number of connections. However, all
the threads need not execute the kernel code (Lines 6 to 8 in
Algorithm 4), synchronously. Suppose there are two threads
t1 and t2, associated with two different connections emerging
from the same active vertex u, and t2 is scheduled to run
after t1 completes. In such a scenario, t2 does not execute
Lines 7 and 8, because active[u] is set to false by t1, which
is an incorrect behaviour. This scenario happens because t1
writes in active[u] before before t2 reads from active[u].
Hence, we use two arrays, namely active and nextactive to
maintain the correctness of the algorithm. The entries in the
nextactive are made false in the beginning of each iteration,
and then all the threads are launched. Then, a thread ti relaxes
a connection (u, v, t, λ) and updates nextactive[v] with true
if the earliest arrival time of v is updated. After the iteration is
completed, the values in the nextactive array are copied to the
active array. Thus this technique avoids read/write conflicts
and is used in the implementations of all the proposed parallel
algorithms.

C. Atomic operation

In the proposed parallel algorithms, multiple threads may
try to update the earliest arrival time for the same vertex. For
instance, two threads associated with the connection (u, v, t, λ)
and (x, v, t, λ) want to update the e[v] to 3 and 6 respectively.
Because of the race condition, the updated value of e[v] can
be either of one. If e[v] is updated as 3, the correctness is
maintained, whereas the correctness is not maintained in the
other case. This is possible, because active[u] is made as
false, and active[u] need not become true again. Thereby, the
thread corresponding to connection (u, v, t, λ) need not update



e[v] with 3. Hence, we use atomicMin operation supported by
CUDA, to update the earliest arrival times and thus eliminate
the interleaving execution by multiple threads. The atomic
operation atomicMin(address, val) updates the content in
the address with val, if val is less than the content in the
address. If we do not make active[u] as false, then the
connections are relaxed for multiple times. Hence earliest
arrival times can be computed correctly without using atomic
operation. However, we notice that the number of kernel
launches and the running time increase in practice.

D. Early Terminations of threads

It can be recalled that the connections in a connection-type
are arranged in increasing order based on their departure times.
In Algorithm 5, when a thread processes a connection-type
Cu,v,λ, if the departure time of the first connection is greater
than e[v], then we terminate the thread as it cannot yield better
value for e[v]. Also, if e[u] is greater than the departure time
of the last connection in Cu,v,λ, the thread terminates as there
are no useful connections.

In the connection-type AP version, the departure times of the
connections in a connection-type are represented as a sequence
of AP tuples, such that the first term of the APs are in sorted
order. When a thread processes a connection type Cu,v,λ, if
the earliest arrival time of v is lesser than the first term of the
first AP, then the thread terminates as it cannot yield better
earliest arrival time of v. We follow similar techniques in the
Cluster-AP, edge-version and warps as the data representation
is similar to connection-type AP.

IV. EXPERIMENTS

In this section, we evaluate our GPU based algorithms using
the speedup achieved over the CPU based connection-scan
algorithm, and the GPU based ESDG algorithm. Also, we
provide few insights to increase the speedup, by fine tuning
few parameters in the proposed algorithms.

The machine being used in our experiments comprises of
1.62 GHz NVIDIA GEFORCE GTX 1080 Ti GPU with 11 GB
of global memory and 128 cores in each of the 28 SMs, an
INTEL XEON E5-2620 v4 CPU running at 2.10GHz with 31
GB of main memory. CUDA version 9.0.176 and gcc version
5.4.0 are used to implement parallel and serial algorithms,
respectively.

We have used nine different public transport network data-
sets for our experiments. The statistics for each of the data-set
is given in Table I. The time table information is considered
for more than 24 hours for certain data-sets based on the
availability. The last column in Table I denotes the number
of clusters in a data-set of size one hour.

