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Universitat Politècnica de Catalunya
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Abstract—The use of low numerical precision is a funda-
mental optimization included in modern accelerators for Deep
Neural Networks (DNNs). The number of bits of the numerical
representation is set to the minimum precision that is able to
retain accuracy based on an offline profiling, and it is kept
constant for DNN inference.

In this work, we explore the use of dynamic precision
selection during DNN inference. We focus on Long Short Term
Memory (LSTM) networks, which represent the state-of-the-
art networks for applications such as machine translation and
speech recognition. Unlike conventional DNNs, LSTM networks
remember information from previous evaluations by storing
data in the LSTM cell state. Our key observation is that the
cell state determines the amount of precision required: time-
steps where the cell state changes significantly require higher
precision, whereas time-steps where the cell state is stable can
be computed with lower precision without any loss in accuracy.

We propose a novel hardware scheme that tracks the evo-
lution of the elements in the LSTM cell state and dynamically
selects the appropriate precision on each time-step. For a set
of popular LSTM networks, it chooses the lowest precision for
57% of the time, outperforming systems that fix the precision
statically. We evaluate our proposal on top of a modern
highly-optimized LSTM accelerator, and show that it provides
1.46x speedup and 19.2% energy savings on average without
degrading the model accuracy. Our scheme has an overhead
of less than 8%.

Keywords-RNNs; Long Short Term Memory; Accelerators;
Quantization;

I. INTRODUCTION

Long Short Term Memory (LSTM) neural networks rep-
resent a state-of-the-art solution for sequence-to-sequence
problems such as machine translation [1], automatic caption
generation [2] or speech recognition [3]. Unlike conventional
DNNs, LSTMs store information from previous executions
to improve the accuracy of future prediction. In addition,
they can handle input and output sequences of variable
length. However, their recurrent nature severely constrains
the amount of parallelism that can be exploited when
evaluating the different elements of an input sequence,
hence, making it challenging to achieve low latency LSTM
inference on CPUs [4] and GPUs [5]. Not surprisingly,
accelerators to boost LSTM performance have been recently
presented [6]–[8].

Perhaps the most popular and effective optimization for
LSTMs is the use of reduced precision via linear quantiza-

tion, where precision means the number of bits employed to
encode inputs and weights. TPU [6] employs 8-bit weights
and inputs for LSTM inference. Other proposals, such as
Stripes [9] and BitFusion [10], support variable precision
to further improve performance and energy efficiency for
LSTM networks that can be computed with less than 8 bits.
Despite the additional flexibility of these accelerators, the
precision for each LSTM network is determined offline and
it is fixed during inference. In other words, different LSTM
networks can be evaluated at different precision, but a given
LSTM is always computed at the same precision for all the
inputs. In this work, we propose a mechanism to dynamically
select precision during inference of each individual LSTM
to boost performance without any loss in accuracy.

To find a practical scheme to set the precision online,
we analyzed the impact of the precision on the state of the
LSTM cell. The cell state is the critical component of an
LSTM network as it stores information from previous inputs
that will be used for future predictions. It consists of an
array of N elements, where each element is computed by
four neurons in different gates, i.e., fully-connected layers.
Figure Ib shows the evolution of one element in the cell state
in a speech recognition network [11], at three different levels
of precision (32-bit floating-point, 8-bit integer, and 4-bit
integer). As can be seen, 8-bit quantization closely tracks the
32-bit full-precision version’s behavior, resulting in the same
accuracy. However, 4-bit quantization introduces significant
errors in some time-steps, resulting in noticeable accuracy
loss. Previous schemes would conclude that this LSTM
network layer cannot be evaluated using 4 bits. However, a
more detailed look at Figure I reveals that the 4-bit version
can mimic the behavior of the 32-bit version for a large per-
centage of time-steps. More specifically, for regions where
the cell state is stable, the 4-bit version is quite accurate,
whereas, for regions where the cell state changes rapidly, i.e.,
peaks/valleys, it tends to exhibit a more significant error. A
more extensive analysis by using different LSTM networks
and their respective training datasets shows that this behavior
is quite prevalent. Precisely, for stable regions, the 4-bit
version adds a small error of less than 25%, whereas, for
peaks/valleys, it introduces a more significant error of 77%
on average. For the sake of brevity, we will use the term
peak to refer to both peaks and valleys.
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Figure 1. Evolution of one element (n1) in the cell state of a speech recognition LSTM network [11]. As it can be seen in (a), on each time-step the
elements in the cell state vector are updated using a combination of the gates’ output and the previous cell state. Also, for each LSTM Cell, the cell state
vector is different. Shown in (b) is the value for element n1 of the cell state. As it can bee seen, in stable regions the 4-bit version evaluation accurately
tracks the behavior of the full-precision (FP32) version. However, a large error is introduced when the tracked element is on a peak.

In this work, we propose a scheme that dynamically
selects the appropriate precision by monitoring the LSTM
cell state. Our system keeps track of the values of each
element in the cell state in recent time-steps. If the value
is stable, the lowest precision supported by the hardware is
selected to evaluate the next time-step. Otherwise, higher
precision is used to avoid significant errors during peaks.
For our benchmarks, this simple scheme employs the lowest
precision for more than 57% of the time without losing
accuracy. As can be seen in Figure Ib, the value of the cell
state when applying our scheme ( labeled 8/4 dynamic )
follows the cell state of the 32-bits version closely. Note
that in the peak regions, the error of 8/4 dynamic is smaller
than the error of the 4-bits version.

