

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/158977

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/158977
mailto:wrap@warwick.ac.uk

Predictive Analysis of Large-Scale Coupled CFD
Simulations with the CPX Mini-App

A. Powell∗, K. Choudry∗, A. Prabhakar∗, I.Z. Reguly†, D. Amirante‡, S.A. Jarvis§, G.R. Mudalige∗
∗University of Warwick, UK. {a.powell.3, k.choudry, arun.prabhakar, g.mudalige}@warwick.ac.uk

† Pazmany Peter Catholic University, Hungary. reguly.istvan@itk.ppke.hu
‡University of Surrey, UK. d.amirante@surrey.ac.uk
§University of Birmingham, UK. s.a.jarvis@bham.ac.uk

Abstract—As the complexity of multi-physics simulations in-
creases, there is a need for efficient flow of information between
components. Discrete ‘coupler’ codes can abstract away this pro-
cess, improving solver interoperability. One such multi-physics
problem is modelling the high pressure compressor of turbofan
engines, where instances of rotor/stator CFD simulations are
coupled. Configuring couplers and allocating resources correctly
can be challenging for such problems due to the sliding interfaces
between codes. In this research, we present CPX, a mini-coupler
designed to model the performance behaviour of a production
coupler framework at Rolls-Royce plc., used for coupling ro-
tor/stator simulations. CPX, the first mini-coupler framework of
its kind, is combined with a CFD mini-app to predict the run-time
and scaling behaviour of large scale coupled CFD simulations. We
demonstrate high qualitative and quantitative predictive accuracy
with a less than 17% mean error. A performance model is
developed to predict the ‘optimum’ configuration of resources,
and is tested to show the high accuracy of these predictions.
The model is also used to project the ‘optimum’ configuration
for a 6 Billion cell test case, a problem size representative of
current leading-edge production workloads, on a 100,000 core
cluster and a 400 GPU cluster. Further testing reveals that the
‘optimum’ configuration is unstable if not set up correctly, and
therefore a trade-off needs to be made with a marginally less-
than-optimal setup to ensure stability. The work illustrates the
significant utility of CPX to carry out such rapid design space and
run-time setup exploration studies to obtain the best performance
from production CFD coupled simulations.

Index Terms—Coupling, Mini-App, Performance model, CFD

I. INTRODUCTION

Concurrent execution of multiple physical models as a single
simulation has emerged as an important approach for mod-
elling large-scale multi-physics phenomena. This strategy, as
opposed to carrying out a single monolithic simulation, allows
for decomposing complex systems into a series of smaller,
interconnected components, which can utilize the optimal
method for modelling the physics of each sub-field. For the
domain scientists, this provides the flexibility to select, for
instance, the best numerical method and problem scale for
each component, or even parallellization/target architecture to
execute the sub-components. It also significantly simplifies
code maintenance and extension essentially implementing a
horizontal separation of concerns approach, akin to the “ver-
tical” separation of concerns achieved by DSL’s [1] in HPC,
where expertise in developing different simulation models can
be leveraged to gain the best results.

The challenge with such a modular approach is the efficient
flow of information between the multiple models through

common interfaces that does not lead to (1) numerical errors
that a monolithic simulation would not have caused and
(2) performance bottlenecks degrading the time-to-solution
or throughput. A coupler acts as a discrete piece of code
dedicated to implementing this flow of information and its
design crucially determines the performance of the full sim-
ulation. For the domain of computational fluid dynamics
(CFD), coupled simulations provide flexibility to combine
specialized flow solvers and/or different turbulence models.
Such coupled simulations are currently common practice in
industry. Examples include the coupling of an incompressible
flow solver for modelling flow within a combustion chamber
with the compressible flow in the outlet vane [2] or using
a hybrid RANS/LES modelling approach where the problem
domain is decomposed and different turbulence models are
applied depending on the flow conditions of each zone [3]–[5].
More complex coupling scenarios have demonstrated the close
interaction of CFD models with other numerical simulations,
such as FEM and/or CEM for large scale systems, for instance
in [6] where a full engine simulation is attempted with coupled
multi-physics models.

Within a coupled CFD simulation, solvers interact with each
other by transferring some “interface”or “boundary” data to
its neighbouring simulation via the coupler(s). The couplers
map the values, or fields from one simulation to the other,
interpolating data / translating the information as required [7].
Naturally, adequate resources should also be allocated to the
coupler components for efficient performance, aiming for a
smooth overall simulation without performance bottlenecks
due to the information exchange. This comes in addition to
the more common challenge of balancing resources for each
simulation, where maximum concurrency needs to be achieved
without idling components awaiting data. As such, a key factor
in developing and carrying out performant coupled simulations
is the design and execution space exploration required to
obtain the optimum load and resource balance between the
multiple simulations and couplers. However, given the scale
of production executions including long execution times and
the need to use large HPC systems, a direct, brute force
tuning of parameters, load balancing and runtime configuration
is prohibitively expensive and laborious. In this paper we
investigate techniques that aid such a design and runtime
parameter/configuration space exploration for a large-scale
production CFD workload.

Fig. 1: RR Trent XWB Engine [9] (Reproduced with Permission)

Recent ongoing work re-engineering Rolls-Royce’s produc-
tion CFD suite, aims to modernize their turbomachinery design
simulations for utilizing massively parallel architectures, such
as the emerging Exascale systems. The underlying goal is to
carry out ultra-high fidelity simulations for virtual certification
of whole engine designs [8] which require current model sizes
of 10-100 million elements to extend to trillions of elements.
A key component of such large-scale simulation setups is the
use of coupler software, linking together different components
of the engine simulation. The coupler software used in this
project supports a number of interfaces such as sliding planes
(sliding meshes), conjugate heat transfer, mixing planes or
overset (Chimera) interfaces depending on the information
transferred from one simulation model to the other.

In the present work, we focus on the engine compressor,
made with many blade-rows attached to a shaft which spins
at high speed to compress air entering the front of the engine.
Its function is to increase the air pressure, forcing the high
pressure air into the combustion chamber, within which air
is sprayed with fuel and ignited. The hot air exhaust from
the resulting combustion provides the thrust that drives the
turbines which in turn spin the compressor and fan (see Fig. 1).
Simulation of the full compressor therefore consists of a cou-
pled simulation with a number of Reynold’s Average Navier-
Stokes (RANS) or hybrid RANS/Large eddy simulation (LES)
models representing simulation of rotor and stator blades,
interlinked with sliding plane interfaces (see Fig. 2). Each
of the rotors and stators are simulated using instances of the
Rolls-Royce’s Hydra CFD application [10], an unstructured-
mesh application which uses a 5-step Runge-Kutta method
for time-marching, accelerated by multigrid and block-Jacobi
preconditioning. The Hydra instances (we henceforth call
Hydra Units, HUs) are linked together by custom Coupler
Units (CUs) as illustrated in the figure above. The custom
coupling configuration is then set up such that the HUs operate
on distinct meshes that cover adjacent or overlapping zones of
the physical space [11]. On a parallel HPC system, distributed
memory (MPI) parallelism is used, where each HU is assigned
a number of (MPI) processes. A CU is also allocated a number
of processes to carry out the inter-linking between the HUs.
In order to simplify the interfaces, improve parallelism and in-
turn performance, a single CU will only manage one geometric
interface, namely the interface (or part of the interface) shared

