
Luk Bjarne Burchard

Repurposing Domain-specific
Hardware Accelerators for Sparse
and Irregular High-Performance
General-Purpose Computation

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
The Faculty of Mathematics and Natural Sciences

High Performance Computing Department
Simula Research Laboratory

2023



© Luk Bjarne Burchard, 2023 

Series of dissertations submitted to the  

Faculty of Mathematics and Natural Sciences, University of Oslo 

No. 2695 

ISSN 1501-7710 

All rights reserved. No part of this publication may be  

reproduced or transmitted, in any form or by any means, without permission. 

Cover: UiO. 

Print production: Graphic center, University of Oslo. 



Abstract
In recent years deep learning workloads have driven the demand for conventional
hardware accelerators like GPUs and the development of novel hardware
accelerators. While GPUs have also greatly improved HPC with their data-
parallel computation capabilities, there is a need for specialized accelerators
that can solve specialized problems like deep learning, graph processing, or
bioinformatics more effectively. We expect more novel hardware accelerators to
be present in future HPC clusters. To better prepare the scientific community
for embracing such non-conventional hardware, we are interested in assessing
their capabilities for other HPC workloads than deep learning.

This thesis focuses on the Graphcore IPU architecture, a novel SRAM-based
architecture that integrates massive amounts of SRAM into the processing chip.
The IPU offers a significant increase in cores and SRAM memory compared to
state-of-the-art CPUs, promising performance benefits. However, the architecture
uses a distributed memory model and bulk synchronous style programming, non-
traditional choices for an on-chip processor. Therefore, algorithms will need to
be reformulated to function on the IPU.

Currently, the IPU has not been widely used, let alone analyzed for
workloads beyond deep learning. We address this gap in the literature by
targeting HPC applications beyond deep learning, examining factors such as
programmability limitations, algorithm requirements, and the predictability of
achievable performance. The research aims to enhance understanding of the
practical performance achievable with these processors and their capacity to
accelerate a wide range of HPC applications. Specifically, we explore the IPU’s
capabilities for challenging sparse and irregular problems from the fields of
bioinformatics, graph processing, and scientific computation.

We find that, in these fields, the IPU can offer significant performance
increases over CPUs and GPUs. We further provide insights into the
programmability and obstacles that need to be overcome when applying the IPU
to irregular algorithms. We conclude our work by providing future suggestions
of how the hardware can be improved to serve the provided use cases better.

i





Oppsummering
De siste årene har arbeidsmengden innen dyp læring drevet frem etterspørselen
etter konvensjonelle maskinvareakseleratorer som GPU-er og utviklingen av
nye maskinvareakseleratorer. Selv om GPU-er også har forbedret HPC
betraktelig med sine dataparallelle beregningsmuligheter, er det behov for
spesialiserte akseleratorer som kan løse spesialiserte problemer slik som dyp
læring, grafbehandling eller bioinformatikk mer effektivt. Vi forventer at det
vil komme flere nye maskinvareakseleratorer i fremtidige HPC-klynger. For å
forberede det vitenskapelige miljøet bedre på å ta i bruk slik ukonvensjonell
maskinvare, er vi interessert i å vurdere deres egenskaper for andre HPC-
arbeidsbelastninger enn dyp læring.

Denne avhandlingen fokuserer på Graphcore IPU-arkitekturen, en ny SRAM-
basert arkitektur som integrerer store mengder SRAM i prosessbrikken. IPU-
en tilbyr en betydelig økning i antall kjerner og SRAM-minne sammenlignet
med moderne CPU-er, noe som lover ytelsesfordeler. Arkitekturen bruker
imidlertid en distribuert minnemodell og synkron masseprogrammering, noe som
er utradisjonelt for en on-chip-prosessor. Algoritmer må derfor omformuleres for
å fungere på IPU-en.

Foreløpig har IPU ikke vært mye brukt, for å ikke nevne analysert for
arbeidsmengder utover dyp læring. Vi tar tak i dette gapet i litteraturen ved å
fokusere på HPC-applikasjoner utover dyp læring, og undersøker faktorer som
programmeringsbegrensninger, algoritmekrav og forutsigbarheten av oppnåelig
ytelse. Forskningen tar sikte på å øke forståelsen av den praktiske ytelsen
som kan oppnås med disse prosessorene og deres evne til å akselerere et bredt
spekter av HPC-applikasjoner. Mer spesifikt undersøker vi IPU-enes evne til
å løse utfordrende, glissene og uregelmessige problemer innen bioinformatikk,
grafprosessering og vitenskapelige beregninger.

