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Abstract—Reinforcement Learning (RL) has achieved signif-
icant success in application domains such as robotics, games
and health care. However, training RL agents is very time
consuming. Current implementations exhibit poor performance
due to challenges such as irregular memory accesses and thread-
level synchronization overheads on CPU. In this work, we propose
a framework for generating scalable reinforcement learning
implementations on multi-core systems. Replay Buffer is a key
component of RL algorithms which facilitates storage of samples
obtained from environmental interactions and data sampling
for the learning process. We define a new data structure for
Prioritized Replay Buffer based on K -ary sum tree that supports
asynchronous parallel insertions, sampling, and priority updates.
To address the challenge of irregular memory accesses, we
propose a novel data layout to store the nodes of the sum tree that
reduces the number of cache misses. Additionally, we propose lazy
writing mechanism to reduce thread-level synchronization over-
heads of the Replay Buffer operations. Our framework employs
parallel actors to concurrently collect data via environmental
interactions, and parallel learners to perform stochastic gradient
descent using the collected data. Our framework supports a
wide range of reinforcement learning algorithms including DQN,
DDPG, etc. We demonstrate the effectiveness of our framework in
accelerating RL algorithms by performing experiments on CPU
+ GPU platform using OpenAl benchmarks. Our results show
that the performance of our K-ary sum tree based Prioritized
Replay Buffer improves the baseline implementations by around
4x~100x. Our proposed synchronization optimizations improve
the performance by around 2x~4.4x compared with using a
global lock. By plugging our Replay Buffer implementation
into existing open source reinforcement learning frameworks, we
achieve 1.19x~1.75x speedup for various algorithms.

Index Terms—parallel reinforcement learning, prioritized re-
play buffer, parameter server

I. INTRODUCTION

Reinforcement Learning (RL) has shown great success in a
wide range of applications including board games [1], strategy
games [2], energy systems [3]], robotics [4], recommendation
systems [5], hyperparameter selection [6] etc. Typically, RL
algorithms train by iteratively collecting the data by interacting
with a simulator of the environment, and learning a model
using the collected data. However, it takes a considerable
amount of time to train a reinforcement learning agent to
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converge. This is because: 1) the speed of data collection is
limited by the complexity of the environment simulator which
needs to accurately represent the real world physical system;
2) the large state space needed to represent a typical real-
world physical system makes it necessary to gather a large
amount of data to successfully train a RL agent. We show the
training time versus the size of the state space of three popular
environments used in RL training in Figure [T} On Mujoco [7],
which is a physics engine to simulate robotics, biomechanics,
etc., it takes around 3 hours to train an agent using Pytorch
[8]] on a 4-core machine with a GTX 1060 GPU. On Atari 9],
which is a game simulator, it takes around 12 hours to train
on the same machine. The state-of-the-art RL algorithm for
playing Go — AlphaGo Zero [[10] was trained on 4 TPUs [11]
for 21 days. Thus, developing faster reinforcement learning
algorithms is an important research direction.

Prior work tackles this problem by deploying parallel actors
that can collect data simultaneously [[12]—[15]. [12] introduces
a parallel framework for Deep Q Network (DQN) [16]. It
accelerates the training by using independent actors collecting
data asynchronously. The data is stored in a shared replay
buffer. Meanwhile, parallel learners sample data uniformly
from the replay buffer and compute the gradients. The gra-
dients are sent to the central parameter server [|17]] for neural
network weights update. [13] improves the performance of
[12] by using Prioritized Replay Buffer so that important data
is sampled with higher weights to accelerate the training.