Fig. 2: An annotated model of the DLR Rig250 compressor test case
(above) and setup of a Rotor/Stator test case with Hydra Units (HUs)
and Coupler Units (CUs) (below) [12] (Reproduced with Permission)

by two HUs. This means that the interface shared by the
two HUs can be allocated multiple CUs, each handling a
segment of the interface. Consequently this leads to a complex
configuration of HUs-to-CUs connectivity and MPI processes
to HUs and CUs, that for a given overall simulation, require
careful orchestration of distributed memory resources to obtain
optimal performance. As each rotor moves through every
time step, sliding planes interfaces must be used, where the
mapping between the stator and rotor interfaces must also
be recomputed for each time step. This process, performed
by the CUs, can be a significant bottleneck on the parallel
efficiency of the simulation if resources are not adequately
distributed. The problem quickly becomes intractable when
reaching current production problem sizes that are at 1B to
5B cells for a typical compressor.

In this paper, we attempt to develop techniques to solve
the above design space and configuration exploration problem.
We develop a stripped-down, “proxy” coupler framework
called CPX (derived from Coupler Extensions), producing a
tractable, yet representative application to aid the investigation.
The idea follows on from the widely used technique in HPC
where simplified versions of large applications, called mini-
apps, are used to explore co-design, performance and optimum
configurations of applications on HPC systems [13], [14]. To
build a proxy coupled CFD simulation, two mini-apps are
required - a coupler mini-app and CFD mini-app. Rolls-Royce
already uses an open-source mini-app called MG-CFD [15] to
assist the development of the Hydra CFD application. As such,
our focus in this work is the equivalent coupler mini-app.

By combining instances of MG-CFD together using CPX,
we investigate, model and predict the optimum HU-to-CU
connectivity/configuration, aiming to understand how to best
allocate resources for full-scale production simulations. More
specifically we make the following contributions:
• We present CPX, a representative mini-app designed to

match the performance behaviour of Rolls-Royce’s produc-
tion coupler framework. CPX is combined with the MG-
CFD mini-app to create proxy configurations to capture the

2

1

2

3

Interface 1

Interface 2

Fig. 3: Interpolation between coupled interfaces. The colours repre-
sent the different values in the interfaces, which after data exchange
and interpolation then match.

operation of the production simulations. The run-time and
scaling behaviour of MG-CFD with CPX is shown to have
the same quantitative and qualitative behaviour as Rolls-
Royce’s production applications.

• An analytical comparison is used to demonstrate that for
a certain allocation of coupling resources, CPX and RR
Coupler will have similar scalability behaviour. CPX + MG-
CFD is then tested using a variety of configurations, and
compared to RR Coupler + Hydra, showing that proxy apps
can predict the run-time with a less than 17% mean error.

• Using the insights from CPX and MG-CFD, an analytical
performance model is created to predict the best resource
allocation for a given coupled simulation of the production
applications. The model is used to predict optimum configu-
ration settings on a cluster, and the prediction is then tested
against other configurations on the 740,000 core ARCHER2
supercomputer [16] to show that the predicted configuration
is optimal. Finally, the model is used to predict the optimum
configuration for a 6Bn cell test case using 100,000 cores,
as well as the same run on a 400 GPU system.

While the main use case of CPX is for capturing the behaviour
of a specific production framework, it can equally be used as a
representation of a general purpose coupled CFD simulation.
Additionally, the design principles seen in CPX can be applied
when coupling proxy applications in other domains.

II. BACKGROUND AND RELATED WORK

The process of coupling codes usually involves four core
stages. Firstly, interfaces which sit between simulations are de-
fined, and are used as the domain in which data is transferred.
These interfaces are made of slices of the original domains,
and by ensuring that the values across the interfaces match, the
system remains stable. This can be done as a preprocessing
step or at run-time. Next, a mapping is created which links
the cells in the interfaces, so when data is transferred (e.g
for every iteration of a solver) the cells of the interface mesh
know where to send and receive data. These first two stages
are usually only performed once.

Once the solvers are running, they transfer data between
each other during each iteration. When data is received, it is

Interface 1

Interface 2

Interface 1

Interface 2

Fig. 4: The interface search routines have been split across 4 MPI
ranks, shown by the different colours in each interfaces.

interpolated to ensure the values remain consistent across the
interfaces. This interpolation is necessary as the interfaces may
not align, thus the values for a particular interface cell will be
a combination of multiple cells from the other interface, as
well as its prior value. This can be seen in Figure 3. The
‘communicate and interpolate’ process is repeated for every
iteration of the solver, until the simulation concludes.

Traditional code coupling is a well-studied field, and a
variety of frameworks exist to aid the implementation of
these stages. These frameworks vary in scope and function;
frameworks such as MUI [17] and preCISE [18] act purely
as an interface where data can be sent and retrieved, whereas
others, such as MCT [7], are more involved, with dedicated
classes for data fields and methods for interpolation and
other transformations. The RR Coupler framework operates
at a lower level, with the communication and interpolation
being hand coded; however, from a design perspective it most
closely resembles the OpenPALM framework, developed in-
part by CERFACS [19]. By using these coupling frameworks,
developers can simplify the coupling process and speed up
development time.

However, when coupling sliding planes, the focus of this
research, the process is more involved. With a sliding plane,
one of the interfaces moves relative to the other interface,
which means that the mapping which links the cells in
one interface to the other must be recomputed every time
the interface moves. In the context of a series of coupled
Rotor/Stator chambers, such as those shown in Figure 2, this
recomputing needs to be performed every time the Rotor
blade(s) rotate. The process is intensive, as each cell in an
interface needs to compare itself with every other cell in the
other interface, and must be repeated for all interfaces in a
coupled simulation, both moving and static. As a result of
this ‘brute force search’, if the average interface size doubles,
the search run-time increases by a factor of 4. This run-time
increase becomes a problem as the geometric complexity of
simulations grows and more detailed meshes are used.

To ensure that the search routines do not dominate run-time,
it is important to split the work across MPI ranks. However,
splitting this process across ranks will only decrease the search
run-time by a linear factor, since the nodes in an interface will
still have to search every node in the other interface. This is
because it is not known which cells correlate to each other
and so there is no way to restrict the search area.