Vi finner at IPU kan gi betydelige ytelsesøkninger i forhold til CPU-er og
GPU-er på disse områdene. Vi gir også et innblikk i programmerbarheten og
hindringene som må overvinnes når IPU brukes på irregulære algoritmer. Vi
avslutter arbeidet vårt med å komme med forslag til hvordan maskinvaren kan
forbedres for bedre å kunne brukes til de aktuelle bruksområdene.

iii





Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo and at Simula Research Laboratory
in the HPC Department, under the supervision of Main Supervisor Prof. Xing
Cai and associate professor Co-Supervisor Johannes Langguth and Prof. Are
Magnus Bruaset.

This work was partially supported by the European High-Performance
Computing Joint Undertaking under grant agreement No. 956213 and the Simula
Research Laboratory Strategic HPC initiative.

The thesis is a collection of four papers presented in chronological order of
writing. The common theme to them is the exploration of a novel hardware
accelerator architecture for HPC applications. The papers are preceded by an
introductory chapter that relates them to each other and provides background
information and motivation for the work. The first article is a joint work with
Xing Cai and Johannes Langguth. The first article is a joint work with Kristian
Gregorius Hustad, Johannes Langguth, and Xing Cai. The first article is a joint
work with Max Xiaohang Zhao, Daniel Thilo Schroeder, Johannes Langguth, and
Xing Cai. The first article is a joint work with Max Xiaohang Zhao, Johannes
Langguth, Aydın Buluç, and Giulia Guidi.

v





Acknowledgements

This thesis resulted from working countless hours in the offices of the Simula
Research Laboratory with collaborators. My sincere gratitude goes to Johannes
Langguth and Xing Cai, who were always available during those many hours
to review my research and provide insightful feedback despite late hours and
tight deadlines. My special thanks go to Johannes, whom I have known for
almost four years at the time of this writing. Thank you for revising and
taking the time to analyze the first publications, shaping my path as an
early-stage researcher, talking and chatting about topics outside of work, and
sharing your insights into the many fields of computer science and beyond.
This thesis would not have been possible without your help. Also, I would
like to thank Xing Cai. Thank you for your patience, constant feedback,
and dedication to high-quality research, letting me work freely on topics I
enjoy. I know this style of supervision can only sometimes be found, and
I am incredibly grateful for having the luck of being one of your students.

My grandfather working on the SUR-100
(“Siemens-Unterrichtsreaktor”, a teach-
ing reactor)1

Furthermore, I want to thank Giu-
lia Guidi and Aydın Buluç, whom I col-
laborated with. Thank you for trust-
ing me with your time and expertise
and offering me great advice and op-
portunities.

I want to thank all my colleagues
in the Simula HPC department, es-
pecially Daniel Thilo Schroeder, who,
over the years, has become a good
friend. Thank you for believing in me
before no one else did and opening
up many possibilities for which I am
forever grateful. I would also like to
thank Tore. H. Larsen, who is the ad-
ministrator of the eX3 supercomput-
ing infrastructure, said that without
your incredible knowledge and help,
things would not work.

Thanks to my family and many
supportive friends, particularly Kai
Misselwitz, Iver Håkonsen, Friedrich

1The photos were created and provided by Prof. W. Kaspar-Sickermann

vii



Acknowledgements

Rieber, Laszlo Dajka, and Hichem Dhouib. Thank you for believing in me in
times of doubt and giving me memorable life advice.

I want to express my heartfelt gratitude to Carsten Schubert and Max Zhao.
You shaped how we studied and always pushed me forward. Your invaluable
help throughout our university journey has been pivotal in enabling me to write
this thesis. Thank you sincerely for your unwavering support.

Finally, I would like to contribute my gratitude to my grandfather, Manfred
Storz, who has always been my guiding figure. I remember when I was a small
child, still in Kindergarten, I would spend many weekends with my grandparents.
He would take me to his laboratory and teach me how to solder and build
circuits, and later, when I told him we learned division, he excitedly taught me
Ohm’s law. He was always curious and wanted to know what I had learned in
school, university, and my PhD; he would always chime in and excitedly explain
connections to electrical engineering problems. I wish we had more time.

Luk Bjarne Burchard
Oslo, July 2023

viii



List of Papers

Paper I

Luk Burchard, Xing Cai, Johannes Langguth “iPUG for Multiple Graphcore
IPUs: Optimizing Performance and Scalability of Parallel Breadth-First Search”.
In: 2021 IEEE 28th International Conference on High Performance Computing,
Data, and Analytics (HiPC). Vol. 28, (2021, December), pp. 162–171. DOI:
10.1109/HiPC53243.2021.00030.

Paper II

Luk Burchard, Kristian Gregorius Hustad, Johannes Langguth, Xing Cai
“Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation”. In: Frontiers in
Physics. Vol. 11, (2023, March), pp. 105. DOI: 10.3389/fphy.2023.979699.

Paper III

Max Xiaohang Zhao†, Luk Burchard†, Daniel Thilo Schroeder, Johannes
Langguth, Xing Cai “iPuma: High-throughput Sequence Alignment for MIMD
AI Accelerators”. Submitted to ISC High Performance 2024.