We implement our scheme on top of E-PUR [7], a recent
accelerator highly optimized for LSTM inference. In order
to support variable precision, the parallel dot product units
in E-PUR are changed to multipliers that support mixed-
precision. Then, we implement our dynamic precision selec-
tion scheme to decide the precision level for each element
of the cell state on each time-step. Our scheme provides
1.46x speedup and 19.2% energy savings on average over
the baseline, without affecting the accuracy.

The main focus of this paper is high-performance and
energy-efficient LSTM inference. We claim the following
contributions:

• We analyze the behavior of the LSTM cell state for
a set of popular LSTM networks. We conclude that
for time intervals where an element of the cell state is
stable, it can be evaluated with lower precision without
any impact on accuracy, whereas peaks require higher
precision to prevent accuracy loss.

• We propose a novel mechanism that uses the cell state
in LSTM cells to dynamically select the appropriate
precision for each time-step and each cell element. Our

scheme selects the lowest precision for 57% of the time.
• We implement our technique on top of E-PUR, a

state-of-the-art accelerator for LSTM inference. Our
system improves performance by 1.46x and energy
consumption by 19.2% without loosing accuracy, while
introducing an area overhead of less than 8%.

II. BACKGROUND

A. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a state-of-the-
art machine learning algorithm that is very successful in
sequence-to-sequence problems such as machine transla-
tion [1] and speech recognition [12]. RNNs include loops
that allow them to have more context information enabling
them to make better predictions. Also, since they are exe-
cuted recurrently for each input sequence element, they can
handle problems with variable input and/or output sequence
length. Capturing long term dependencies is a challenging
task for basic RNNs (Vanilla RNNs) because the information
tends to dilute over time. The Long Short Term Memory
(LSTM) [13] networks were proposed to solve this issue.

1) LSTM Cell: An LSTM network is composed of sev-
eral LSTM cells stacked together to create a deep LSTM
network. For each LSTM cell, the principal component is the
cell state, which stores the context information from previous
input sequence evaluations. Also, an LSTM cell uses four
gates to modulate how the cell state is updated. Among these
gates, the updater gate (gt), whose computations are shown
in Equation 3, modulates the amount of input information
that is being considered a candidate to update the cell
state (ct). The input gate(it), shown in Equation 1, controls
what information will be added to the cell state. Shown
in Equation 2 is the forget gate used to determine what
information will be deleted from the current cell state (ct−1).
Finally, the output gate (ot), shown in Equation 5, decides
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it = σ(Wixxt +Wihht−1 + bi) (1)

ft = σ(Wfxxt +Wfhht−1 + bf ) (2)

gt = φ(Wgxxt +Wghht−1 + bg) (3)

ct = ft � ct−1 + it � gt (4)

ot = σ(Woxxt +Wohht−1 + bo) (5)

ht = ot � φ(ct) (6)

Figure 2. LSTM cell computations. �, φ, and σ denote element-wise
multiplication, hyperbolic tangent and sigmoid function respectively.

what information from the cell is emitted to create the cell
output (ht) for the current time-step.

Each gate has two types of connections: the forward and
the recurrent connections. The forward connections operate
on the input coming from a previous cell (xt). In contrast,
the recurrent connections operate on the input coming from
the cell output in the previous time-step (ht−1). Note that the
output of each gate is a vector. Thus, we call the elements
of this vector neurons for the sake of simplicity. In order to
evaluate each of these neurons, an inner product between the
weights for the forward connections and the input vector xt
is done. Then, the result is added to the inner product of the
weights in the recurrent connections and the vector ht−1.
Finally, an activation function is applied, which is usually a
sigmoid or a hyperbolic tangent.

Most of the storage requirements of LSTM cells are due
to the weight matrices and the output sequences. Regarding
computations, most of the execution time is due to the
evaluation of the matrix-vector multiplications of the various
gates.

In this work, we applied linear quantization to the weight
matrices and the input vectors xt and ht−1, as it is com-
monly done to reduce storage and computing requirements.
The activation functions are evaluated in FP32.

B. Linear Quantization

Linear quantization is a commonly used technique to
reduce memory footprint and computational cost. The main
idea consists of approximating a full precision value (y) to
a value yq that is computed using an integer index and a
quantization step (q) as shown in the following equations:

q =
α

2n−1
(7)

ik = round(y/q) (8)

yq = q ∗ i (9)

where n is the bit width of the integer index ik, e.g., 8
bits, and α is the maximum absolute value of y.

In the case of an LSTM gate, once the weights and inputs
have been quantized, the computations for the output of a
neuron (zk) are done using integer arithmetic and the result
is converted back to floating point as shown in Equation 10
and Equation 11:

zi =
∑

wi ∗ xi (10)

zk = zi ∗ qx ∗ qw (11)

where wi and xi are the quantized index for each element
of the weight and input vector. Moreover, qx and qw are the
quantization steps for the weight and inputs respectively.
Multiplications are performed using 8-bits multipliers while
summations and accumulations are normally performed with
a higher number of bits (e.g., 24 bits).