A. Speedup - Parallel Factor

We run a thousand number of queries for each data-set on
the proposed algorithms and connection-scan algorithm, and
compute the average execution time. Each query consists of
a source vertex and a departure time. We choose a hundred
source vertices randomly and for every source vertex, we again

TABLE I
DATA-SET STATISTICS (K = 103 , M = 106)

Data Set Vertices Edges Connections Connection
Type

Clusters
1Hr

London 20.8K 25.5K 14.06M 140.7K 26
Paris 411 1.56K 1.06M 3.08K 45
Petersburg 7.6K 10.6K 4.43M 14.8K 49
Switzerland 29.9K 74.1K 9.26M 102.6K 48
Sweden 45.7K 101.9K 6.56M 158.3K 37
New-York 987 1.1K 514.39K 1.9K 28
Madrid 4.7K 6.1K 1.99M 167.7K 32
Los Angeles 13.9K 16K 1.97M 31.59K 30
Chicago 240 822 98.15K 1.7K 27
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Fig. 2. Speedup achieved over connection-scan algorithm

choose ten departure times uniformly at random for creating a
thousand queries. The average running times of the proposed
algorithms are given in Table II, and the speedups of our
approaches with respect to the connection-scan algorithm are
shown in Fig. 2. In most of the data-sets, we can observe an in-
cremental speedup among the algorithm versions namely Con-
nection, Connection-type, Connection-type AP and Cluster-AP
as these are developed with incremental improvements. We
develop the Cluster-AP technique by combining Connection-
type, clustering and arithmetic progression with the goal of
pruning many irrelevant connections and decrease the running
time. The Cluster-AP algorithm performs best among the
proposed parallel algorithms. As seen in the Fig. 2, the Cluster-
AP algorithm with sub-trip gives the best performance across
all the versions. In this version, we enhance the data using sub-
trips and then run the Cluster-AP algorithm on the enhanced
data.

Also, the speedup varies between each data-set, for instance,
the speedup of Cluster-AP algorithm on Paris data-set is
39.40× whereas on Madrid data-set it is 3.77×. We claim
that the speedups are not consistent on various data-sets due
to their quality. Now, we shall look at a metric to measure the
quality of a data-set, and observe the claim.

For a temporal graph G, let G̃ denote the edge-dependency
graph of G, |C| denotes the number of connections in G, l(G̃)
denotes the maximum length of a longest path in G̃, d(G)
denote the temporal diameter of G. The edge-dependency
graph based algorithm runs for l(G̃) iterations and the average
number of connections processed per iteration is |C|/l(G̃),
and thus the parallel factor of G is defined as |C|

l(G̃)
[3]. Our

algorithm runs for atmost d(G) iterations. We observe that
d(G) ≤ l(G̃) and thus the theoretical parallel factor p(G) is



TABLE II
EXECUTION TIME IN MILLISECONDS.

Dataset Serial Connection Connection
-type

Connection
-type-AP Cluster-AP Edge Warps Cluster-AP

+ Sub-trips
London 89.35 165.92 23.57 11.02 5.82 7.87 7.48 3.20
Paris 4.95 0.30 2.36 0.15 0.13 0.18 0.13 0.09
Petersburg 23.72 15.42 4.67 1.67 0.87 1.12 1.22 0.47
Switzerland 53.11 48.61 21.05 5.08 2.68 2.87 6.18 1.21
Sweden 40.57 36.74 12.52 5.70 2.90 3.13 7.85 1.22
New-York 2.48 1.70 1.08 0.73 0.36 0.42 0.36 0.23
Madrid 11.58 19.99 3.88 3.29 3.07 7.85 2.27 1.64
Los Angeles 11.62 36.24 11.86 11.32 4.86 5.33 6.39 1.86
Chicago 0.60 0.77 1.08 0.58 0.42 0.63 0.45 0.22

TABLE III
THEORETICAL PARALLEL FACTOR FOR DATA-SETS.