Instead, the interfaces can be split so that the domain

3

over which each node has to search is restricted, highlighted
in Figure 4. This requires knowledge as to how far the
sliding interface will move, as all required cells from the
other interface must be included in the restricted domain. By
reducing the size of the domain, and splitting the work across
MPI ranks, the run-time can be decreased by the number of
MPI ranks squared in the best case. Consider a future test case
involving geometrically complex meshes, 10 times finer than
the existing production case. In a sliding plane example, this
will increase the search routine run-time by a factor of 100
(assuming the interface size has increased by the same factor
as the mesh). If manual partitioning is used, and partitions are
sub-divided by a factor of 10, increasing coupling resources
(MPI ranks) by a factor of 10 should result in little-to-no
increase in coupling run-time compared to the existing mesh.
If no partitioning is used, then the number of MPI ranks has
to be increased by a factor of 100 to achieve the same effect.

It is therefore advantageous to partition the mesh to ensure
maximum parallel efficiency in sliding plane problems. How-
ever, since the boundaries in the Rotor/Stator test cases are
radial, they cannot be split during run-time and must be done
manually. It makes the process time consuming, particularly
when determining how to best split the MPI ranks between
the main applications and the coupling, as this process must
be done via trial and error. Most significantly, no existing
coupling library has tools to help with this problem.

In the RR Coupler, the first stage of coupling (defining the
interfaces) is performed before the code is run. The other
three stages (communication, search, and interpolation) are
performed by the CUs. Each Hydra Session runs for a set
number of time-steps, in which the Rotor rotates every time-
step, and between each time step the solver runs for a certain
number of iterations. At every time-step, the CU(s) run a
search routine to recompute the mapping between the interface
cells. During solver iterations, the data is transferred from the
HSs to the CU(s), where the CU(s) interpolate the data such
that the values are consistent across interfaces.

The RR Coupler has 3 methods of increasing parallel
efficiency within the coupling process. The first is to assign
multiple MPI ranks to a single CU, which splits the search
workload between ranks but does not partition the opposite
interface, similar to the first example in Figure 4. The second
is manually partitioning the mesh, assigning each part to a CU,
and having multiple CUs between each HS. A single MPI rank
can then be assigned per CU. This is an implementation of the
second example in Figure 4. Finally, a hybrid approach can
be used, assigning multiple CUs and multiple MPI ranks per
CU. All 3 of these approaches will speed up the interpolation
equally; however from a performance perspective, the second
approach is the best, as the reduction in search time is the
greatest when using this method.

The issue with the second option is that unlike with rank
assignment, which can be done by simply changing the
run-time command, partitioning the interfaces must be done
manually. This is time consuming because the partitions must
be a similar size to one another to ensure load balancing. In

addition, as the number of partitions (and CUs) increase, the
likelihood of one interface having no mapping to cells in the
opposite interface also increases, which causes the RR Coupler
to crash. As a result, having insight on an optimized CU and
HU configuration can significantly reduce overall setup time.
This research aims to achieve this by using a ‘proxy’ mini-
app simulation and a performance model; a mini-coupler can
be used as a test bed for different CU configurations and for
verifying performance, and the performance model can be used
to determine the optimum CU configurations.

The use of performance models is well documented, and
have been used for a variety of SPMD applications. These
include models for particle transport and wave-front applica-
tions [20] and nonlinear solvers [21] [22]. Performance models
incorporate a number of parameters, such as domain size
and frequency of certain loops, using these to produce an
approximation for the run-time, or an optimized setup. No such
performance model currently exists for a coupling framework,
but the design process will be similar to that of traditional
models.

III. BUILDING THE PROXY SIMULATION

To build a ‘proxy’ coupled CFD simulation, two proxy or
mini-apps are required: a mini-coupler, and a standalone proxy
CFD application. The mini-coupler component is the subject of
this research, whereas for the proxy CFD application we chose
an existing mini-app, MG-CFD. MG-CFD has previously been
demonstrated to be an accurate proxy for predicting run-times
and scaling behaviour of Hydra [15].
A. MG-CFD - A proxy for Hydra

The MG-CFD is a three-dimensional finite-volume discretiza-
tion of the Euler equations for inviscid, compressible flow over
an unstructured grid, and is based on the CFD application
by Corrigan et al, included in the Rodinia benchmark suite
[23]. The version used in this work is written using the OP2
DSL [24], which enables the automatic generation of par-
alleizations targeting clusters of multi-core CPUs and GPUs.
This means that MPI, OpenMP and SYCL versions of MG-
CFD can easily be built, as well as CUDA and HIP binaries
that can run on Nvidia and AMD GPUs. This research focuses
primarily on the MPI version, since it is the fastest CPU
version of the code on any given platform [25]; however, we
also consider the CUDA version of the code when developing
and evaluating the performance model.

This proxy application is designed to be a representation
of Hydra’s iflux and vflux loops, which are part of Hydra’s
nonlinear solver and make up nearly half of the run-time.
These handle inviscid and viscid flow, with the remainder of
time spent in gradient sensitivity and calculating the source
term of other equations. MG-CFD predict run-time of the iflux
loop with less than 16% error when not using SIMD extensions
[15]. The vflux loop is more computationally intense than iflux,
but it has a similar memory access pattern, thus the number
of cycles can be increased to model vflux. Consequently, MG-
CFD fulfils our requirement of a proxy application for Hydra,
particularly its most time consuming loops iflux and vflux
which determines total run-time.

4

MG-CFD1

MG-CFD2

MG-CFD3

CU CU

CU CU

…

…

1 TOTAL 5

2

3 MG-CFD 200

4 MG-CFD 200

5 MG-CFD 200

6

7 COUPLER 20

8 UNIT_1 1

9 UNIT_2 2

10

11 COUPLER 20

12 UNIT_1 2

13 UNIT_2 3

Fig. 5: A typical CPX input configuration file (left), specifying three
MG-CFD Sessions, each with 200 MPI ranks, and two Coupler Units,
each with 20 MPI ranks. The generated configuration (right), with
Multi-Unit Mode (MUM) enabled.

B. Initial design considerations of a proxy coupler

When developing a proxy application, it is important to focus
on what should be included and what is not required in order
to adequately capture the properties of the larger application.
The central aim of any proxy or mini-application is to have
similar performance and scalability characteristics to the larger
code, even if the methods used to achieve this are different
[26]. It is important that the application should be limited in
scope, to retain the properties that make proxy applications
beneficial, but still close enough to the full application to
remain useful. As a result, a number of simplifications were
made to the design of the proxy framework in comparison to
the full framework:

• The proxy code should use identical, static meshes com-
pared to the different mesh sizes of the full simulation.
The meshes should be approximately the size of the average
mesh size in the full simulation

• The interfaces should also have a fixed size, whereas this is
not the case with the full framework setup

• The coupling routines (communication, interpolation and
searching) should represent/match the computational inten-
sity of the full simulation. There is no requirement to carry
out a valid calculation, and data should simply be discarded
once it has been sent back to each MG-CFD Session.

• The framework should support either the RR Coupler’s ‘sin-
gle Coupler Unit with multiple ranks’ or the RR Coupler’s
‘multiple Coupler Units’ from a performance perspective,
switchable with a flag. Since increasing Coupler Units is
always preferable, there is no need to have a mixture of
Coupler Unit + MPI rank behaviour.