C. Multi-Precision Multipliers

Multi-precision multipliers are commonly employed on
works that use mixed-precision for their computations. These
multipliers perform multiplications in parallel [10] or se-
rial [9]. Regarding multi-precision parallel multipliers, they
can be configured for a low precision (i.e., 4-bits) or a
high precision (i.e., 8-bits) mode. When operating on low
precision mode, they either work on half of the cycles
needed to complete the high-precision multiplication, or they
can provide twice the throughput.

For Serial Inner Products units (SIPs) an inner product
is computed by serially feeding the bits of one of the
operands while the bits of the other are feed-in parallel. On a
cycle, a SIP unit performs the element-wise multiplications
between a vector with 1-bit elements and a vector with
n-bits elements. Then, the summations are performed by
accumulating the partial products computed on each cycle.

One advantage of SIP units over multi-precision parallel
multipliers is that they allow a finer granularity when setting
the precision. Nonetheless, our proposal is independent of
either multi-precision parallel multipliers or SIP units. Thus,
we evaluated both of them.

III. DYNAMIC PRECISION SELECTION

In this section, we describe our scheme to dynamically
adjust the bit-width used to encode and operate the LSTM
networks. First, we discuss the main bottlenecks on state-of-
the-art hardware accelerators for LSTM inference. Next, we
present the key idea for our proposal. Finally, we describe
the hardware implementation of our technique.

A. Motivation

LSTM cells are composed of four gates, each with two
matrices containing the weights for the forward and the
recurrent connections, respectively. Since these weight ma-
trices tend to be quite large, most of the energy consumed by
state-of-the-art hardware accelerators for LSTM inference is
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Table I
ACCURACY FOR SEVERAL LSTM MODELS USING DIFFERENT SCHEMES. 8 BITS AND 4 BITS ARE CONFIGURATIONS THAT STATICALLY SET THE

BIT-WIDTH TO 8 AND 4 BITS FOR ALL THE TIME-STEPS, RESPECTIVELY. 8/4 IS OUR SCHEME FOR DYNAMICALLY SELECTING THE PRECISION.

App Domain FP32 Accuracy 8-bit Accuracy 4-bit Accuracy 8/4 Accuracy Error in Stable Error in Peaks
Image Description [2] 32.2 Bleu 32.2 Bleu 27 Bleu 32 Bleu 20.3% 75%

Speech Recognition [11] 23.82 WER 23.8 WER 26.48 WER 23.8 WER 19.5% 74%
Machine Translation [1] 26 Bleu 26 Bleu 22.1 Bleu 25.9 Bleu 23.3% 82%
Speech Recognition [12] 10.24 WER 10.24 WER 13.24 WER 10.25 WER 20.1% 78%

due to the static and dynamic energy consumed by the on-
chip memories employed to store the weights and interme-
diate results. Not surprisingly, the energy consumption of
these on-chip memories accounts for up to 80% of the total
energy in state-of-art solutions for LSTM [7].

An effective way to decrease memory footprint and thus
static and dynamic energy without affecting accuracy is
using Linear Quantization. Usually, a static profiling of the
network is done to determine the minimum precision that
could be used to quantize an LSTM model without degrading
its accuracy. A common approach is to set a fixed precision
(i.e., 8 bits) for the whole network. However, while this
solution covers the worst case, it ignores cases where a lower
precision could be employed for a subset of computations
without losing accuracy.

Table I shows the accuracy for several applications em-
ploying LSTM networks, evaluated using 8 and 4 bits, and a
mix of both. Regarding the mixed-precision, for each neuron
(e.g., inputs and weights), we dynamically set the precision
to 8 or 4 bits as described later in Section III-B. As it can
be seen, when worst-case bit-width for the whole network
is assumed, and 8-bit precision is employed, none of the
models incurs in any accuracy loss. On the contrary, using
4-bit precision results in a significant degradation in all the
networks’ accuracy. In Section V, we show that for all the
applications in Table I, more than 40% of computations
can be done using 4-bits without incurring in any accuracy
loss. Consequently, assuming that the required hardware is
provided, the execution time can be reduced significantly.
Also, energy consumption could be decreased since only
half of the information has to be fetched when computing
with 4 bits. We described our hardware solution to support
mixed-precision execution in Section III-C1.

A primary challenge to dynamically change the precision
is deciding when to use a high or low precision. In this work,
we propose to use the state of the LSTM cell as an indicator
of the required precision. Specifically, we aim to use high
precision (i.e., 8 bits) for evaluations performed when a cell
state element is in a peak and low precision (i.e., 4 bits) for
the rest.

Table I shows the cell state error in the peaks and stable
regions for several LSTM applications. In this regard, the
cell state error is computed as the relative difference between
the cell state computed in full-precision, and the cell state
evaluated using 4-bits and 8-bits. We observe that when the
cell state is stable (i.e., is changing slowly) the cell state
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Figure 3. Relationship among the neurons on each gate and the elements
of the cell state. The value Ck of the cell state is computed using the
outputs of the kth neuron in each gate. Then, a precision is chosen based
on the evolution of Ck . Finally, using the selected bit-width, xt and wk

are quantized to xq and wk
q , respectively.

error is less than 25% for all the networks. On the contrary,
when the cell state is changing fast (i.e., in a peak) the
cell state error tends to be very large (i.e., more than 70%),
which largely degrades the model accuracy. This behavior
is illustrated in Figure I, as described in SectionI.