In these works, Replay Buffer management becomes a
limiting factor in achieving high scalability when increasing
parallelism. Improving the performance of parallel Replay
Buffer management via techniques such as careful data struc-
ture design or low overhead thread-level synchronization has
not received much attention. In this work, we optimize the
implementation of Replay Buffer management and propose
a framework for generating scalable reinforcement learning
implementations. The generated RL implementations are com-
posed of parallel actors and learners executing on computing
platforms such as CPUs, GPUs, or FPGAs with Replay Buffer
management executing on a CPU platform. We illustrate our
framework by generating RL algorithms targeting a multi-core
platform. Our key contributions are summarized as follows:

e We propose a new data structure for the Prioritized
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Figure 1. Training time of various environments versus the size of the state
space

Replay Buffer based on K-ary sum tree that supports
asynchronous parallel insertions, sampling and priority
update.

o We propose a novel data layout to store the nodes of the
sum tree to minimize the number of cache misses.

o« We propose lazy writing mechanism to minimize the
thread-level synchronization overhead of various opera-
tions of the Replay Buffer.

o Given a hardware configuration, our framework automat-
ically decides the number of actors and learners such
that the desired ratio between the throughput of the data
collection and the throughput of the learning is achieved.

o Our framework supports a wide range of reinforcement
learning algorithms including DQN [16]], DDQN [18]],
DDPG [19], TD3 [20], SAC [21]], etc.

o We demonstrate the effectiveness of our framework in
accelerating RL algorithms by performing experiments
on CPU + GPU platforms using OpenAl [9]] benchmarks.
Our results show that the performance of our K-ary sum
tree based Prioritized Replay Buffer improves the base-
line implementations by around 4x~100x. Our proposed
synchronization optimizations improve the performance
by around 2x~4.4x compared with using a global lock.
By plugging our Replay Buffer implementation into exist-
ing open source reinforcement learning frameworks, we
achieve 1.19x~1.75x speedup for various algorithms.

II. BACKGROUND

A. Markov Decision Process

Reinforcement learning algorithms aim to solve Markov
Decision Process (MDP) with unknown dynamics. A Markov
Decision Process [22] is also referred as world or environment
in this context. An environment has five key components as
follows:

« State space S: the set of all possible states in an environ-
ment. For example, in the Go game, the state space is all
the possible positions of the stones.

o Action space A: the set of all possible actions. For
example, in the Go game, the action space is all the
possible moves in the current state.

¢ System dynamics P: the function that computes the next
state given the current state and the action.

o Reward function R: the intermediate reward received by
the agent when transiting from the current state to the
next state.

« Initial state distribution p: the distribution of states where
the agents will be initially at.

We define an episode as one trajectory of the agent acting
from the initial state to the terminal state. The policy 7(als)
is defined as a stationary function that maps from the state
space to the action space. The objective of reinforcement
learning is to learn the policy such that the expected long-
term accumulated rewards in an episode is maximized.

High level abstractions and APIs Reinforcement learning
improves the performance of the agent by learning from
the data collected from interacting with the environment. To
facilitate the understanding from a system level, we introduce
the high level APIs inspired from the ones used in OpenAl
gym [9] in Python programming language [23|]:

e def reset () -> S:return a state by sampling from
the initial state distribution .

e def step(a: A) -> (S, float, bool):
return a tuple of state, reward (float type) and done
signal (bool type) by taking action a. The done signal
indicates whether the current episode is finished. If
the current episode is finished, call the reset to restart
the episode. The environment class maintains its own
internal state.

e def act(s: S) —> A: the acting function of the
agent that takes the current state and outputs the action.

e def learn(data: Data): the learning function of
the agent that takes the data and updates its internal
weights to improve the performance. The standard Data
type contains a tuple consisting of a transition (state (s),
action (a), next_state (s’), reward (r)).

B. Reinforcement Learning

In reinforcement learning, a Replay Buffer is employed
[24] to store all the data collected from the start of the
training. The agent is updated using data sampled from the
Replay Buffer. We show a generic paradigm of reinforcement
learning algorithms in Figure 2] Typical reinforcement learning
algorithms include DQN [16], DDQN [18], DDPG [19], TD3
[20], SAC [21]], etc. These algorithms only differ in how the
learning is performed while the training loop is the same.