Paper IV

Luk Burchard†, Max Xiaohang Zhao†, Johannes Langguth, Aydın Buluç, Giulia
Guidi “Space Efficient Sequence Alignment for SRAM-Based Computing: X-
Drop on the Graphcore IPU”. Accepted for publication in SC ’23: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. DOI: doi.org/10.1145/3581784.3607094

†Shared first author, both authors contributed equally.

ix

https://doi.org/10.1109/HiPC53243.2021.00030
https://doi.org/10.3389/fphy.2023.979699
https://doi.org/doi.org/10.1145/3581784.3607094




Contents

Abstract i

Oppsummering iii

Preface v

Acknowledgements vii

List of Papers ix

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Summary of Papers . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Papers 42

I iPUG for Multiple Graphcore IPUs: Optimizing Perfor-
mance and Scalability of Parallel Breadth-First Search 43
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 44
I.2 IPU Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 46
I.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 48
I.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 52
I.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 62
I.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II Enabling Unstructured-Mesh Computation on Massively
Tiled AI-Processors: An Example of Accelerating In-Silico
Cardiac Simulation 67
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



Contents

II.2 Monodomain Model of Cardiac Electrophysiology . . . . . 71
II.3 Numerical Strategy and Distributed-Memory Parallelization 72
II.4 Porting to Graphcore IPU . . . . . . . . . . . . . . . . . . 74
II.5 Math Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 79
II.6 Niederer Benchmark . . . . . . . . . . . . . . . . . . . . . . 81
II.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 82
II.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
II.A Algorithmic Description of Three Separator Partitioning

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
II.B Technical Information of Graphcore IPUs . . . . . . . . . . 94

III iPuma: High-throughput Sequence Alignment for MIMD
AI Accelerators 101
III.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
III.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 102
III.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 108
III.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
III.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
III.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
III.7 Availability and requirements . . . . . . . . . . . . . . . . . 126
III.8 Ethics approval and consent to participate . . . . . . . . . 127
III.9 Consent for publication . . . . . . . . . . . . . . . . . . . . 127
III.10 Availability of data and materials . . . . . . . . . . . . . . 127
III.11 Competing interests . . . . . . . . . . . . . . . . . . . . . . 128
III.12 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
III.13 Author’s contributions . . . . . . . . . . . . . . . . . . . . 128
III.14 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 128

IV Space Efficient Sequence Alignment for SRAM-Based
Computing: X-Drop on the Graphcore IPU 131
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 132
IV.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 135
IV.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
IV.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 141
IV.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 148
IV.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . 150
IV.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 153
IV.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xii



List of Figures
1.1 Memory hierarchy of the IPU compared to a CPU . . . . . . . . 2
1.2 Poplar dataflow programming model graph . . . . . . . . . . . . 5
1.3 Tile processor architecture . . . . . . . . . . . . . . . . . . . . . 6
1.4 Dual graph representation as an adjacency matrix . . . . . . . . 11
1.5 Longest Common Subsequence (LCS) . . . . . . . . . . . . . . . 15
1.6 Queue-based format of the BFS frontier . . . . . . . . . . . . . . 21
1.7 Lynx communication volume between multiple IPUs . . . . . . . 25

I.1 Tile layout on the GC200 IPU processor. . . . . . . . . . . . . . 47
I.2 Interconnect layout of the test setup . . . . . . . . . . . . . . . . 48
I.3 Exchange program optimization scheme . . . . . . . . . . . . . . 52
I.4 Strong and weak scaling performance . . . . . . . . . . . . . . . 55
I.5 BFS performance for SuiteSparse and Kronecker graphs . . . . . 57
I.6 BFS weak and strong scaling timing dissection . . . . . . . . . . 58
I.7 Data saving compared to dense communication . . . . . . . . . . 60
I.8 Differences between balanced and unbalanced graphs . . . . . . 61
I.9 Performance using the (sub)-queue packing optimization . . . . 62

II.1 Realistic bi-ventricular mesh with applied stimulus . . . . . . . . 72
II.2 Definition of interior , separator , and halo cells . . . . . . . . . . 75
II.3 Niederer Benchmark results . . . . . . . . . . . . . . . . . . . . . 82
II.4 Three snapshots of the 3D transmembrane potential . . . . . . . 84
II.5 Strong-scaling experiments . . . . . . . . . . . . . . . . . . . . . 85
II.6 Breakdown of the strong-scaling experiments . . . . . . . . . . . 87
II.7 Tile layout on the GC200 IPU processor . . . . . . . . . . . . . . 96
II.8 IPU-link topology of the used test system . . . . . . . . . . . . . 97

III.1 System diagram of Graphcore Mk2, containing 4 GC200. The
GC200 chips are connected through IPU-links which are repre-
sented as dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . 106