As it can be seen in Table I, using 4-bits severely affect
the final model accuracy. Therefore, introducing a larger
error into the cell state results in a more substantial accuracy
loss. Consequently, aiming to reduce the cell state error, we
propose to evaluate the peaks using high precision while
performing the computations outside the peaks using a lower
bit-width. To exploit this observation, we design a scheme
that monitors the evolution of the cell state at runtime for
each element and selects high precision during peaks and
low precision for stable phases. For this work, we use 8
bits for the high precision since it provides zero accuracy
loss for all tested LSTM networks. On the other hand, we
use 4 bits for the lower precision, which would have a
significant loss in accuracy if it was used for all the time-
steps. In the following sections, we detail this scheme and
describe its hardware implementation on top of a state-of-
the-art accelerator.

B. Overview

The main idea of our proposal is to set the precision at
each time-step of execution for the input vectors xt and ht−1

and their corresponding weights for each single element
of the cell state individually. For a given LSTM cell, the
kth element of the cell state vector is computed using a
combination of the output value of the kth neuron on each
gate. We refer to these four neurons simply as neuron nk
of the LSTM cell and set the precision for the four of them
in tandem, since all of them are associated with the same
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Figure 4. State machine employed to dynamically select the precision for an element ck of the LSTM cell state.

r = maxCk −minCk (12)

upperLimit = r + r ∗ β (13)

lowerLimit = r − r ∗ β (14)

isInPeak = lowerLimit ≤ ck ≤ upperLimit (15)

Figure 5. Positive and negative peak region definition for the cell state of
a given neuron (i.e., nk).

element of the cell state. This relationship is shown in Figure
3.

To determine when an element ck of the cell state is on
a peak, we employ the state machine depicted in Figure 4.
Then, to track the evolution of ck, we divide the process into
three phases. First, the system starts in a profiling state that
samples ck for a certain number of time-steps. This profiling
is done to determine the peak characteristics of ck. Then, we
have the stable state that indicates that ck has had a stable
value for the previously evaluated time-steps. Finally, the
in-a-peak state tracks when ck is in a peak.

As shown in Figure 4, the profiling state is performed for
T time-steps. On each profiling step, we keep track of the
maximum and minimum value of ck. Note that the profiling
is done using low precision because we assume that while
profiling the cell state is inside a stable region. Finally, after
T time-steps, we use the maximum and minimum value of
ck to set the limit values that define when a peak begins or
ends, and then we move to the stable state.

The system remains in the stable state until a peak is
detected. A peak is found using the values minCk and
maxCk, obtained previously in the profiling state, as shown
in Figure 5. To determine that the value of ck has entered a
peak, we require that it exceeds the minCk and maxCk

found during the profiling stage by a given margin to

increase the detection’s confidence. To this end, we use the
parameter β in Equation 13 and Equation 14 to establish the
upper and lower thresholds. If the ck value in the cell state
exceeds one of these thresholds, a peak is detected, and the
system transitions to the in-peak-state to use high precision.
It remains in this state until we detect that ck is no longer in
a peak using Equation 15. If the end of the peak is detected,
we move to the stable state to switch back to low precision,
as the value of the cell state has entered a stable region.

If the system stays in a peak for a large number of
time steps (e.g., M in Figure 4), the profiling stage is
triggered again. Note that this profiling is required since
ck may become stable at a value outside the thresholds of
the original profiling. In this case, our scheme would stay
indefinitely in the high precision state if profiling is not
repeated to set new upper and lower thresholds. In other
words, the information of the initial profiling may become
outdated, since the range of values of the cell state may
shift over time. In contrast, the system may be stuck in the
stable state when the range of the cell state’s values become
narrower over time, as they will never exceed the minimum
and maximum thresholds set in the initial profiling. To
prevent this issue, we force a profiling stage when the system
stays in the stable state for more than N time-steps. By
doing this, we take into consideration newer values of the
cell state and more adequate thresholds are set.

Our overall scheme for dynamic precision selection is
summarized in Figure 6. Considering an input sequence with
elements x0 to xn−1, for a given cell state element nk, the
scheme works as follows. First, the value ck of the element
nk is computed using low precision and the profiling state
is executed for T time-steps, marked as 1) in Figure 6.
Then, after the profiling stage, the system moves to the
stable state and performs all computations associated with
nk using low precision. Then, we detect that ck is smaller
than its previously profiled lower threshold and, thus, the
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system changes to the in-a-peak state, as seen in Figure 6.
Next, it stays in this state until the value of ck comes back
to its previously profiled range and, then, it switches back
to stable state, where it waits for the occurrence of another
peak or the triggering of another profiling stage. Note that
this process is performed for each element in the LSTM
cell state individually and, hence, our system may select a
different precision for several neurons in the same time-step.