C. Components of RR Coupler and Design of CPX

1) Input files: The basic design of the proxy coupling
framework, CPX, is very similar to the full scale RR Coupler
framework [11], using MPI for distributed-memory paralleliza-
tion. The input is read in from an input configuration file which
specifies the number of MPI ranks assigned to each Coupler
Unit, the number of MPI ranks assigned to MG-CFD Sessions
and which Coupler Units are connected to which MG-CFD
Sessions.

A flag can be set in the separate CPX global configuration
file which switches between running a Coupler Unit in a ‘1
Unit per rank’ mode and a ‘Single Unit with many ranks’
mode. This is known as Multi-Unit Mode (MUM). When
enabled, the interface is split across ranks during the CPX
brute force search routine. When disabled, each rank must
perform a brute force search over the entire interface. As
a result, the scaling behaviour in these two scenarios can
be tested quickly without having to manually divide up the
mesh, since the CPX meshes are static and the interface is
pre-defined. Due to its rotating domain, doing this in the RR
Coupler would be significantly more time consuming. Note
that CPX can only ever have 1 physical Coupler Unit per
2 MG-CFD Sessions (i.e only 1 communicator), but enabling
MUM, configures the single Coupler Unit to scale in a similar
manner to that of using multiple RR Coupler CUs. Figure 5
shows an example CPX input configuration file, along with the
resultant CPX configuration with MUM enabled. The input of
the mesh remains the same as in the regular MG-CFD, being
a parameter that is passed in at run-time.

2) Computation within RR Coupler and CPX: During the
RR Coupler sliding-plane execution, there are three main
operations: (1) Communication - the Hydra Sessions send
data to their Coupler Unit(s), which then sends data back, (2)
Search - the Coupler Units must do a brute force search on
each of the interfaces to see which nodes overlap between them
and (3) Interpolation - the data must be interpolated before
being sent back to the Hydra Sessions.

Algorithm 1: The RR Coupler sequence of operations
for a Coupler Unit (CU)

while true do . For every time step
Open communications to receive data
Search algorithm
for i = 1, niter do

if i 6= 1 then open communications to receive data
Wait until receive is completed
Interpolate data on target nodes
Send interpolated data

end
end

Algorithm 2: The CPX sequence of operations for a
Coupler Unit (CU)

for i = 1, number of MG cycles do
Open communications to receive data
Wait until receive is completed
if i % searchfreq then

Search algorithm
end
Interpolate data on target nodes
Send interpolated data

end

Fig. 6: The CPX Coupler Unit (CU) algorithm in comparison to
the RR Coupler Coupler Unit (CU) algorithm. CPX uses linear
interpolation, a simplified version of the interpolation scheme used
in the RR Coupler [11].

Out of the above, the search routine is the most expensive,
since it is a brute force search running in O(n2), where n

5

is the size of the interface mesh. However, it only needs to
be done every time step and not every iteration, since the
interface only changes every time step. The interpolate stage,
which averages the data from the interfaces, must be run every
time step. It runs in linear time, but significantly more number
of times that the brute force search. In a typical RR Coupler
+ Hydra run, there is at the very least 10 iterations per time
step, and often up to 50. The communication stage must also
take place every time step, but it also scales linearly with a
smaller contribution to run-time than the other operations.

Figure 6 shows the differences between the RR Coupler
and CPX operations within each Coupler Unit. CPX follows
a similar model to the RR Coupler, with search, interpolation
and send routines, but with a few changes. Firstly, due to the
static interfaces MG-CFD deals only with multigrid cycles, not
time steps and iterations. As a result, the frequency at which
the search routine operates is specified in the CPX global input
file. Additionally, CPX uses blocking communication in the
transfer between each MG-CFD Session and the respective
Coupler Unit(s), so this must be completed before any com-
putation can be achieved.

The search routine in CPX is a brute force search of the
interface mesh, which is simply a small slice of the original
MG-CFD mesh. This is completed by inserting the data from
each node at the beginning of a C++ std::vector, and
repeating the process for the size of the interface mesh.
This gives the O(n2) scaling with mesh size to match RR
Coupler’s search algorithm. The interpolation is an average of
the interface nodes, which are accessed in constant time. All
nodes in the interface are averaged, so the interpolation also
matches RR Coupler’s O(n) scalability. Finally, the process of
communication between the MG-CFD Sessions and Coupler
Unit(s) is also linear in interface size.

With Multi-Unit Mode enabled, the interface is split be-
tween the number of Coupler Unit ranks during the search
routine. As shown in Section IV-A, if the mesh is split by
a factor of m, then the run-time of the search algorithm
decreases by O(m2). This is because the interfaces (of both
MG-CFD Sessions) will decrease in size by m, and the search
routine involves a brute force search (of time O(m)) which
must be done m times. With Multi-Unit Mode disabled, the
search routine is repeated m times, to replicate how the run-
time of the RR Coupler search algorithm only decreases at
most O(m), where m is the number of ranks, when a single
Coupler Unit with multiple ranks is used.

IV. CPX VS THE RR COUPLER - COMPARISON

A. Analytical comparison

To ensure that CPX scaling is in line with that of the RR
Coupler, we need to ensure that the CPX interpolation and
search routines scale in an equivalent manner. We can compute
the complexity of the algorithms (big-O) in these routines as
a function of the interface sizes and MPI ranks for both RR
Coupler and CPX, to demonstrate equivalence.

1) RR Coupler run-time: Consider two Hydra Sessions,
connected together with one or multiple Coupler Unit(s). Then

let RC be the number of Coupler Units/ranks, NL
C be the

interface size of the ’Left’ Hydra Session and NR
C be the

interface size of the ’Right’ Hydra Session. Then for 1 CU
with multiple ranks:

O(search) = O((N
L
C

RC
·NR

C) + (
NR

C

RC
·NL

C)) = O(N
L
C ·NR

C

RC
) (1)

O(interpolate) = O(N
L
C

RC
+

NR
C

RC
) = O(N

L
C +NR

C

RC
) (2)

For multiple CUs:

O(search) = O(2 · N
L
C

RC
· N

R
C

RC
) = O(N

L
C ·NR

C

RC
2) (3)

O(interpolate) = O(N
L
C

RC
+

NR
C

RC
) = O(N

L
C +NR

C

RC
) (4)

2) CPX run-time: Consider two MG-CFD Sessions, con-
nected together with one Coupler Unit. Let RC be the number
of Coupler ranks and NC be the interface size of each MG-
CFD Session (since the interfaces are all the same size). Then
for 1 CU with multiple ranks (MUM=OFF):

O(search) = O(2 · (NC

2 ·RC
· NC

RC
·RC)) = O(

NC
2

RC
) (5)

O(interpolate) = O(2 · (NC

RC ·RC
·RC)) = O(

NC

RC
) (6)

For multiple CUs (MUM=ON):

O(search) = O(2 · (NC

2 ·RC
2 ·

NC

RC
·RC)) = O(

NC
2

RC
2) (7)

O(interpolate) = O(2 · (NC

RC ·RC
·RC)) = O(

NC

RC
) (8)

3) Comparison: The result of the analytical comparison
shows that the scaling behaviour for the RR Coupler and CPX
should be similar, other than the difference of RR Coupler’s
left and right Hydra interface sizes. If the CPX interface sizes
are equal in size to the average of the RR Coupler interface
sizes, then the scaling should be close. Of course, scaling is
affected by a variety of factors, not just the number of ranks
and the size of the domain. In addition, since the CPX search
routine is artificial and simplified compared to the RR Coupler,
even if the search routine’s parallel efficiency is consistent
with RR Coupler, its contribution to overall run-time may be
different. This can be determined via testing however, and
thus the comparison shown highlights how CPX scaling should
approximately mirror RR Coupler, even if the overall run-time
may need to be adjusted.