III.2 Depiction of the chip layout of the GC200 . . . . . . . . . . . . . 107
III.3 Structure overview of the iPuma library . . . . . . . . . . . . . . 111
III.4 Scheduling problem description . . . . . . . . . . . . . . . . . . . 112
III.5 Performance results comparing one GC200 IPU using iPuma

against one A100 GPU . . . . . . . . . . . . . . . . . . . . . . . 119
III.6 Strong scaling from one GC200 IPU to 64 IPUs . . . . . . . . . 121
III.7 Weak scaling from one GC200 IPU to 64 IPUs . . . . . . . . . . 122
III.8 Comparison of iPuma against ADEPT using 1 to 8 A100 GPUs 123
III.9 Total runtime comparison of PASTIS . . . . . . . . . . . . . . . 123
III.10 Entire system comparison of PASTIS . . . . . . . . . . . . . . . 124

xiii



List of Figures

IV.1 Banded sequence alignment vs X-Drop . . . . . . . . . . . . . . 133
IV.2 X-Drop parameter effect visualization on the search space . . . 137
IV.3 Memory reduction approach . . . . . . . . . . . . . . . . . . . . 140
IV.4 Threaded tile data structure for work stealing . . . . . . . . . . 144
IV.5 Single device performance comparison . . . . . . . . . . . . . . . 150
IV.6 Memory optimization for varying X-Drop factors and input read

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
IV.7 Strong scaling performance with graph-based partitioning . . . . 151

xiv



List of Tables
1.1 Comparison of the first three IPU generations . . . . . . . . . . 4
1.2 Allocation volume of cells for each tile . . . . . . . . . . . . . . . 24

I.1 Key architectural features of GC2 and GC200 IPU. . . . . . . . 46
I.2 SuiteSparse and synthetic dataset description . . . . . . . . . . . 54

II.1 Exchange reordering strategy for 1 to 16 IPUs . . . . . . . . . . 83
II.2 Clock cycle breakdown of the algorithmic phases . . . . . . . . . 86
II.3 Performance comparison between GC200 IPUs and A100 GPUs 87

III.1 Key architectural features of the GC200 IPU and the competing
devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

III.2 Datasets description of DNA and amino acid sequences . . . . . 116

IV.1 Optimizations implemented and described throughout Sec-
tion IV.4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

IV.2 Data sets for comparisons with CPU and GPU implementations
with distribution for the left and right extensions. . . . . . . . . 145

xv





Chapter 1

Introduction

The development of graphics processing units (GPUs) has revolutionized the
field of High-Performance Computation (HPC) [Fan+04; Göd+07; Kin+09;
PSS08; TK06], allowing to speed up data-parallel computations and accelerating
a wide variety of algorithms beyond the domain of computer graphics, including
machine learning, scientific computing, and databases [Bre+14; Hus19; KSH12].
While GPUs have been widely adopted in HPC clusters, there is a growing
need for specialized accelerators [Ang+23; SKK17] for artificial intelligence,
machine learning, and other domains that can, through specialization, solve
specific problems more effectively than GPUs or central processing units (CPUs).
Due to the accumulation of hardware resources and the need to accelerate deep
learning workloads more, there is an AI/ML HPC convergence. Thus, more of
this specialized hardware will be available in HPC clusters [Ang+23; Hue+20].

In this PhD dissertation, we aim to explore the potential of a novel domain-
specific hardware accelerator for its non-domain-specific use cases and investigate
new possibilities for solving different problems in computer science and related
fields effectively. While these accelerators currently serve a single specific purpose,
researching their capabilities beyond their intended use case can pave the way
for a similar development to that of GPUs, ultimately accelerating a wide
variety of HPC applications in the future. Furthermore, through the AI/ML
HPC convergence, we want to provide alternative use cases for novel hardware
accelerators that will be more present in future HPC systems. We, in this
dissertation will provide the first use cases and analysis from different areas in
the field of high-performance computing. Currently, there is a gap between the
availability of the hardware and the publications targeting HPC applications
other than deep learning. The gap between hardware availability and usage
is caused by various factors, including insufficient programmability, the need
for specially-designed or adapted algorithms, and the lack of understanding of
practically achievable performance.

Most architectures used nowadays are Von Neumann architectures, separating
the processing unit and memory. In this architecture, data and instructions
are stored in the same memory, and the processor has to fetch data from
this external memory. This separation leads to the Von Neumann bottleneck,
also referred to as the memory wall, a fundamental limitation in traditional
computer architecture, applying to both GPUs and CPUs. This fetching creates
a performance bottleneck as the processor often needs to wait for the data to be
transferred between the processor and memory before it can proceed with the
execution. This constant movement of data between the processor and memory
significantly slows down the overall computation speed and efficiency.