C. Prioritized Replay Buffer

To illustrate the motivation of using a Prioritized Replay
Buffer [24], we start by examining how the learning is
performed in Deep Q Network (DQN) [16]. DQN trains a
Q network parameterized by ¢ by minimizing the following
objective:

N
mlH*Z QI/J Slaal (7’1+7maXQw( z’ i)))Q (1)

where Qy(s,a) — (r + ymaxy Qyu(s’,a’)) is the temporal
difference (TD) error. Uniform sampling from the replay buffer
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Figure 2. A generic paradigm of reinforcement learning algorithms

to update the TD error is less effective because the sampled
data may already have low TD error. Prioritized Replay Buffer
[24] is proposed to mitigate this problem by assigning a
priority to each data item using the absolute value of the TD
error:

P(i) = |Qu(sisai) = (ri +ymax Qu(sj, ai))|  (2)

where P(i) denotes the priority of data i. Then, the data
is sampled according to the probability proportional to the
priority. To fix the bias introduced by the prioritized sampling,
importance weights are computed as w(i) = (5 0] )
where w(i) denotes the importance weights for data ¢ and
(B is a hyper-parameter. The learning step of DQN using a

Prioritized Replay Buffer is:

s

X
ngn i Zw(z) (Qy(siyas) — (ri + 7y max Qw(S;:»a;:)))z
i=1
(3)

After each update, the new priority is stored in the Replay
Buffer. A complete training process is shown in Algorithm
Other algorithms follow the same structure and only differ
slightly in the technique used to update the Q function.

III. RELATED WORK
A. Parallel and Distributed Reinforcement Learning

Existing works that aim to improve the execution time of
Reinforcement Learning (RL) algorithms focus on increasing
the parallelism by increasing the number of actors and learn-
ers. GORILA [12] proposes the first parallel architecture of
DQN [16] to play Atari games [9]. They employ independent
actors and learners in parallel with a global parameter server.
Our method follows the general architecture of GORILA [[12]]
at a high level and proposes detailed data structures and thread-
level synchronization mechanism to maximize the scalable
performance. A3C [14] uses asynchronous actors to collect
the data and update the agent using actor critic algorithms
without using a Replay Buffer. Due to synchronization over-
head, A3C doesn’t scale very well. IMPALA [15] relaxes
the synchronization overhead of A3C by using importance
sampling. RLIib [25] proposes abstractions for distributed
reinforcement learning for software developers built on top

Algorithm 1 Generic Reinforcement Learning

1: Input: Environment env, Agent 7y, Replay buffer 5.
2: Output: Trained agent my.

3: for i = 1; ¢ < iterations; ¢ + + do

4 if done then

5 obs = env.reset(); > Episode terminates
6: end if

7 action = agent.act(obs); > Agent select action
8 next_obs, reward, done = env.step(action); > Actuator
9: B.insert(obs, action, next_obs, done);

10: obs = next_obs;

11: if ¢ % update_interval == O then

12: index, data = B.sample(batch_size);

13: priority = B.get_priority(index);

14: for ¢ in index do ‘

15: w(i) = (% - ZIQ(IZ)(Z))B; > importance weights
16: end for

17: new_priority = agent.learn(data, is);

18: B.update_priority(index, new_priority);

19: end if

20: end for

of the Ray library [25] written in Python [23]]. PAAC [26]]
proposes parallel advantaged actor critic. They synchronize
the actors after every environmental step. This significantly
slows down the entire system. In contrast, our actors act
independently in parallel. [27]] proposes parallel reinforcement
learning using popular MapReduce [28]] framework with linear
function approximation. [29] proposes to use parallel actors
to learn in tabular MDP while our method can tackle general
continuous space MDP with neural network policies.

A key bottleneck in these works is the management of
Replay Buffer. Thread-level synchronization overheads and
irregular memory accesses while accessing the Replay Buffer
lead to poor scalability when parallelism is increased by
adding more hardware resources. Ape-X [13|] proposes dis-
tributed Prioritized Replay Buffer with parallel actors and a
single learner to accelerate reinforcement learning algorithms
on large scale clusters. However, to the best of our knowledge,
our approach is the first to explicitly focus on improving the ef-
ficiency of Replay Buffer management on multi-core platforms
by developing a novel data structure and low overhead thread-
level synchronization mechanisms to enable high throughput
parallel Replay Buffer management.

In addition to these works, specialized hardware designs to
accelerate reinforcement learning have also emerged recently.
[30] proposes customized Pearlmutter Propagation on FPGAs
to accelerate conjugate gradient method used in TRPO [31].
[32] proposes a systolic-array based architecture on FPGAs to
accelerate PPO [33]]. However, these works do not require the
use of Replay Buffer.