1) Supporting GRUs: To show the broad applicability
of our dynamic precision scheme, we evaluated it on a
Gated Recurring Unit (GRU) network. GRU cells represent
a widely used alternative to LSTM networks. A GRU cell
includes gates to control the flow of information inside and
out of the cell. However, GRU cells do not include a cell
state as LSTMs do. Nevertheless, we observed that we could
track the evolution of the cell output (ht) to change the pre-
cision dynamically effectively. In GRU networks, ht output
represents the feedback information that is recirculated in the
cell, and its function is similar to the cell state in LSTMs.
Therefore, we apply our scheme to GRU networks as we
do for LSTMs (see Figure 4), but we dynamically set the
precision by tracking the stability of the GRU cell output
(ht) in different time-steps.

2) State Machine Parameters: The state machine for
dynamic precision selection, shown in Figure 4, requires
three different parameters: M and N control the maximum
number of time-steps that the system may remain in states
In-a-Peak and Stable respectively before triggering the pro-
filing. On the contrary, β is used to set the upper and lower
thresholds to decide whether the value of the cell state is
inside a peak. We performed a design space exploration
for these parameters and found values that provide good
results across the four LSTM networks used. Therefore,
these parameters do not have to be manually tuned for each
new LSTM network, as we empirically determined that the
values shown later in Table III provide excellent results for
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Figure 7. Compute Unit (CU). Multi-precision multipliers or SIP units
are included to support variable precision.

a wide variety of networks. Furthermore, to prove that these
values generalize well for new unseen inputs, we performed
the design space exploration using the training datasets,
whereas the evaluation of the technique is performed using
the test datasets.

C. Hardware Implementation

We implement our dynamic precision selection scheme on
top of E-PUR [7], a state-of-the-art low power accelerator for
LSTM networks. E-PUR consists of several computational
units that evaluate the four different gates in an LSTM cell.
Furthermore, it includes on-chip storage for weights and
intermediate results. In E-PUR, computations are done using
8-bit parallel multipliers. To support variable precision, we
replace the 8-bit parallel multipliers by either multi-precision
parallel multipliers or SIP units. In the next subsections, we
describe the overall architecture of E-PUR and explain how
it can be extended to implement our scheme for dynamic
precision selection.

1) Hardware Baseline: Figure 7 shows the structure of a
computational unit (CU) which is tailored to the evaluation
of a gate in an LSTM cell. A CU is composed of a dot
product unit (DPU), a Multi-Functional Unit (MU) and
several buffers to store the weights and inputs. DPUs are
used to compute the matrix-vector multiplications in the
four gates. Moreover, MUs are used to evaluate activation
functions and scalar operations using floating-point numbers.
Also, they are used to quantize the cell output (ht−1) and to
convert the DPU output to floating point. Note that weights
are quantized offline.

In E-PUR, all the gates are evaluated in parallel using
a fixed-precision of 8-bits. For a given time-step (xt) of
an input sequence (X), the following steps are performed
to compute the output vector (ht). First, for each output
element (i.e, nk) of ht, the input and weight vectors are
split into K sub-vectors of size N. Then, two sub-vectors
of size N are loaded from the input and weight buffers,
respectively, and the dot product between them is computed
by the DPU, which also accumulates the result. Next, the
steps are repeated for the next kth sub-vector, and its result
is added to the previously accumulated partial dot product.
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This process is repeated until all K sub-vectors are computed
and added together.

After a DPU computes its output value (yt), it is sent
to the MU, where it is converted to floating-point, and
the activation function is computed. After each gate is
evaluated, the cell state is computed and stored in the input
buffer by the output gate. Also, the output value (ht) is
computed and quantized. Finally, the MU stores the final
result in the on-chip memory for intermediate results. Note
that the operations to compute the dot product, the activation
function and to quantize the result are overlapped, as seen
in Figure 8. Hence, once the DPU sends a result to the
MU, it will continue with the next neuron. Similarly, once
an activation function is computed, we proceed with the
computation of the subsequent activation while applying the
quantization steps to the previously computed activation.
These steps are repeated until all the neurons in the LSTM
cell are evaluated.

2) Mixed Precision with Multi-precision parallel multipli-
ers: To support different precisions with parallel multipliers,
we change the 8-bit parallel multipliers in the baseline
implementation of E-PUR by multi-precision parallel mul-
tipliers (MPP). More specifically, we employ MPPs that
operate in two precision modes high (i.e., 8-bits) and low
(i.e., 4-bits). When working in high precision mode, an
LSTM cell is evaluated as explained in the previous section.
However, two multiplications are done per multiplier on each
cycle when operating in low precision mode. Therefore, for
each multiplier, we double the number of operands that are
fed to them. Since the precision is lower (i.e., half), the
bandwidth requirements do not increase.

3) Mixed Precision with SIP: To support mixed-precision
using SIP units, the steps described in Section III-C1 are
performed as follows. First, to maintain the same throughput
as the baseline, 8 SIP units are included per DPU. Then, on
each CU, eight sub-vectors of weights with N elements are
fetched from the weight buffer and dispatched to each SIP
unit. Furthermore, an 8*N -bit vector (v0), corresponding to
the most significant bit of each element in xt, is fetched
from the input buffer and dispatched to each SIP unit to
perform the multiplication of v0 with the corresponding
weights. After this, each SIP accumulates its output. Next,
this process is repeated until all the bits in xt are multiplied
and added together. Finally, the accumulated values on each
SIP unit are added together, and the process is repeated for

������� ����� 	�����		�������

Peak Detector Buffer

��	����	��

���
�������

Detector Unit

Peak Detector Unit (PDU) ����	���������	������

Figure 9. Structure of the Peak Detector Unit (PDU).

the remaining sub-vectors.