B. Numerical testing

1) 10M Cell Test 1: To test the run-time and scaling is
close to the production coupling setup, two comparisons are
performed. The first comparison involves a simple comparison
of ∼10M cell test cases, with the production codes using
internal ∼11M average cell test cases and the mini-apps using
instances of the publicly available NASA Rotor37 8M mesh.
The test is performed using 2 Hydra Sessions, with either 100,
200 or 400 MPI ranks each. For the RR Coupler, three Coupler
Unit configurations are tested: A single CU with 1 MPI rank,
a single CU with 4 MPI ranks and 4 CUs with a single MPI

6

TABLE I: RR Coupler ∼10M Cell Tests (Test Case 1)

Hydra ranks CUs Ranks per CU Time (s)

100 1 1 195.4
100 1 4 108.1
100 4 1 77.5
200 1 1 176.8
200 1 4 89.0
200 4 1 59.4
400 1 1 158.8
400 1 4 70.5
400 4 1 42.2

Fig. 7: Rolls-Royce Coupler vs. CPX. 1st∼10M cell test case with 1
Coupler Unit, 4 Coupler Units and 1 Coupler Unit with 4 MPI ranks.
(H - number of Hydra/MG-CFD ranks)

rank. The RR Coupler test case runs for 5 time steps, with 10
iterations per time step.

The equivalent setup in CPX with MG-CFD Sessions is
then tested, with 5 search routines, and 250 MG cycles.
Prior testing has shown MG cycles being 5x the number
of total iterations provides a close comparison. The size of
the boundary mesh is set to be the same across both test
cases (∼28,000), so the proxy and main coupler performance
can be directly compared. However, the overall MG-CFD
mesh is smaller than the Hydra mesh, and as such there will
be small differences in the run-time. The tests are ran on
the 740,000 core ARCHER2 supercomputer [16], which uses
nodes of 2x64C AMD EPYC 7742 2.25Ghz microprocessors,
with 256GB memory per node. All codes are compiled using
the CRAY 10.0.4 compiler and MPICH 8.0.16 MPI.

Tables I and II show the performance comparison between
RR Coupler and CPX. The result is displayed in Figure 7.
The results show that the CPX produces a mean error of 11%
when predicting the production code run-time, with a worse
case prediction error of 28%. One noticeable characteristic of
the CPX results is that the MUM=OFF results are much closer
to the MUM=ON results than for the RR Coupler; this is due
to the search routines being simpler on the mini-app than the
production code. While they theoretically scale similarly, the
search time durations is longer for the production code. This
difference accounts for the majority of the prediction error,
and since it is always ideal to assign MPI to one CU per
rank over assigning multiple MPI ranks to a single CU, this
error is largely insignificant. The error when comparing the
RR Coupler multiple CU results to CPX (MUM=ON) results
is small by comparison. The 11% average prediction error for
CPX shows that the CPX mini-app behaviour is close to RR
Coupler production code in this first test.

TABLE II: CPX ∼10M Cell Tests (Test Case 1)

MG-CFD ranks CUs Ranks/CU MUM? Time (s)

100 1 1 OFF 192.4
100 1 4 OFF 81.8
100 1 4 ON 72.0
200 1 1 OFF 178.6
200 1 4 OFF 64.0
200 1 4 ON 53.7
400 1 1 OFF 167.0
400 1 4 OFF 55.5
400 1 4 ON 42.6

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900

R
u

n
-t

im
e

 (
s
)

MG-CFD/HYDRA Procs per session

CPX 1CU CPX 2CU CPX 4CU
RR 1CU RR 2CU RR 4CU

Fig. 8: Rolls-Royce Coupler vs. CPX. 2nd∼10M cell test case with
1, 2, and 4 Coupler Units.

2) 10M Cell Test 2: The second comparison involves a
different ∼10M cell test case, this time with two rows of the
DLR Rig250 test case [12]. These second production meshes
have an average size of ∼10M (slightly smaller than the first
test case), but have interfaces approximately 20% larger in
size than the first case. The mini-apps use instances of the
same NASA Rotor37 8M test case, but the interface sizes have
been increased by 30%. In this test, two Hydra sessions are
connected together using 1, 2 and 4 CUs, and the number
of MPI ranks is increased incrementally from 100 to 800.
The Hydra + RR Coupler test case has 5 time steps and 10
iterations per time step, so the CPX + MG-CFD case is run
with 250 MG cycles and 5 search routines. The hardware and
software configurations remain the same as the first ∼10M cell
test case.

Figure 8 shows the performance scaling of both CPX and
RR Coupler with this test case. The CPX mini-app produces a
mean error of 16% when predicting production code run-time,
with the maximum error being 41%. This maximum error
is due to multiple MG-CFD sessions becoming out of sync
with one another and having to wait for the slowest session
whenever data is sent to the coupler. To match solver run-time,
we run 5 iterations of the MG-CFD solver for every Hydra
iteration, as a result of MG-CFD’s simplified solver. Due to the
similarities in computation and memory access, the two solvers
should have similar variance per iteration, but as a result of
the increased number of iterations of MG-CFD, it is likely
overall variance is higher, resulting synchronization issues and
increased run-time at high numbers of MPI ranks per MG-CFD
session. This must be considered when using CPX + MG-CFD

7

TABLE III: Performance model

RTsf = (Snewmesh

8) ∗ (Bnewfrac

0.03) E1

MGnewcycl = NTS ∗ ITS ∗ 5 E2

BTnewmain = BTmain ∗RTsf ∗ (MGcyclnew

MGcycl
) ∗ SFmesh ∗ logSmesh

(RTsf ∗ Smesh) E3

BTnewsr = NTS

FRQsr
∗BTsr ∗RTsf

1.8 E4

BTnewint = BTint ∗RTsf ∗ (MGcyclnew

MGcycl
) E5

SFmain = 2− 0.01 ∗ ((Rmain

128) ∗ 0.4)/(loge (RTsf∗8+e)
10)) E6

SFcpl = 2− 0.01 ∗ ((Rmain

8) ∗ 0.4)/(loge(RTsf∗8+e)
10)) E7

Tnewx = Tx ∗ (1 + (SFx − 1) ∗ (Rx−1
Rx

)