B. Parallel Stochastic Gradient Descent

We also review techniques for performing parallel stochastic
gradient descent as it is used in our learner implementation.



Algorithm 2 Key operations of the N-ary sum tree.

1: function UPDATEVALUE(idX, value)
2: node_idx = CONVERTTONODEIDX(idx);

3 A = value - GETVALUE(node_idx);

4 while !1SROOT(node_idx) do

5 new_value = GETVALUE(node_idx) + A;
6: SETVALUE(node_idx, new_value);

7 node_idx = GETPARENT(node_idx);

8 end while

9: end function

10:

11: function GETPREFIXSUMIDX(prefixSum)

12: node_idx = GETROOT();

13: while !isLeaf(node_idx) do

14: node_idx = GETLEFTCHILD(node_idx);
15: partialSum = 0;

16: for : = 0; 7 < fan_out; i + + do

17: sum = partialSum + GETVALUE(node_idx);
18: if sum > prefixSum then

19: break;

20: end if
21: partialSum = sum;
22: node_idx = GETNEXTSIBLING(node_idx);
23: end for

24: prefixSum = prefixSum - partialSum;

25: end while

26: idx = CONVERTTODATAIDX(node_idx);

27: return idx;

28: end function

[17] proposes parameter server to facilitate parallel stochas-
tic gradient descent. Each worker samples a batch of data,
computes the gradients and send them to the central param-
eter server. The parameter server aggregates the gradients
and performs the update. The workers then pull the up-
dated weights from the parameter server. [34] proposes asyn-
chronous stochastic gradient descent to reduce the negative
impact of asynchrony with general convergence time bounds.
For simplicity, we adopt the parameter server [17] framework
and leave advanced asynchronous methods for future work.

IV. PARALLEL PRIORITIZED REPLAY BUFFER

In this section, we discuss in detail the design of our
Prioritized Replay Buffer that supports parallel actors and
learners. We start by introducing the key operations that need
to be supported.

A. Operations

1) Insertion: Given a new data item =z, find the next
available index 7 and insert x at ¢. If the Replay Buffer is
full, find the index using the eviction policy. Set the priority
at index 7 to P(i) = Ppax, Where P(4) is the priority at index
i and Py ax is the maximum priority in the Replay Buffer. The
most common eviction policy used in existing implementations
is First-in-first-out (FIFO).
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Figure 3. The overall structure of a 4-ary sum tree.

2) Sampling: Sample a data item z; according to the
probability distribution Pr(i) = P()/s>, P(i),i = 1,2,..., N,
where N is the size of the Replay Buffer. To do so, we
first sample x from uniform distribution U(0,1). Then, we
compute the cumulative density function (cdf) as cdf (i) =
23:1 Pr(j),i = 1,2,...,N. Finally, the sampled index
i = cdf ~!(z). Mathematically, this is equivalent to finding the
minimum index ¢, such that the prefix sum of the probability
from O to ¢ is greater than or equal to z:

i i N
min» Pr(i) >z =min» P@)>z-Y P@j) @
7 = 7 =
3) Priority retrieval: Return the priority at index i.
4) Priority update: Update the priority at index .

B. Frequency of the Operations and Runtime Requirements

As shown in Algorithm [T} the insertion is executed once per
iteration. The sampling, priority retrieval and priority update
are executed once every update_interval. Directly storing the
priority in an array incurs a runtime complexity of O(NN) for
sampling and ©(1) for priority retrieval and priority update.
Directly storing the prefix sum in an array incurs a runtime of
O(log N) in sampling, ©(1) in priority retrieval and ©(N) in
priority update. Based on the frequency of the operations, both
these implementations incur a overall runtime complexity of
O(N). In this paper, we proposed to use K-ary sum tree to
implement the Prioritized Replay Buffer to achieve O (log N)
runtime complexity for both sampling and priority update and
thus for the entire implementation.

C. K-ary Sum Tree

We show an example of a K-ary sum tree for X = 4 in
Figure [3} Each node has K child nodes. The value stored in
the parent node is the sum of all the values stored in the child
nodes. The leaf nodes hold the actual priorities.