D. Dynamic Precision Selection

To set the precision for each neuron at each time-step,
we extend E-PUR with a Peak Detector Unit (PDU), as
shown in Figure 9. This unit tracks the evolution of each
element in the LSTM cell state. The PDU contains a buffer
to store the information needed by the state machine shown
in Figure 4. Furthermore, it includes a detector unit that is
employed to detect when the tracked cell state is inside or
outside a peak, according to Equation 15. The PDU updates
the state for a given element of the cell state after the MU
computes its value and sets the precision to be used in the
next time-step in the next precision buffer. Note that the
computations performed by the PDU are overlapped with the
MU evaluations in a pipelined manner, as shown in Figure 8.
Also, the storage requirements of these buffers are small as
described in Section IV.

1) Storing mixed-precision indexes : One major challenge
to dynamically set the precision is storing the quantized
integer indices for the weight matrix and input vectors in
an energy-efficient manner. This challenge arises because, at
each time-step, an index can be fetched in either low or high
precision. Therefore, a mechanism that can store and fetch
both indices efficiently is needed. One possible solution is
that for a given floating-point value, the indices for high
and low precision are store separately. The main drawback
of this approach is that the memory footprint increases by
50%, which significantly increases the energy consumption
of the system.

We address this challenge by only using one byte to store
the high and low precision indices for a single weight. In
this approach, for a given floating-point value, which is
quantized in low and high precision, the most significant
nibble of its high precision index can also be used as a
low precision index. Therefore, the memory footprint of
the baseline system is not increased. Furthermore, if the
most and least significant nibbles of a given index are
stored separately, only half of the memory accesses are
needed to fetch the low precision indices, hence dramatically
decreasing the system’s dynamic energy consumption.

One drawback of using the most significant nibble of a
high precision index as low precision index is that they
are not always equal. Figure 10 shows a mapping of some
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Figure 10. Linear Quantization of floating-point values for 8 and 4 bits. In
some cases, using the most significant nibble of an 8-bit index to represent
the corresponding 4-bit index yields an incorrect mapping.

floating-point numbers to integer indices using 8 bits (top
of the figure) and 4 bits (bottom of the figure). As can
be seen, using just the most significant nibble of the 8-
bit index to obtain the 4-bit index is incorrect for half of
the cases. As an example, a floating-point value mapping
to index 11 using 8 bits is quantized as 1 when using 4
bits. However, using the most significant nibble of the 8-
bit index would give an incorrect mapping of 0. A key
observation is that values that are incorrectly mapped to its
low precision counterpart always have a difference of one
with the correct representation. Therefore, the proper index
can be obtained by adding one to the most significant nibble
of the corresponding high precision index. Furthermore,
note that only the upper half of the high precision indices
(indices 8 to 15) have an incorrect mapping. For the sake of
simplicity, we only show in Figure 10, the first 16 indices
and negatives values are omitted. However, the same issue
would arise for the rest of the indexes.

In our scheme, after a given weight is quantized for low
and high precision, the low precision index and the least
significant nibble of the high precision index are stored in
memory separately. Specifically, we employ the l-significant
nibble bank and the m-significant nibble bank to store the
low and high precision indices, respectively, as shown in
Figure 7. Then, we use the low precision index to obtain
the most significant nibble of its high precision counterparts
by either using it directly or subtracting one from it when
an incorrect mapping is found.

To evaluate an LSTM cell, in addition to the steps
described in Section III-C1, we perform some extra tasks
to set the appropriate precision for each neuron. First, for a
given neuron (nk), the bit-width to be used is read from the
next precision buffer in the PDU. If low precision is selected,
we only fetch the most significant nibble. Otherwise, if high
precision is chosen, we fetch the bytes corresponding to
each element in the weight vector of nk. Then for each byte
fetched, we use the least significant nibble to detect if the
most significant nibble is correct or not. For incorrect cases,
the most significant is adjusted by decreasing it by one unit.
Once the values have been fetched and fixed, we send them
to each of the DPUs as outlined in Section III-C1.

Regarding the input vector, we first fetch all its elements
in high precision and low precision since the same input
vector is used for all the neurons. Then, we proceed to feed
them to each DPU, depending on the selected bit-width.

Finally, once we compute the cell state in the MU, it is
sent to the PDU to determine the precision to be used on
element ni in the next time-step. Also, the output value is
sent to the quantization unit, where it is quantized. Note that
these operations are overlapped, as shown in Figure 8, and
their latency is hidden by the computations in the DPU.

IV. EVALUATION METHODOLOGY

We evaluate our proposal employing a diverse and rep-
resentative set of modern LSTM networks, as shown in
Table II. We include four LSTM networks from popular
real-world applications: speech recognition [11], machine
translation [1], image description [2], and sentiment clas-
sification [14]. Also, we include Deepspeech2 [12], which
uses GRU cells. Our benchmarks largely differ in the number
of layers and the dimensions of the cell size. For inference,
we feed the networks with inputs from their respective test
datasets, which include thousands of input sequences for
each network. The length of the input sequences ranges
from 20 time-steps to a few thousand. The models were
implemented in Tensorflow [15]. Finally, a batch size of one
is used.