(K = 103 , M = 106)

Dataset G |C| d(G) p(G)
London 14.06M 283 49.68K
Paris 1.06M 30 35.33K
Petersburg 4.43M 190 23.32K
Switzerland 9.26M 418 22.15K
Sweden 6.56M 323 20.31K
New-York 514.39K 64 8.04K
Madrid 1.99M 232 8.58K
Los Angeles 1.97M 385 5.12K
Chicago 98.15K 47 2.09K

defined as |C|
d(G) in this work. Table III shows the theoretical

parallel factor for each data-set. We provide an insight that
for each data-set, the speedup of the proposed algorithms
and P are correlated. The data-sets London, Paris, Petersburg,
Switzerland, and Sweden have a higher parallel factor and
hence their speedups are higher than other data-sets. Also, for
the data-sets Chicago, Los Angeles, Madrid and NewYork the
parallel factor and the speedups are low.

B. Parameter Tuning

The effect of cluster size, sub-trip size and virtual-warp
size on the running time of the best algorithm Cluster-AP is
analyzed in this section.
Cluster Size Analysis: In the Cluster-AP algorithm, connec-
tions in a connection-type are partitioned into 24 clusters,
such that the connections whose duration time lies between
i:00:00 and i:59:59 are in the ith cluster. In other words,
a connection c belongs to ith cluster if and only if the hour
information of the duration time of c is i. The size of each
cluster in a partition is referred as cluster size, and the cluster
size in the above partitioning is one hour (60 minutes). We
experiment the process of partitioning with various cluster
sizes such as 30 minutes, 15 minutes, and 5 minutes, and
compute the speedups. We perform this analysis on the London
data-set as the number of connections and the parallelism
factor is more when compared to the rest of the data-sets.
Fig. 3 shows the effect of various cluster sizes on the speedup
of the Cluster-AP algorithm.

Note that the total number of connections per connection-
type is constant. Therefore, as the cluster size decreases, the
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Fig. 3. Speedup of Cluster-AP over CSA on London data-set for various
cluster sizes.

number of clusters increases and the number of connections
per cluster decreases; also the search space for the GET-
CONNECTIONFROMAPS function in the Cluster-AP algorithm
decreases. Thus the speedup can be increased by reducing the
cluster size of the partition and the evidence is shown in Fig. 3.
Sub-trips Size Analysis: The data-enhancement technique
sub-trips described in section II-G reduces the temporal di-
ameter of the input graph and decreases the running time of
proposed algorithms. A sub-trip of a trip is a non-overlapping
sub-sequence of consequent connections. We divide the trip
into sub-trips having equal number of connections and add
artificial connections between the endpoints of the sub-trip.
Adding these artificial connections creates shortcuts in the
graph. The number of vertices skipped by these shortcuts is
proportional to the length of sub-trips. Also, the length of sub-
trips determines the total number of shortcuts. As the amount
of work is proportional to the number of connections, adding
new shortcut connections increases the amount of work. Thus,
we analyze the behavior of the data-enhancement technique by
varying the lengths of sub-trips.

We experiment the following approaches to select a rea-
sonable length for sub-trips. In the first approach, for each
trip having trip-length k, we partition the trips into sub-trips
having length

√
k. Thus for every trip, the number of sub-

trips is made as equal to the length of sub-trips. We now
describe the drawbacks of the first approach. The trips having
shorter length has no useful effect of shortcuts as they skip
a smaller number of vertices. Such shortcuts are more of an
overhead than enhancement. Also, the trips with larger lengths
have large sub-trips. The difference in the lengths of sub-trips



TABLE IV
THEORETICAL PARALLEL FACTOR FOR ENHANCED DATA-SETS.

(K = 103 , M = 106)

Enhanced
Dataset G

|C| d(G) p(G)

London 15.92M 127 125.38K
Paris 1.50M 16 93.67K
Petersburg 5.40M 78 69.29K
Switzerland 11.35M 146 77.75K
Sweden 7.76M 96 80.81K
New-York 591.94K 30 19.73K
Madrid 2.36M 71 33.28K
Los Angeles 2.21M 109 20.31K
Chicago 120.65K 19 6.35K
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Fig. 4. Speedup of Edge-warp Algorithm over CSA on London data-set for
various warp sizes.

causes unfairness. For instance, consider two trips t1 and t2
whose lengths are 9 and 100 respectively. We add shortcuts to
t1 and t2 where the sub-trips lengths are 3 and 10, respectively.
It can be seen that the length of the sub-trips in t2 is greater
than the trip-length of t1. In reality, t2 requires more sub-
trips compared to t1 and the following scheme overcomes this
drawback. We first compute the average trip length r over all
the trips in the public transport data, and divide each trip into
sub-trips of lengths

√
r.