SFx
) E8

TABLE IV: Performance model parameters
Hyd+Cpl Parameters Mini-Apps Parameters Symbol

Size of mesh Size of mesh Smesh

No. of time steps MG cycles
Its. per time step NTS

Iterations per time step MG cycles
No. of time steps ITS

No. of time steps (alt) MG-CFD FRQsr

search frequency
Iterations per time step × MG cycles MGcycl

time steps
Boundary mesh fraction Boundary mesh fraction Bfrac

No. of Hydra Sessions No. of MG-CFD Sessions Mains

Hydra scaling factor MG-CFD scaling factor SFmain

RR Coupler scaling factor CPX scaling factor SFcpl

Mesh scaling factor Mesh scaling factor SFmesh

Base Hydra time Base MG-CFD time BTmain

Base RR Coupler Base CPX BTint

interpolation time interpolation time
Base RR Coupler Base CPX BTsr

search time search time
Ranks per HS Ranks per MG Session Rmain

Ranks per CU Ranks per CU Rcpl

Total/target ranks Total/target ranks Rtotal

as a prediction of RR Coupler + Hydra run-time. However,
when considering that the underlying MG-CFD mini-app has
an mean prediction error of 16% [15], the average error from
the mini-coupler is small, even with the high core count
results, and can be used as a representation of the RR Coupler
framework. Furthermore, the overall scalability trend is very
similar to that of the RR Coupler, so its qualitative accuracy is
high. Thus, if the performance model produces an ‘optimum’
configuration for the RR Coupler, then that configuration
should also be optimal for CPX and vice versa.

V. BUILDING AND APPLYING THE PERFORMANCE MODEL

To develop a performance model, the parameters of both the
full-scale code and the mini-app must be considered. These
include domain size, run-time parameters, scaling parameters,
and base case performance numbers. Table IV highlights the
RR Coupler parameters, the equivalent CPX parameters, and
their symbols.

Smesh is a parameter representing the size of the mesh in
millions of cells. NTS and ITS are the number of time steps
and iterations per time steps in the Hydra run, and MGcycl is
the MG-CFD equivalent. Because this model uses a hybrid of
mini-simulation and full simulation data, conversions between
the shared values are shown in table. For example, the number
of Hydra time steps, NTS , is equal to the frequency of the CPX

search routine, FRQsr, and there is conversion between MG-
CFD cycles and Hydra total iterations (MGcycl = NTS∗ITS).

The objective of the model is to calculate the values of
Rmain and Rcpl such that the overall run-time, Toverall,
is as small as possible. Toverall is the sum of Tmain +
Tsearch+Tinterpolate, which are the final run-times of the main
solver (either MG-CFD or Hydra), the run-time of the coupler
search routine, and the run-time of coupler interpolation and
communication.
Bfrac is the average interface size as a proportion of

the average total mesh size. For example, if meshes have
10M cells and the interfaces are 30,000 cells in size, then
Bfrac = 0.003. Mains is the number of Hydra or MG-
CFD sessions, and SFmain, SFcpl and SFmesh are either
functions or constants which determine how much speedup
is gained when doubling the number of MPI ranks or CUs.
BTmain, BTint and BTsr are the base run-times for the
main Hydra/MG-CFD application, and for CPX search and
interpolate operations, and are used as a starting point in which
the values are manipulated by the other variables. Finally,
Rmain, Rcpl, and Rtotal are the number of ranks or CUs
assigned for the main application, for CPX/RR Coupler and
in total.

Initial values are set based on an MG-CFD/CPX test case
of Smesh = 8M and Bfrac = 0.004, with MGcycl = 500,
equivalent to NTS = 10, ITS = 10. There are 10 search
routines, thus FRQsearch = 10. These values are collected on
a run of Rmain = 100 and Rcouple = 1, with BTmain = 44s,
BTsearch = 68s and BTinterpolate = 117s.

First, the initial run-times must be scaled based on the mesh
size, which gives an adjusted run-time factor. This is shown
in Equation E1. Next, we modify the base MG-CFD time and
adjust it based on this factor, as well as ITS and NTS values,
seen in Equation E2. It also needs to be scaled by SFmesh,
which is how much the MG-CFD run-time increases above
linearly if the mesh size is doubled. From weak scaling testing
we know the value is approximately SFmesh = 1. This is
shown in Equation E3.

The same process is repeated for the coupler interpolation
and search times, as these also need to be scaled based on the
mesh size. The interpolate time scales with RTsf , the size of
the boundary mesh, and the increase or decrease of MG cycles
compared to the base case. The search time scales with the

8

Fig. 9: Rolls-Royce Coupler vs. CPX vs. Model ∼10M Cell Test 2,
testing different CU numbers with 400 Hydra/MG-CFD MPI ranks.

square of the size of the boundary mesh, along with the search
frequency. These updated times can be seen in Equations E4
and E5. Finally, the Hydra/MG-CFD scaling factor and RR
Coupler/CPX scaling factor needs to be defined. Modelling
their scaling requires a function, with size of the mesh and
number of ranks as parameters, as having a constant scaling
factor would not be enough detail to accurately model the
setup. These can be seen in Equations E6 and E7, which
models the scaling with different mesh sizes on dual socket
AMD EPYC 7742 2.25Ghz clusters, up to 64 nodes.

The model takes in the adjusted base run-times for the main
application (MG-CFD or Hydra), the coupling search time
and the coupling interpolation time. These are BTnewmain,
BTnewsearch and BTnewinterpolate. These run-times are for
the setup described earlier, with Rmain = 100 and Rcouple =
1. The ranks per HS and number of CUs is then passed into
Equation E8, which computes the time that both the main
application and the coupling will take to complete if the MPI
ranks are increased by 1. Whichever time provides a greater
run-time decrease is assigned the extra MPI rank, and the
process is repeated until the sum of Rmain and Rsearch are
equal to the Rtotal parameter, which is user defined.
A. Applying the performance model
To test the performance model, the input parameters were set
to Smesh = 10, NTS = 5, ITS = 10, Bfrac = 0.0033,
Mains = 2 and Rtotal ≈ 850. This is the setup used for the
‘10M Cell Test 1’ test case. These parameters are designed
to see how many CUs the model suggests is suitable when
400 ranks are used for each HS. Using this setup, the model
suggests that for 400 ranks for each Hydra session, 64 is the
optimum number of CUs, for a total of 864 total ranks.