The memory wall has motivated the exploration of modern SRAM computing

1



1. Introduction

6.6 GB/s (max 20 GB/s)

8 TB/s

48 TB/s
(128bit/Cycle)

128 GB/s

720 GB/s

1.4 TB/s

2 TB/s

100Gbps

Figure 1.1: Memory hierarchy of the IPU Mk2 system compared to a CPU. The
CPU is modeled after an Intel Skylake processor [HVH18].

and processing in memory (PIM) architectures. These emerging architectures
aim to address the performance limitations imposed by the memory wall by
integrating processing capabilities directly into the memory subsystem. PIM
architectures take a first step further by incorporating more advanced processing
elements, such as logic gates or specialized accelerators, directly within the
(DRAM) memory subsystem [Mut+23; Seb+20]. Alternatively, SRAM-based
architectures increase the SRAM size on the computing silicon and use it as
memory instead of cache [Mit+21]. Thus operations can be executed with
reduced latency and higher bandwidth, as the data resides in close proximity to
the computational units.

There is a growing number of novel hardware accelerators for deep learning
commercially available, such as Cerebras WSE [Lau21], SambaNova [Ema+21],
Graphcore IPU [Kno21], Groq [Abt+22], Tenstorrent [Gwe20], and many
more [Reu+20]. We choose the Graphcore IPU as our architecture of interest,
as it was one of the first commercially available SRAM-based devices, providing
high memory bandwidth and many independent cores, promising to eschew the
memory wall. The IPU offers approximately 30× as many cores as comparable
CPUs, with a higher bandwidth addressing more than an order of magnitude
more SRAM memory. The IPU is a MIMD architecture where all cores can do
independent instruction fetch and execution, breaking from often found SIMD
patterns. This makes the architecture promising for many classes of applications.
The IPU is a new hardware architecture that has not been broadly explored in
previous literature for HPC algorithms other than deep learning problems. We
intend to provide the missing pieces in the literature to explore the capabilities of
the IPU for different HPC applications. We are focusing on sparse and irregular
problems, as these are not well solved using the GPU, which currently is the
predominant accelerator architecture in HPC.

The IPU forgoes the implementation of a last-level cache (LLC) due to the
large SRAM requirement on the chip, which would cause large latencies. The

2



Outline

IPU has no memory hierarchy, such as caches or IPUs prioritize data movement
and parallel processing, utilizing on-chip memory structures optimized for high-
bandwidth exchanges instead. Therefore, no cache hierarchies are implemented,
and all cache is subdivided akin to a distributed memory system. The omission
of an LLC is driven by the need for massive parallelism, specialized memory
access patterns, and the potential for contention and bottlenecks in data access.
Therefore, the IPU is from its communication and access hierarchy layout quite
different from a CPU or GPU (Figure 1.1), requiring different algorithmic
approaches.

We seek to explore the capabilities and limitations of these specialized
hardware accelerators beyond their intended use cases. Through this research, we
aim to provide a better understanding of the practically achievable performance of
these accelerators and their potential to accelerate a variety of HPC applications.

1.1 Outline

In Section 1.2 we provide background for the attached papers and provide
a broader context of the field. In Section 1.3 we provide our main research
questions guiding the creation of the papers. In Section 1.4 we summarize our
four research papers and provide background, and motivation, and describe the
impact of work. In Section 1.5 we finalize the introduction with a conclusion of
our work and propose changes to the IPU.

1.2 Background

In this section we are providing background on the subjects studied in our
articles.

1.2.1 The Intelligence Processing Unit (IPU)

The Intelligence Processing Unit (IPU), was built first and foremost to speed
up deep learning tasks. This is reflected in the hardware and software design
throughout the IPU. There have been three different IPU generations that were
available at the time of writing. We note that the tile instruction set architecture
(ISA) [AMH23], i.e. the available instructions available to interact with the
processor, did not change. In addition, the instructions latencies [AMH23] stayed
the same. All chip generations only vary in three major ways: local memory
available for a tile, number of tiles on the chip, and clock frequency. Table 1.1
summarizes the most important specifications of the three architectures. Please
note that the tile frequency dropped from the first to the second generation,
but the tile memory and tile count rose. The third generation differs from the
second only by the 40% increased clock frequency and the specifications scaled
by that factor; the design of the chip stayed the same. This frequency increase
was achieved through an additional power interposer layer.

3



1. Introduction

Table 1.1: Architecture features of the first three IPU generations.