We run the Cluster-AP algorithm on London data-set before
and after data-enhancement and find speedup when compared
to the connection-scan algorithm. Before data-enhancement,
the speedup is 15.35×, whereas the speedup is 27.88× and
28.10× on enhanced data using the first approach and second
approach, respectively. As shown in Table IV, the number of
connections in the enhanced data is increased when compared
to the original data. However, the temporal diameter is de-
creased and the parallel factor is increased in the enhanced
data. Thus the data-enhancement technique helps to increase
the data quality and decreases the running time.
Warps Size Analysis: In section II-F, we proposed a warp-
centric Edge-version algorithm. The key idea is to allocate
warps with edges. This mapping ensures that threads working
in the same warp do not diverge. Also, warps help to reduce
the number of scattered memory accesses. The only problem in
allocating warp to an edge is under-utilization of threads. Some
edges may have very few connection-types which causes the
threads in the warp under-utilized. To resolve this, the threads
in warp can be partitioned into sub-warps of equal sizes, which
are referred to as virtual warps [9]. These sub-warps are then

mapped to multiple edges. Hence, a warp works on multiple
edges, where each sub-warp processes an edge. The size of
a sub-warp is a parameter which we rehearse with various
values. The Fig. 4 shows the speedup of warp-centric Edge-
version algorithm compared to CSA for various sizes of virtual
warps. If the sub-warp size is made as one it is equivalent to
the edge-version as every thread is mapped to an edge.

Adding sub-warps introduces some thread-divergence. How-
ever, the number of scattered memory accesses is limited to
the number of sub-warps and not the total number of threads in
a warp. Thus, the running time of our algorithm is reduced by
managing the thread divergence, scattered memory accesses,
and the proper utilization of threads in a warp effectively.

C. Comparison with ESDG algorithm

In this section, we compare the performance of Cluster-
AP algorithm with the ESDG algorithm implemented on GPU.
Further, we propose an optimization technique to reduce
the memory copy between CPU and GPU in the proposed
algorithms. This technique helps to achieves 1.63× to 12.48×
times speedup over the ESDG algorithm.

As per ESDG algorithm, the connections are arranged in
increasing order based on their level number, and hence the
number of connections in each level are known in the prepro-
cessing time. In the GPU implementation of ESDG algorithm,
we launch li threads in ith iteration to relax li connections
in level-i, and the algorithm terminates when the connections
are relaxed at all levels. The Cluster-AP gives upto 5.21×
speedup over the ESDG GPU implementation. Referring to the
ESDG parallel algorithm, we realize that there is a memory
copy operation between CPU and GPU, which adds memory
copy penalty in all iterations in the proposed algorithms. The
general structure of GPU-implementation of our algorithm is
as follows:

1: while flag do . CPU
2: flag = false . CPU
3: COPYCPUTOGPU(flag,dFlag) . CPU and GPU
4: for do in parallel . GPU
5: /* do work */ . GPU
6: dFlag = true or false . GPU

7: COPYGPUTOCPU(dFlag,flag) . CPU and GPU

Lines 3 and 6 in the above pseudo-code cause a memory
copy penalty in every iteration. To avoid this penalty, we
perform memory copy mentioned in Lines 3 and 6 in ith

iteration, where i ∈ {0,
√
d, 2
√
d, . . . , d} and d is the temporal

diameter of the graph. We provide the execution times of the
algorithms in table V. This implementation gives a speedup in
the range of 1.63× to 12.48× over ESDG across the datasets.
The Cluster-AP algorithm processes on average only 3.35% of
the connections whereas ESDG processes all the connections in
the graph. Also, the ESDG performance is query independent,
i.e., regardless of a query, the algorithm performs the same
amount of work, whereas our algorithms benefit from pruning
and early termination techniques.