1) Priority retrieval: In order to obtain the priority for the
index ¢, we create an array of pointers, each pointing to its
corresponding leaf node that holds the priority value. Thus,
priority retrieval using K -ary sum tree requires O(1) time.

2) Priority update: To update the priority of index 7, we
first obtain the leaf node holding the priority. We compute
the change of the priority by subtracting the old value from
the new value. Then, we propagate the change of the priority
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Figure 4. Illustration of the process when updating the value in the K-ary
sum tree with fanout=4 as shown in Algorithm [2| The blue node denotes the
leaf node that holds the priority. The green nodes denote the intermediate
sums that are updated by propagating the change of the priority from the leaf
to the root. The red dotted arrow shows the direction of the value propagation.

from the leaf node to the root node by traversing along the
parent nodes. We show a detailed function in Algorithm [2and
an example in Figure [4] It is easy to see that this operation
requires ©(log; N) time.

3) Prefix sum index computation: Given a randomly sam-
pled number = ~ U(0, 1), the objective is to compute index
i o= min;y o, P(i) > - Z;V=1 P(j) as discussed in
Section[[V-A|l The sum of all the priorities in the Replay Buffer
Z;.V:l P(j) can be computed in ©(1) by simply retrieving
the value stored in the root node. To design an algorithm that
obtains the target index, we start by proving Lemma [I| and
theorem 2

Lemma 1. Let the value of the i-th node at level m be P; p,.
Assume the height of the tree is H. Then, at level 1 < m < H,
there exists index j, 1 < j < K™Y such that Zle P>
x - Zfil P(3), for any x € (0,1).

Proof. According to the definition, the leaf node holds the
priority value. Thus, P,y = P(i),¥i = 1,2,..., K771
Since z € (0,1), we obtain x - vazl Pi) < Zfil P(i) <
ZZK:Z[ ' P; g. Because the priority values are non-negative,
there must exist index j, 1 < j < K71 such that
S Py >a- 32N, P(i). According to the property of the
sum tree, tl}le Yalue of the parent is the sum of all its children.
Thus, 5 Py =K PLovm =12 H—-1.
Therefore, the same argument holds for each level. This
concludes the proof for Lemma [T} O

Theorem 2. Let j,, = minj Ef;l Pn:> - vazl P(i).
Then, j., is the parent node of jy41, Ym=1,2,--- H — 1.

Proof. The child nodes of index j at level m are K- (j— 1)+
1,---,K-j at level m+ 1. According to the definition of the
sum tree and the property of j,,, we obtain » 7~ ! Pi=
SO P, v1i < 23N, P(i). Thus, the index of the
cutoff node at level m + 1 must be jp 41 > K- (jm —1) + 1.
Noticing that S0, P,,; = SSKG p o> 2. 5N P(i).
Thus, the index of the cutoff node at level m + 1 satisfies

Jmt1 < K+ ji. Combining K+ (jm — 1) < jimg1 < K - jim,
we obtain j,, is the parent node of j,, 1. O

We refer such node j,, as the cutoff node at level m. The
goal of sampling is to find the index of the cutoff node at
the last level of the tree. According to Theorem [2] the cutoff
node at level m is the parent of the cutoff node at level m +
1. Therefore, we can start from the root node and perform
the search only using the child nodes. To obtain which child
node is the cutoff node, we maintain a cumulative sum of
all the nodes left to the cutoff at each level. Please refer to
Algorithm [2] for details. We also illustrate an example of the
process in Figure [5] where K’ =4 and H = 6.

4) Data layout: Maintaining the explicit tree data structure
using pointers significantly degrades the cache performance
of modern CPUs. In this work, we implement the tree data
structure implicitly using an array as shown in Figure [6] The
sampling process requires traversing all the nodes under the
same parent. To maximize the cache performance, it is desired
that each group of child nodes under the same parent is cache
aligned. Assume that one cacheline can store C' nodes, then
we choose K, such that K%C = 0. We pad the root node
with K — 1 so that it is also cache aligned.