Chip GC2 GC200 Bow Unit
Number of tiles 1216 1472 1472
Number of threads 7296 8832 8832
Memory per tile 256 624 624 KB
Total SRAM memory 311 918 918 MB
Memory bandwidth 46.6 46.9 65.78 TB/s
Aggregate tile-to-tile bandwidth 7.78 7.83 10.9 TB/s
Total chip-to-chip bandwidth 320 320 320 GB/s
Clock frequency 1.6 1.33 1.85 GHz
FP32 compute 31.1 62.5 87.5 TFLOPS/s

The main programming frameworks for the IPU as an AI accelerator are
TensorFlow and PyTorch. However, Poplar, a lower-level, more general-purpose
programming framework is also exposed to the user to allow for developing general
algorithms. Poplar is a dataflow programming framework similar to the way
that TensorFlow and PyTorch define their programs. In dataflow programming,
the program is modeled as a directed graph describing the transition between
data and its relation to transferring functions. The dataflow graph is built with
two switching layers, a data layer with the vertices being data and a compute
layer with the vertices being transfer functions, the edges model the relations
between data an functions. These build the three main components of the Poplar
framework, tensors store data, compute-vertices in the form of codelets run
user-defined functions, and the edges define data dependencies and movement.
Tensors are one to multidimensional arrays, which can be sub-divided into
regions. Poplar requires all tensor regions and codelets to be mapped to tiles.
The mapping is required as defines how tensors are distributed on the hardware;
for codelets, it explicitly defines how to parallelize the computations, as codelets
are run at the same time on different tiles.

In comparison to the explicit message passing interface (MPI), commonly
found in the world of HPC applications, the IPU uses the mapping information of
tensor regions and the codelets and tile indices to implicitly define communication.
The mapping allows the Poplar compiler to generate exchange code, from the
tile owning a tensor region to the tile that computes a codelet. Once the
computation is done, the data is transferred to the tile which the respective
region of the output tensor was mapped to. As a consequence, mapping is a
crucial step in programming the IPU, as the mapping of problems will determine
the communication and, therefore, the performance of the final program. The
data input and output regions of the tensors will be fully allocated on the tile,
unless it is an in-place operation. A crucial aspect to note is that, when using
regions with continuous memory not aligned to four-byte intervals, the compiler
introduces an aligned region, leading to an increase in the allocated space for
input and output tensors and additional copy operations.

4



Background

Tensor

Compute Vertex

Global Barrier

Add
X

Y
out

SumA out

Add
X

Y
out

Time

Pa
ra

lle
lis

at
io

n

Figure 1.2: The graph represents the main components of the Poplar
programming framework. Tensors store data, compute-vertices transform data
and run user code, and edges implicitly define the communication. The graph
alternates between state and compute layers. In this graph, the IPU executes the
compute-vertices Add in parallel, as all compute-vertices within a synchronization
step can not have data dependencies.

Scheduling and synchronizing exchanges and computation is done through
the use of the bulk-synchronous parallel pattern (BSP) [Hil+98; McC95; Val90].
The BSP pattern has an exchange, compute and synchronization step creating a
superstep. Remembering our two-layered dataflow graph (Figure 1.2), after the
data and compute layer we can introduce a synchronization step, waiting for all
computations to produce a result. After the synchronization step ensuring that
all data is ready for the next computation layer. The order of supersteps can
also be modified through high-level control flow, such as if -conditions and loops.
Compute and exchange can not be done at the same time on the tile level, so we
can either compute or communicate. Another restriction that comes with the
BSP pattern is that exchange phases are determined at compile time and can
not be dynamically created or changed, such as transfer sizes or access to and
from a tensor. This is a major obstacle we have to overcome when implementing
irregular algorithms on the IPU.

IPU programming is split into two parts, similar to CUDA programming for
GPUs. The host code defines the dataflow graph and which codelets to use. In
addition, in the host code we can define host-and-device transfer phases. The
other half of the code is the definition of the codelets, that will be run on the
IPU. Poplar defines codelets as templated C++ classes, defining a standard
function moving data from an input tensor to an output tensor. The whole
computational graph is compiled and uploaded to the IPU. At runtime, data
can be provided through predefined host-and-device transfers.

5



1. Introduction

Figure 1.3: Tile processor architecture. The MAIN pipeline is used for integer
processing and the control flow. It loads data into the AUX pipeline, responsible
for floating point operations. The outgoing exchange is not programmable
by users and is separated from the pipelines. MRF and ARF are register files
containing the register values for each respective pipeline and thread. Copyright
Graphcore.

1.2.1.1 IPU Tile Processor Architecture

The IPU architecture has a rather simple processor core design, without common
optimizations found in CPUs. Modern CPUs try to optimize latency caused
by stalls of loading data, and occupancy of functional units, and archive high
instruction level parallelism. Therefore, CPUs commonly employ mechanisms,
such as out-of-order execution, data prefetching, and speculative execution. As
the IPU only has access to local SRAM memory, it does not need to optimize

6



Background

for stalls. The reduced control unit requirements to the processor reduce the
physical footprint of it. Moreover, the program time estimation becomes simpler
because the instruction execution is deterministic, allowing for more plannable
program optimizations.