TABLE V
EXECUTION TIME IN MILLISECONDS

Dataset ESDG Cluster-AP
Cluster-AP + (Reduced

Memory Transfers)
London 6.23 5.82 3.80
Paris 0.27 0.13 0.08
Petersburg 5.06 0.87 0.40
Switzerland 5.66 2.68 1.59
Sweden 6.65 2.90 1.88
New-York 2.13 0.36 0.21
Madrid 4.73 3.07 2.27
Los Angeles 5.70 4.86 2.18
Chicago 2.01 0.42 0.27

V. RELATED WORK

Xuan et.al, have initiated the foremost journey problem [4]
and is referred to as earliest arrival path in the recent work
[2]. Every prefix path of a shortest path is a shortest path,
whereas every prefix path of an earliest arrival path need not
be an earliest arrival path. However, it was shown that if there
exists an earliest arrival path P from a vertex s to a vertex
t, then every prefix path of P is an earliest arrival path. This
property is used to design a variant of Dijkstra’s algorithm
using priority-queue for solving single-source EAT [4]. The
variant of Dijkstra’s algorithm requires the data to be in a
graph format, whereas the connection-scan algorithm to solve
single source EAT works on the array of connections without
any graph. In the single source EAT problem, the earliest
arrival times are computed from the single source to the rest
of the vertices, whereas the earliest arrival time from the given
source to the given destination is computed in the goal-directed
EAT problem. The classical algorithms to solve goal-oriented
public transport based problems such as EAT problem, profile-
search problem, and the multi-criteria problem are RAPTOR,
Transfer patterns, and Trip-based algorithm [10]–[12]. These
algorithms are not specifically designed for single-source EAT.
The RAPTOR algorithm does not require any preprocessing
whereas the other two algorithms require heavy preprocess-
ing. Transfer pattern and trip based egardless of a query,
algorithms maintain directed acyclic graphs and prefix trees
for each vertex, respectively. A multi-core parallel algorithm
was designed to compute all non-dominated paths (profile-
search problem), from a single source to all the vertices [13].
In this work, the parallelism is exploited at a source vertex,
i.e., all the out-going connections from the source vertex are
divided into p groups, where p is the available number of
processors, and ith processor runs a serail algorithm from the
source vertex by considering the connections from ith group.
The edge-scan-dependency graph algorithm was proposed to
solve single source EAT using multi-core processors, in which
parallelism is applied to all the connections available at the
same level. In our Cluster-AP algorithm, the parallelism is
exploited to process all the connection-types at a time. Our
algorithm prunes many connections from each connection-
type, whereas the edge-dependency graph algorithm processes
all the connections.

VI. CONCLUSION

We have designed a hierarchical data-structure and efficient
searching techniques to implement the topological driven par-
allel algorithm on the graphics processing unit, for solving the
single source earliest arrival time problem on public transport
networks. In our data-structure, all the connections associated
with each edge are divided into groups in such a way that
the connections that are having the same duration are kept in
the same group. Further, the connections within each group
are divided into clusters in such a way that the connections
whose departure time lies in the ith hour of a day are arranged
in ith cluster. Later, the departure times of all connections
in each cluster are compactly represented as a sequence of
arithmetic progressions. During the traversal of an edge from u
to v, our algorithm makes use of this data-structure to retrieve
a connection from u to v through which v can be reached
earliest, without processing many connections associated with
the edge. We have examined the running times of the best
implementation of our Cluster-AP algorithm, against the serial
connection-scan algorithm and the GPU-implementation of
the edge-scan-dependency-graph algorithm on various data-
sets, and the average speedups range from 2.29× to 59.09×
and 1.63× to 12.48×, respectively. The primary reason for
this accomplishment is that, our algorithm processes around
471 thousand connections out of 14 million connections on
London-data set. Our pruning techniques and data-structure
would benefit to solve many other problems in public-transport
networks and general temporal graphs.
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