5) Theoretical performance analysis:

a) Space complexity: The space complexity is propor-
tional to the number of nodes in the tree. Assume the size of
the Replay Buffer is IV, which is equal to the number of nodes
in the last level of the tree. Thus, the total number of nodes

H*I.K—1) = QL1

in the trc;e_ils: @(];Hjll) I C—— K—1

O(N + 7= )- Clearly, as K increases, the space complexity
reduces due to the decrease of the number of intermediate
nodes.

b) Runtime complexity: 1t is clear that the priority re-
trieval runs in ©(1) and priority update runs in ©(log, N).
For prefix sum index computation, the loops runs H =
[logg N1+ 1 times. The memory access inside loop has X/c
cache misses and K - (1 — 1/c) cache hit, where C' is the
number of nodes in one cacheline. Thus, the time complexity
of prefix sum index computation is ©((logg N + 1)(Tyyiss -
% +Thit- K- (1—1/C))), where T)p,;ss is the execution time of
one cache miss and 7T3;; is the execution time of one cache hit.
Note that this function has a local minimum in terms of K.
In practice, we profile the performance of various K values
based on the size of the cacheline and choose the one that
yields the best performance.

D. Thread-safe Prioritized Replay Buffer

In order to support parallel actors and learners, it is crucial
to design thread-safe prioritized Replay Buffer. We summarize
the resource utilization of various operations in Table [Il We
design the thread-safe prioritized replay buffer using locking
mechanism such that the duration of holding a lock is mini-
mized.

1) Synchronization of the sum tree: We use two locks to
synchronize the sum tree: one to synchronize the read/write
of the last level of the tree and the other to synchronize the
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read/write of all the levels. A detailed procedure of priority
update and priority retrieval is shown in Algorithm [3] Using
this technique, reading of the priority value and updating of
the intermediate levels of the sum tree can be executed in
parallel. Note that it will cause inconsistencies if we acquire
the global_tree_lock after releasing the last_level_lock lock
when two priority update queries arrive at the same time.

2) Synchronization of insertion and sampling: During in-
sertion, the Replay Buffer finds an available index. Then,
it writes the data to the storage and updates the priority
to the maximum priority in the Replay Buffer. Compared
with index searching and priority update, data writing takes
more time due to explicit copy of the memory data. Thus,
it is important not to hold the lock while performing the
data writing. To do so, we propose lazy writing: 1) We set
the priority to zero atomically; ii) we perform data writing;
iii) we reset the priority to the maximum priority in the
Replay Buffer atomically. Since the priority is zero during
data writing, it will never be sampled. This makes sampling
only needs to synchronize prefix sum index computation. A
detailed procedure is shown in Algorithm

Algorithm 3 Synchronization of the Prioritized Replay Buffer

: function PRIORITYUPDATE(idx, new_priority)
ACQUIRE(global_tree_lock);
ACQUIRE(last_level_lock);
UPDATELASTLEVEL();
RELEASE(last_level_lock);
UPDATEINTERMEDIATELEVEL();
RELEASE(global_tree_lock);

: end function

R A A S ol S
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: function PRIORITYRETRIEVAL(idx)
ACQUIRE(last_level_lock);

—
—_

12: priority = GETPRIORITY(idx);
13: RELEASE(last_level_lock);

14: return priority;

15: end function

16:

17: function INSERT(idx, data)

18: UPDATEPRIORITY(idx, 0);

19: WRITETOSTORAGE(idx, data);
20: UPDATEPRIORITY (idx, max_priority);
21: end function

22:

23: function SAMPLE()
24: ACQUIRE(global_tree_lock);

25: idx, priority = GETPREFIXSUMINDEX();
26: RELEASE(global_tree_lock);
27: return idx, priority;

28: end function

3) Write after read vs. read after write: The parallelism
of the priority update and the data sampling causes data
dependency issues: the same data is sampling using the old
priority before the new priority gets updated (write after read).



Table I
RESOURCE UTILIZATION OF VARIOUS OPERATIONS

Operations Resource Utilization
Insertion modify the entire tree, modify the storage
Sampling access the entire tree, access the storage

access the last level of the tree
modify the entire tree

Priority retrieval
Priority update

Mathematically, only read after write is valid and write after
read produces inconsistent results. However, it has little impact
in practice as neural network training is stochastic in nature
and robust to such transient inconsistencies.