To assess execution time and energy consumption, we
employ a cycle-level simulator that models E-PUR [7]
and the dynamic precision selection scheme described in
Section III-D. The simulator provides the execution time and
the activity factors of the different hardware components.
The pipeline components are implemented in Verilog and
synthesized using the Synopsys Design Compiler to obtain
their energy consumption, area and delay. We use a typical
process corner with a voltage of 0.78V. Also, we employ
CACTI [16] to estimate the delay and energy consumption
(static and dynamic) of the on-chip memories. Finally,
to estimate the timing and energy consumption of main
memory, we use MICRON’s power model [17]. We model
4 GB of LPDDR4 DRAM. Regarding the frequency, we
use the delays reported by Synopsys Design Compiler and
CACTI to set it: we specified a clock frequency that allows
most hardware structures to operate at one clock cycle.
Regarding the Peak Detector Unit (PDU), note that the cell
state is a vector of up to 2048 elements in our set of RNNs.
Hence, the cost of tracking it is relatively cheap: 8KiB are
needed assuming 4 bytes/element. In Table III, we show the
configuration parameters for our system.

V. EXPERIMENTAL RESULTS

This section presents the evaluation of our proposal. The
baseline system is E-PUR using 8-bit parallel multipliers, la-
beled as E-PUR+PAR. We evaluate our scheme on top of E-
PUR using SIP and parallel multi-precision multipliers. The
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Table II
LSTM NETWORKS USED FOR THE EXPERIMENTS. 4-BITS USAGE REFERS TO THE PERCENTAGE OF THE EVALUATIONS PERFORMED AT LOW

PRECISION.

Network App Domain Layers Cell Size 4-bits Usage Dataset Time-step Range
IMDB Sentiment [14] Sentiment Classification 1 128 100% IMDB dataset 80

SHOW TELL [2] Image Description 3 512 52% MSCOCO 20-100
EESEN [11] Speech Recognition 10 320 55% Tedlium V1 60-2000
MNMT [1] Machine Translation 8 1024 44% WMT’15 En → Ge 30-100

DeepSpeech2 [12] Speech Recognition 5 800 48% LibriSpeech 100-1900

Table III
HARDWARE CONFIGURATION.

Parameter Value
Technology 28 nm
Frequency 500 MHz

Intermediate Memory 6 MiB
Weight Buffer 2 MiB per CU
Input Buffer 8 KiB per CU
DPU Width 16 operations

Peak Detector Buffer 8 KiB
M 5% of time-steps
N 5% of time-steps
β 0.1
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Figure 11. Comparison between our scheme (“Peaks”) and a system that
randomly chooses the evaluations done at low precision (“Random”). The
random scheme produces a significant degradation in accuracy. Our scheme
achieves higher low precision usage without any accuracy loss.

system implementing our scheme and SIP units is labeled as
SIP+DYN. In contrast, the system with the multi-precision
multipliers and our technique is marked as PAR+DYN.
First, we present an evaluation of the effectiveness of our
scheme. Second, we provide the performance and energy
results. Finally, we evaluate our scheme using three levels
of precision (8, 4, 2).

A. Effectiveness of tracking the cell state

In Figure 11, we compare our proposal with a scheme
that randomly selects the precision level for each element
of the cell state. On average, for the random system 34%
of the evaluations are performed using 4 bits, whereas 66%
are done using 8 bits. However, it produces a significant
accuracy loss for all networks. In our proposal 49% of the
evaluations are performed using 4 bits, without any accuracy
loss. Therefore, tracking the stability of the LSTM cell state
provides valuable information to select the precision.

B. Performance and Energy Improvements

Figure 12 shows that our scheme provides consistent and
significant speedups, achieving 1.46x speedup on average.
SIP+DYN and PAR+DYN exhibit the same speedup since
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Figure 12. Speedups achieved by our scheme. Baseline configuration is
E-PUR with 8-bit parallel multipliers.

both have the same throughput. The reduction in execution
time is due to using 4-bits for more than 57% of the time.
Note that the baseline employs 8 bits for all the computations
to maintain the accuracy. Furthermore, the smaller the bit-
width the higher the performance of the E-PUR+DYN and
E-PUR+SIP: switching from 8 bits to 4 bits doubles the
performance of the dot product units. Hence, for time-steps
and cell state elements where 4-bit precision is used (stable
regions), the latency of the dot product is reduced by a factor
of 2x. This represents around 60% of the evaluations for our
benchmarks. On the contrary, 40% of the evaluations are still
done using 8 bits to maintain accuracy (peaks regions of the
cell state).