The processor, as seen in Figure 1.3, has two pipelines: MAIN and AUX.
The MAIN pipeline is responsible for executing memory, control flow and integer
operations, while the AUX pipeline is a floating point only pipeline, only controlled
by the MAIN pipeline. Instructions can be dual-issued to both pipelines at the
same time through the long instruction word architecture (LIW). The execution
is lock-synchronous, meaning that an instruction bundle is retired once both
pipelines are retired. As a consequence, the other pipeline has to wait and
the scheduled instruction bundle take the maximum time of both pipeline’s
instructions. All Instructions that can be scheduled on the MAIN pipeline will
retire within a single cycle, however, there are a few arithmetic operations on
the AUX pipeline that can span multiple cycles.

The processor follows a barrel processor model with six threads, where from
a thread point of view most instructions are retired within a cycle; however, the
real latency is six hardware cycles. There is one register file attached to each
pipeline with six execution contexts used for the six threads. These register files
rotate every cycle to run another thread.

Graphcore does not provide a way of explicitly interacting with the exchange
module and the exchange network on the tile processor, which is responsible for
tile-to-tile communication. The only way to use the exchange capabilities is to
use the provided high-level programming interface. In any case, exchange and
computing can not be used at the same time per tile.

1.2.2 Sparse Linear Algebra

Sparse linear algebra refers to the branch of linear algebra that specifically deals
with sparse matrices and the associated computations. A sparse matrix is a
matrix that contains a significant percentage of zero elements, such that storing
the matrix in a compressed form becomes advantageous. Due to the compressed
representation, it is required to develop algorithms and techniques that take
advantage of the sparsity structure to efficiently perform operations on these
matrices. Traditional dense linear algebra algorithms are not well-suited for
sparse matrices because they would waste computational resources and memory
on processing the large number of zeros. Sparse linear algebra algorithms, on the
other hand, aim to exploit the sparsity of the matrix to minimize the amount
of computation required. In general, all algorithms employed in dense linear
algebra can also be approached in sparse linear algebra to improve upon their
real-world time and space complexity.

The goal of sparse linear algebra is to provide efficient and scalable solutions
for problems involving large-scale sparse matrices, which commonly arise in
diverse fields such as scientific computing, graph theory, network analysis,
optimization, and many others. In scientific computing, it enables efficient
simulation and modeling by solving systems of equations and analyzing complex

7



1. Introduction

systems. In graph theory and network analysis, sparse linear algebra techniques
aid in processing large-scale graphs and networks for applications like social
network analysis and recommendation systems. Optimization problems in
operations research benefit from sparse linear algebra methods, allowing for
resource allocation and logistics optimization. Finally, in deep learning and data
mining, sparse linear algebra enables efficient processing and manipulation of
high-dimensional sparse data structures. We focus on graph algorithms and
scientific computing problems that use an irregular 3D-mesh structure. When
using matrix representations, data from the real world often leads to sparse
matrix problems, as the dimensions are large, but the contained data is small.

Buluç et al. [BGS11] describe the overlap of the four key sparse matrix
operators for both graph algorithms and numerical algorithms:

1. SpRef/SpAsgn Sparse matrix indexing and assignment are used to embed
a sparse matrix or submatrix in another sparse matrix or submatrix.

2. SpMV/SpMSpV Sparse matrix-dense vector multiplication, we extend this
definition to include sparse matrix sparse vector multiplication.

3. SpAdd Sparse matrix pointwise operations, including addition, the
Hadamard-product, or bitwise operations.

4. SpGEMM Sparse-matrix sparse-matrix multiplication is often used to
represent multiple parallel SpMV operations.

Furthermore, Buluç, et al. [BGS11] discuss the sparse operations together,
with respective storage formats in I/O complexity, which is a good fit because
CPU architectures are cache reliant. However, for the IPU, lacking a cache,
the RAM model is more appropriate. Thus, common algorithmic optimizations
used for CPUs, that are beneficial in the I/O model, such as the blocked
implementations are not useful for the IPU to improve cache performance.
However, reordering into dense linear algebra blocks can yield obvious benefits, as
vector instructions and wide memory loads and stores, and instruction pipelining
can be used to improve performance.

In the following sections, we are presenting storage formats used for working
with sparse linear algebra in scientific computing and graph applications
(Section 1.2.2.1). Furthermore, we will give background on graph algorithms
expressed in sparse linear algebra (Section 1.2.2.2) and motivate the Graph500
benchmark as an alternative to the Top500 benchmark to evaluate HPC systems
for graph algorithms (Section 1.2.2.3).

1.2.2.1 Storage formats

The data structures used to represent sparse matrices are vital to the storage
efficiency and time complexity under different algebraic operations. For example,
for a matrix column access operation, the wrong data structure can lead to

8



Background

linear instead of constant access time. In the following, we will introduce three
commonly used data structures for sparse matrices.

Let A ∈ SM×N be a sparse matrix of elements from an arbitrary domain S.
We use nnz(A) to denote the number of nonzero elements in A, or simply nnz if
A is apparent from context. We use nzc(A) to represent the number of non-zero
columns and nzr(A) for the number of non-zero rows.

As an example we choose A ∈ N5×5, the matrix to be composed of integers.
An empty field in the matrix represents a zero.