Figure 9 shows the proposed ‘optimal’ run-time compared
to the same setup but with fewer CUs, testing the setup with
both the mini-coupler and RR Coupler. For both, the reduction
in run-time as a result of increasing CUs decreases the more
CUs are added. For this reason, reallocating Hydra ranks
beyond 64 CUs would likely not result in a decreased run-time.
When looking at the proposed ‘optimal’ configuration, taking
coupler resources and allocating them to Hydra/MG-CFD
sessions also does not result in a decreased run-time. This sug-
gests that the proposed solution is optimal for Rtotal ≈ 850,
and shows that the performance model is working as intended.
As the coupling run-time is minimal here, the performance
discrepancy between CPX and the RR coupler run-time is due
to the MG-CFD mini-app running faster than Hydra.

Using the performance model we can project the optimum
configurations for production problems of interest, with CPUs
and also GPUs, by converting the GPU run-time into a
BTmain equivalent. One such problem is the 10-passage, full
annulus Rig250 problem, tested on both CPUs and GPUs. The
total problem size of this simulation is 6 Billion cells, where
the average mesh size per Hydra instance is approximately
600M cells. It is worth noting that the model does not take
into account any additional overhead for CPU-to-GPU PCIe
communication, which may reduce coupling efficiency when
running coupled Hydra on GPUs. As a result, while optimal
configurations should be valid, the GPU run-times should be
taken with a degree of caution.

Prior testing of standalone Hydra has shown that a node with
4 Nvidia V100 16GB GPUs will produce similar run-time to
550 AMD EPYC 7742 CPU cores. However, given the Ther-
mal Design Power (TDP) of an Nvidia V100 GPU (300W)
and an AMD EPYC 7742 CPU (225W), when factoring in
the power usage of further equipment that’s required for node
functionality (such as networking equipment), we estimate that
a node containing 4 Nvidia V100 GPUs will consume around
2.5x more power than a node containing 2 AMD EPYC 7742
CPUs. The large instance test case requires approximately 400
GPUs to fit the mesh into GPU memory, which is equivalent
(in terms of performance) to 220,000 CPU cores. As a result,
the model parameters for the GPUs are set at Smesh = 600,
NTS = 10, ITS = 10, Bfrac = 0.004, Mains = 10
and Rtotal = 220000, producing an optimal configuration
of 40 GPUs per Hydra instance, and 1280 CUs per pair.
Furthermore, since we estimate that the power consumption
of 100 GPU nodes is similar to the power consumption of
250 CPU nodes, using the performance model, we can predict
the performance on 250 CPU nodes using 32,000 MPI ranks.

It is worth noting that the CUs must run on the CPU, even
when Hydra is ran on GPUs, which results in additional power
consumption. When this is taken into account, 100 GPU nodes
combined with the CUs is equal to a pure CPU setup of 42,000
MPI ranks. The parameters of the power-equivalent CPU run
were therefore set at Smesh = 600, NTS = 10, ITS = 10,
Bfrac = 0.004, Mains = 10 and Rtotal = 42000. With this
setup, the model suggests approximately 3180 ranks per HS
and 1130 CUs per pair of HSs. The run-time predictions for
execution on both 100 GPU nodes and 250 CPU nodes can
be seen in Figure 10, with the results demonstrating the GPU
nodes’ estimated power efficiency benefits over the CPU node
configuration for a variety of CU counts.

Similarly, the performance model can be used to predict
the optimal configuration as we scale up the number of CPUs
or GPUs used for execution. Figure 11 shows the run-time
predictions for the optimal configurations as the number of
computing resources are increased. The model predicts that
there is a hard scaling limit (around 20,000 Hydra ranks
per session and ∼1300 CUs), at which point allocating any
more resources does not improve run-time. Internal testing
has shown that Hydra’s parallel efficiency is only 67% at just
8,200 ranks per session in this test case, so while the predictive

9

Fig. 10: The predicted run-times (s) for the 6B cell test case on CPU
and GPU clusters. The number of Hydra ranks fixed at 3180 per HS
for the CPU cluster and 40 GPUs per HS for the GPU cluster.

model may be too aggressive in assuming no speedup beyond
20,000 ranks, any additional speedup will likely be minimal
if this is not the case. The coupler scaling is likely limited by
the brute force nature of the search routine; the performance
model states that even at 1280CUs, 89% of the run-time is
made up of the search. The CFD bottleneck is likely memory
or cache related, as it is a memory bound code [25].

It is important to note that the number of CUs cannot
be increased indefinitely. As the CU number increases, the
size of each partition decreases which can cause issues if
there is no mapping between a cell in one interface and the
opposite interface. Although the stated CU configurations are
the optimal setups for these test cases, splitting the interface
such that this issue does not occur is difficult. Whilst having
larger partitions and a smaller number of CUs will show a
slight performance decrease, as shown in Figure 10, it will
be far easier to set up than the optimal configuration. Any
additional time spent during run-time will be offset by the
time saved during setup, as the partitions will likely be stable
on the first attempt at partitioning. Therefore it may be sensible
to allocate fewer CUs than optimal to ensure stability.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented CPX, a mini-coupler designed to
match the performance behaviour of Rolls-Royce’s production
coupler framework. Combined with the MG-CFD mini-app,
CPX was used to create proxy configurations that are represen-
tative of production simulations carried out with RR Coupler
and Hydra. We show that the mini-coupler can be used along-
side MG-CFD to predict the run-time and scaling behaviour of
Rolls-Royce’s large scale coupled CFD simulations with high
qualitative and quantitative prediction accuracy. Furthermore,
we detailed the creation and testing of a performance model
that is designed to predict the optimal resource configuration of
a given coupled simulation for both CPX and the RR Coupler.
We demonstrated the use of the model to theorise the optimal
configuration for a large test case to be simulated on both
a 100,000 core cluster and a 400 GPU cluster, comparing
power equivalent CPU and GPU setups. Although the optimal
configuration can be speculated, due to the need to partition the
interfaces manually in the RR Coupler, increasing the number
of partitions or CUs indefinitely can lead to stability issues.

Fig. 11: The predicted run-times(s) for the 6B cell test on CPU and
GPU power equivalent clusters.

Thus, slightly lowering the number of CUs from the proposed
optimal configuration can lead to benefits with regards to setup
time at the cost of a slight decrease in performance.

There are several areas that can be considered further in
future work. One obvious area is to improve the search
algorithm, as the brute force approach currently used is
inefficient. Work has already begun on implementing a tree-
based method which will significantly reduce this search time.
A key issue with the RR coupler is the time-consuming
process of manually partitioning the interfaces. Automating
the partitioning process can improve the utility of the per-
formance model, as well as significantly reducing the setup
time. Additionally, since the RR Coupler supports the use of
conjugate heat transfer as the interface between CFD models,
CHT test cases can be explored in CPX by removing the
need to execute the interface search routines that must occur
when coupling sliding planes. Furthermore, we plan to extend
the functionality of CPX so that it supports the creation of
proxy configurations that are representative of more complex
coupling scenarios. This includes the coupling of MG-CFD
with a combustion mini-app to model the interaction between
the engine compressor and the combustion chamber, as well
as functionality that allows for coupling between CFD and
FEM solvers. We also plan to extend the performance model
to determine optimum run-time configurations for these new
solvers, and carry out testing CPX with the GPU versions
of MG-CFD to validate the GPU run-times predicted by the
model. These extensions will allow for proxy configurations
that are more representative (in terms of performance) of a
complete gas turbine engine simulation to be created using
CPX. Finally, the prediction accuracy of the mini-coupler
motivates its use in predicting the cost and performance of
simulations executed with the RR Coupler on various open
platforms and systems, such as cloud instances, which is not
possible with the full code due to licensing restrictions. The
CPX coupler is available as open-source software at [27].