Our scheme’s latency is largely hidden due to overlapping
the DPU and MU computations. Note that most of the
execution time is due to the dot product calculations to
evaluate each neuron on each gate using either 4 or 8 bits.
In both cases, the latency of the dot product calculations
is larger than the latency of the MU and LQ units. Only a
small execution time overhead is added when the evaluation
of an LSTM cell starts (i.e., first neuron and first time-step).
The IMDB network has a speedup of 1.99x since it can
be evaluated entirely using 4 bits. EESEN, SHOWTELL,
and NMT achieve a speedup of 1.38x, 1.40x, and 1.31x,
respectively, since they require high precision for some of
their evaluations.

Figure 13 shows the energy savings, including both static
and dynamic energy. On average, the energy savings for
PAR+DYN and SIP+DYN are 19.2% and 17%, respectively.
These savings come from several sources. First, using 4
bits reduces the dynamic energy of the weight buffer, since
we only fetch the least significant nibble of the weights
and inputs when using low precision. Second, the energy
of dot product computation is reduced when employing 4
bits, since the activity in the DPU is reduced. Finally, the
speedups reported in Figure 12 provide a reduction in static
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Figure 13. Energy savings achieved by our proposal compared to E-PUR-
PAR. SIP+DYN and PAR+DYN refers to our scheme using SIP units and
multi-precision parallel multipliers, respectively.

energy.
Figure 13 shows that using our scheme with parallel

multipliers (DYN-PAR) provides 2% higher energy savings
than the SIP implementation, since the SIP unit includes
extra components to perform shifting and accumulation.

The LSTM networks EESEN and IMDB exhibit the most
substantial energy savings: 15.9% and 34.2%, respectively,
when using SIP+DYN. For PAR+DYN, their savings are
16% and 39.4%. For these networks, a large percentage
of the computations are evaluated using low precision and,
thus, the energy savings are significant. For the networks
SHOWTELL and NMT evaluated on SIP+DYN, the energy
savings are 13.5% and 15.4%, respectively, whereas when
evaluated on PAR+DYN, their energy savings are 14.9% and
17%. Regarding DeepSpeech, the energy savings are 12.7%
and 16.5% for SIP+DYN and PAR+DYN, respectively. Fi-
nally, the area overhead of our scheme is around 8%.

C. Multi-level Precision

Our scheme can be extended to support more than two
levels of precision. To assess this, we evaluated EESEN and
DeepSpeech using 8, 4 and 2 bits. A smaller range inside
the stable region (shown in Figure 4) is defined, such that
values of the cell state inside this new range are computed
using 2 bits, otherwise they are done using 4 bits. For this
scheme, 8.5% of the EESEN computations are performed
using 2-bits, whereas, for DeepSpeech, 10% are done with
2-bits. Consequently, the energy consumption and execution
time of these networks are improved by 3.3% and 1.02x, on
average.

VI. RELATED WORK

Hardware acceleration for LSTM networks has attracted
the architectural community’s attention in recent years. The
Tensor Processing Unit (TPU) [6] is an ASIC that supports
convolutional, fully-connected, and LSTM networks. TPU
employs a fixed bit-width of 8 bits for weights and inputs.
Our proposal is different as it selects the precision dynam-
ically at runtime, using 4 bits for more than 57% of the
time-steps.

Stripes [9] and BitFusion [10] support variable preci-
sion. Stripes uses SIP units and variable bit-width for the
operands. BitFusion is a bit-flexible accelerator with an array

of bit-level processing elements that can be dynamically
merged or split to match the bit-width of individual DNN
layers. Although Stripes and BitFusion offer more flexibility,
each layer’s bit-width is determined offline and kept constant
during inference. We show that higher performance and
energy efficiency can be achieved by dynamically selecting
the precision based on the LSTM cell state. Our scheme can
change the bit-width for every element of the cell state in
every time-step.

Architectural techniques such as pruning, compression,
and computation reuse are commonly employed during
RNN inference. They are completely orthogonal to our
scheme. ESE [18] exploits pruning and sparsity on FPGAs.
C-LSTM [19] leverages structured compression, reducing
LSTM model size while eliminating irregular computations.
DeltaRNN [20] and the work in [21] exploit temporal
coherency of the LSTM data to reuse computations and
avoid redundant memory accesses. Work in [22] improves
RNN energy efficiency by skipping computations, since
previous calculations are memoized and reused in future
evaluations. We focus on changing the bit-width at runtime,
and computations are never skipped.

Regarding software-based RNN quantization, some pro-
posals such as HitNet [23], Precision Gating (PG) [24], and
Binary Forget and Input gate (BFIG) [25] have been intro-
duced. These schemes apply very aggressive quantization
statically. However, they introduce a significant accuracy
loss, whereas our scheme does not degrade accuracy.

VII. CONCLUSIONS

In this paper, we present a novel scheme to dynamically
select the precision for LSTM computation. We observe that
the values of the LSTM cell state determine the required
precision: time-steps where the cell state value changes
rapidly (i.e., peaks) require higher precision to avoid errors,
whereas time-steps where the cell state is relatively stable
can be evaluated with a lower bit-width. We propose a
scheme that monitors recent values of the cell state and
selects the appropriate precision for the next time-step.
Unlike previous schemes that fix the precision for each
DNN layer offline, our system can change the precision for
every cell state element and every time-step. We evaluate
our proposal on top of E-PUR. Our scheme selects the
lowest precision for more than 57% of the time without any
accuracy loss, providing 1.46x speedup and 19.3% energy
savings on average.
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