V. OVERALL FRAMEWORK

The overall system architecture is shown in Figure [7]] We
employ parallel actors to collect data and parallel learners to
compute the gradients for neural network weights update.

A. Asynchronous Actors

Asynchronous actors collect the data simultaneously by
interacting with their own instance of the environment using
the shared weights. The data is then added to the Replay
Buffer. It is worth noting that no synchronization is required
because the inference doesn’t alter the weights.

B. Parallel Learners

Deploying parallel actors increases the throughput of data
collection. In order to increase the throughput of the learning,
we employ parallel learners with a central parameter server
[17]. Each learner independently samples one batch of data
from the Replay Buffer and computes the sub-gradients. The
parameter server aggregates the gradients and updates the
weights.

C. Framework Specification

Our framework supports a wide range of reinforcement
learning algorithms including DQN [16], DDQN [18]], DDPG
[19], SAC [21]], TD3 [20] and so on. The target platform of
our framework is processor + accelerator platforms, where the
processor is the CPU the accelerator is either the GPU or the
FPGA. The input of our framework includes:

e The overall throughput of the data collection vs. the
number of CPU cores.

o The overall throughput of the data consumption vs. the
number of CPU cores.

« Total number of cores in the CPU.

The throughput of the data collection by a single actor is
affected by i) the time of a single environment step function
defined in Section ii) The specifications of the neural
networks used in the actors including the architecture (fully-
connected vs. convolution networks), the size of each layer,
etc. iii) the speed of the processor. The throughput of a single
learner is affected by i) the reinforcement learning algorithm;
ii) the optimizer iii) the speed of the accelerator.

D. Design Space Exploration

The objective of is to choose the number of actor threads
and the number of learner threads such that the ratio between
the throughput of the data collection vs. data consumption is
the same as the single thread implementation (update_interval
denoted in Algorithm|I). In order to obtain the allocation of the
cores, we profile the overall throughput of the data collection
vs. the number of CPU cores and denote the curve as f,(z),
where x is the number of cores. Similarly, we profile the
overall throughput of the data consumption vs. the number of
CPU cores and denote the curve as f;(x). Let the total number
of CPU cores be M. Then, the design space exploration is the
solution of equation [3}

fa(za) = update_interval x f;(z;)
To+x; <M @)

where z, and z; is the allocated number of cores for actors
and learners, respectively. If the parallel actors and/or learners
are deployed on an accelerator such as GPU or FPGA, instead
of CPU, profiling similar to the one described above can be
used to perform the design space exploration.

VI. EXPERIMENTS

Our experiments aim to answer the following questions:

1) How does our proposed Prioritized Replay Buffer com-
pare against existing baseline approaches? (See Sec-
tion [VI-C)

2) Does the performance of our proposed Prioritized Re-
play Buffer follow the theoretical analysis in Sec-
tion [[V-C| in terms of the fanout size K? (See Sec-
tion [VI-DJ)

3) How does our proposed locking mechanisms for the
prioritized replay buffer reduce the synchronization
overhead compared with using a global lock? (See
Section [VI-D)

4) What is the performance improvement when plugging in
our prioritized replay buffer implementation into existing
RL frameworks? (See Section [VI-E)

A. Experimental Setup

We conduct our experiments on 56-core Intel(R) Xeon(R)
Gold 5120 CPUs with 128GB DDR4 memory and a Nvidia TI-
TAN Xp GPU with 12GB GDDR6 memory as the accelerator.
We implement the synchronization mechanism using pthreads
[35] and the training of neural networks using LibTorch [J§].
We test our framework on reinforcement learning algorithms
including DQN [16] and DDPG [19]. DQN targets at discrete
action space while DDPG and SAC targets at continuous
action space. We use LunarLander-v2 [9] environment to
test the algorithms. In all our experiments, the desired ratio
between the throughput of the data collection and the data
learning (update_interval) is set to 1.
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B. Baseline Approach

In this work, we use RLIib as our baseline. RLIib
is an open source implementation of parallel and distributed
framework for training reinforcement learning agents written
in Python [23]]. For fair comparison, we use the same amount
of cores when running the experiments. We also compare with
the Prioritized Replay Buffer implementation in open source
RL framework tianshou [36]].