ACKNOWLEDGEMENTS
This research is supported by Rolls-Royce plc., and by the UK
EPSRC (EP/S005072/1 – Strategic Partnership in Computational
Science for Advanced Simulation and Modelling of Engineering
Systems – ASiMoV). Gihan Mudalige was supported by the Royal
Society Industry Fellowship Scheme (INF/R1/1800 12). We would
also like to thank Chris Goddard at Rolls-Royce for their guidance
for this work.

10

REFERENCES

[1] T. Cleenewerck and I. Kurtev, “Separation of concerns in translational
semantics for dsls in model engineering,” in Proceedings of the 2007
ACM symposium on applied computing, pp. 985–992, 2007.

[2] K. Kannan and G. Page, “Coupling of compressible turbomachinery
and incompressible combustor flow solvers for aerothermal applica-
tions,” in Turbo Expo: Power for Land, Sea, and Air, vol. 45608,
p. V02AT40A004, American Society of Mechanical Engineers, 2014.

[3] J. Fröhlich and D. Von Terzi, “Hybrid les/rans methods for the simulation
of turbulent flows,” Progress in Aerospace Sciences, vol. 44, no. 5,
pp. 349–377, 2008.

[4] J. U. Schlüter, X. Wu, S. Kim, S. Shankaran, J. Alonso, and H. Pitsch, “A
framework for coupling reynolds-averaged with large-eddy simulations
for gas turbine applications,” 2005.

[5] M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “Synthetic
turbulence generators for rans-les interfaces in zonal simulations of aero-
dynamic and aeroacoustic problems,” Flow, turbulence and combustion,
vol. 93, no. 1, pp. 63–92, 2014.

[6] “Joliot-curie supercomputer used to build first full, high-fidelity aircraft
engine simulation,” Accessed May 2021. https://cerfacs.fr/en/actualite/
first-360-degrees-large-eddy-simulation-of-a-full-engine/.

[7] J. Larson, R. Jacob, and E. Ong, “The model coupling toolkit: a new
fortran90 toolkit for building multiphysics parallel coupled models,”
The International Journal of High Performance Computing Applications,
vol. 19, no. 3, pp. 277–292, 2005.

[8] “Strategic partnership in computational science for advanced simula-
tion and modelling of engineering systems - asimov,” Accessed May
2021. https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/
S005072/1.

[9] “World’s most efficient large aero-engine - trent xwb,” Ac-
cessed May 2021. https://www.rolls-royce.com/products-and-services/
civil-aerospace/airlines/trent-xwb.aspx#section-technology.

[10] L. Lapworth, “Hydra-cfd: a framework for collaborative cfd devel-
opment,” in International conference on scientific and engineering
computation (IC-SEC), vol. 30, 2004.

[11] D. Amirante, V. Ganine, N. J. Hills, and P. Adami, “A coupling
framework for multi-domain modelling and multi-physics simulations,”
Entropy - Special Issue: Computational Fluid Dynamics and Conjugate
Heat Transfer. Under Review.

[12] V. Marciniak, A. Weber, and E. Kügeler, “Modelling transition for
the design of modern axial turbomachines,” in Proceedings of the 6th
European Conference on Computational Fluid Dynamics, Barcelona,
Spain, pp. 20–25, 2014.

[13] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis,
“Exploring simd for molecular dynamics, using intel® xeon® processors
and intel® xeon phi coprocessors,” in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, pp. 1085–1097,
IEEE, 2013.

[14] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Design and development
of domain specific active libraries with proxy applications,” in 2015
IEEE International Conference on Cluster Computing, pp. 738–745,
IEEE, 2015.

[15] A. Owenson, S. A. Wright, R. A. Bunt, Y. Ho, M. J. Street, and
S. A. Jarvis, “An unstructured cfd mini-application for the performance
prediction of a production cfd code,” Concurrency and Computation:
Practice and Experience, vol. 32, no. 10, p. e5443, 2020.

[16] “Archer2,” Accessed May 2021. https://www.archer2.ac.uk.
[17] A. Skillen, S. Longshaw, G. Cartland-Glover, C. Moulinec, and D. Emer-

son, “Profiling and application of the multi-scale universal interface
(mui),”

[18] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele,
A. Shukaev, and B. Uekermann, “precice–a fully parallel library for
multi-physics surface coupling,” Computers & Fluids, vol. 141, pp. 250–
258, 2016.

[19] F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morel,
and L. Gicquel, “Analysis of high performance conjugate heat transfer
with the openpalm coupler,” Computational Science & Discovery, vol. 8,
no. 1, p. 015003, 2015.

[20] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis, “A plug-and-play model
for evaluating wavefront computations on parallel architectures,” in 2008
IEEE International Symposium on Parallel and Distributed Processing,
pp. 1–14, IEEE, 2008.

[21] R. A. Bunt, S. A. Wright, S. A. Jarvis, Y. Ho, and M. J. Street, “Predic-
tive evaluation of partitioning algorithms through runtime modelling,”
in 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC), pp. 351–361, IEEE, 2016.

[22] R. Bunt, S. Pennycook, S. Jarvis, L. Lapworth, and Y. Ho, “Model-
led optimisation of a geometric multigrid application,” in 2013 IEEE
10th International Conference on High Performance Computing and
Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing, pp. 742–753, IEEE, 2013.

[23] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC), pp. 44–54, Ieee, 2009.

[24] G. Mudalige, M. Giles, I. Reguly, C. Bertolli, and P. Kelly, “Op2: An
active library framework for solving unstructured mesh-based applica-
tions on multi-core and many-core architectures,” in 2012 Innovative
Parallel Computing (InPar), pp. 1–12, IEEE, 2012.

[25] I. Z. Reguly, A. M. Owenson, A. Powell, S. A. Jarvis, and G. R.
Mudalige, “Under the hood of sycl–an initial performance analysis with
an unstructured-mesh cfd application,” in International Conference on
High Performance Computing, pp. 391–410, Springer, 2021.

[26] O. B. Messer, E. DAzevedo, J. Hill, W. Joubert, S. Laosooksathit,
and A. Tharrington, “Developing miniapps on modern platforms using
multiple programming models,” in 2015 IEEE International Conference
on Cluster Computing, pp. 753–759, IEEE, 2015.

[27] “Cpx source code,” Accessed July 2021. https://github.com/
warwick-hpsc/MG-CFD-app-OP2/tree/feature/coupler.

11