C. Comparison with Baseline Approaches

We show the latency of insertion and sampling of the Replay
Buffer with various sizes in Figure [§] We compare our K-ary
sum tree based implementation with RLIib and tianshou
[36]. Overall, our approach reduces the total latency by around
4x compared with tianshou [36] and around 100x compared
with RLIib [25]. Note that the latency of the Prioritized
Replay Buffer operations in RLIib increases in linear while
the latency of our implementation increases in sub-linear. This
suggests our K -ary based Prioritized Replay Buffer has better
scalability compared with [25].

D. Performance of the Prioritized Replay Buffer

1) Effect of fanout K: In order to answer question 2, we
show the latency of insertion and sampling of various K in
Figure 0] We also vary the capacity of the Replay Buffer to
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Figure 9. Latency of various Prioritized Replay Buffer operations with various
fannout K

demonstrate the scalability. First, we observe that the latency
of insertion decreases when K increases. This matches our
theoretical performance analysis because the latency is propor-
tion to the height of the tree. The height of the tree decreases
when K increases. Second, we observe that the latency of
sampling first decreases to a local minimum and then increases
as K increases. This also matches with our theoretical analysis
because as K increases, the latency increase of search over
each level starts to dominate the latency decrease with fewer
number of levels. In order to choose the optimal K, we simply
perform profiling of insertion and sampling to obtain the total
latency. In our experimental machine, K = 16 yields the best
result.

2) Effect of synchronization optimization: In order to an-
swer question 3, we show the execution time of 5000 itera-
tions versus the number of CPU cores using a global lock,
no lock and our proposed synchronization optimization in
Section Although the results of computations without
using lock are wrong, it provides an upper bound on the
performance. We observe that our proposed thread-level syn-
chronization enables 1.01x~5x increase of the execution time
compared with the minimum achievable execution time; and
achieves 2x~5x improvement against using a global lock.
Moreover, our design scales well in the number of CPU cores.
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E. Performance improvement of existing frameworks using our
proposed replay buffer

In order to show the superiority of our proposed Prioritized
Replay Buffer, we write a Python binding of the C++ imple-
mentation and plug it into existing open source RL framework
RLIib [25]. We show the latency of each training step of
two RL algorithms in Figure [TT] Overall, we achieve 1.19x~
1.75x performance improvement using various CPU cores. The
speedup decreases as the number of CPU cores increases. This
is because the proportion of the replay buffer operations time
decreases for each core and the bottleneck shifts to training
the neural networks.

F. Design Space Exploration

As discussed in Section the objective is to allocate
the number of cores for actors and learners, respectively such

©
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Figure 12. Tllustration of design space exploration

that the desired throughput ratio of the data collection and the
data consumption is met. Our framework will first profile the
throughput curve of actors and learners. We show an example
in Figure where the desired throughput ratio is 1. Then,
we perform exhaustive search to find the solution z, and xy
of Equation[35} The time complexity of the exhaustive search is
O(M?), where M is the total number of cores in the processor.

G. Impact of the Data Layout

The total size of the sum tree used in a typical replay buffer
of size 1 million is less 10 KB. This makes the whole sum
tree fit into the L2 cache of the modern CPUs. Thus, we only
observe around 1% benefit of our proposed cache aligned data
layout. However, as the increase of the replay buffer size on
larger problems, the superiority of our proposed data layout
will appear.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we propose a framework for generating
scalable RL implementations on processor with accelerator
platforms. We propose to use parallel actors and learners to
increase the throughput of the data collection and the data
consumption. To support asynchronous actors and learners, we
propose a Prioritized Replay Buffer based on K-ary sum tree
data structure. We propose lazy writing locking mechanism to
minimize the synchronization effort. Our experiments demon-
strate that our proposed framework is superior to baseline
approaches. Given hardware resources, our framework can
automatically generate the number of actor threads and learner
threads such that the desired ratio between data collection and
data consumption is met. Future work includes implementation
of the learners on various accelerator types including GPU
clusters and FPGAs.
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