A =


2 3

1 6

5 8
4 7


We used two storage formats for our articles: the CSC/CSR format derived

from the COO format, and ELLPack.

Tripplet Format The triplet format often called coordinate format (COO), is a
simple representation of a sparse matrix. The data structure is a list or a set of
triplets D = {(i, j, Aij)|Aij ̸= 0}. We can also represent this set as a decomposed
data structure (A.I, A.J, A.V ) := D, here A.I stores the row positions, A.J is
the columnar positions, and A.V represents individual values. Analyzing the
storage complexity of the representation we arrive at O(nnz). However, for the
unsorted list we can not find ways to efficiently search the list; hence the time
complexity for random access of the matrix is O(nnz). We can improve on this
complexity, by sorting the values, row-major with a column-minor denomination
or vice, versa. Thus through two binary searches, we can arrive at a time
complexity of O(log(nnz) + log(M)) or for column major O(log(nnz) + log(N)).
For example, the example a in COO format column major sorted, would look
like A = {(2, 1, 1), (5, 1, 4), (1, 3, 2), (2, 3, 6), . . . , (5, 5, 7)}

CSR/CSC Format A common optimization of the COO format is the write the
major sorting direction of the triplets in a run-length compressed format. We
call the format compressed sparse column (CSC), for when we majorly index by
the columns, and similarly compressed sparse row (CSR) for row-major indexing.
Here, we use the CSR format as the leading example. The data structure is
comprised of the row-major indices A.RI with M + 1 entries, which encode the
row components of the triplets. The column component and value components
are like in the decomposed COO format still stored in the A.J and A.V lists,
without modifications. For accessing all elements in a given row, we can use the
range stored in the A.RI list {(i, A.Jk, A.Vk)|A.IRi ≤ k ≤ A.IRi+1}, yielding
the COO formatted tuples of the row. The access to a row-index and the whole
row list is thus O(1), and the scanning of the row O(log(M)). However, the
memory complexity of this format becomes O(M + nnz), as the row index space
requirements are always in order of the matrix row dimensions.

9



1. Introduction

For simplicity, in the previous paragraph, we were assuming that nnz ≥M ,
more specifically the number of non-zero rows is nzr ≈M . Often when we work
with given problem matrices, these are fulfilling the nzr ≥M criterion. However,
with block partitioning matrices, it happens that the blocks become hyper-sparse
matrices. We call a matrix hyper sparse when nnz ≪ M , or more accurately,
nzr ≪M . The DCSC format is an extension of the CSC format that trades off
compute complexity for space efficiency. The DCSC format promises a storage
complexity of O(nnz).

ELLPack Format The ELLPack (ELL) format compresses the values of a
sparse matrix into fixed-size row structures. Its format is based on the concept
of storing sparse matrices in a compressed format that avoids explicit storage
row or column header information. It combines the benefits of a dense matrix
and the CSC/CSR format, providing a balance between memory efficiency and
computational performance.

In the ELLPack format, a sparse matrix is represented by two arrays: the
data array and the index array. The data array A.D stores the values of the
nonzeros, while the index array A.I is storing the columnar index for each value.
The matrix also has a characteristic value A.λ, indicating the width of the longest
row, indicating the fixed length of how many values are assigned to each row.
Therefore, the storage complexity of this representation is O(A.λ×N). This fixed-
length representation allows for efficient parallel processing and vectorization of
matrix operations, such as matrix-vector multiplication. It also enables efficient
memory access patterns, minimizing cache misses and improving computational
performance. While the ELLPack format offers advantages in terms of storage
efficiency and computational performance, it is more suited for matrices that
contain a relatively same amount of non-zeros in every row. Matrices with an
inhomogeneous number of non-zeros per row may result in excessive storage
requirements [MLA10] and reduced computational efficiency compared to other
sparse matrix formats.

There are adaptations of the ELLPack format, e.g. sliced ELLPack [MLA10],
which subdivide a row length-wise sorted part of the matrix into multiple
ELLPack formats with a fitting characteristic length λ for each sliced partition.

1.2.2.2 Graph Algorithms Expressed in Linear Algebra

Graph algorithms can be expressed in the form of linear algebra [D31; KG11].
The graph is often represented as a matrix in the form of an incidence matrix,
or adjacency matrix (Figure 1.4) depending on the algorithm [Kep+15]. This
representation differs from the classical textbook graph algorithm formulation,
which is often vertex-centric, as the linear algebra formulation is often applying
vectorized operations on the dual graph-matrix structure.

This matrix representation brings several advantages, including the ability
to apply a wide range of standard linear algebra operators, which enhances
the generality of implementations. Moreover, expressing graph algorithms in
linear algebra facilitates parallelization and optimization by relying on HPC

10



Background

implementations that can run parallel linear algebra operations. Therefore, graph
algorithms can benefit from increased efficiency, portability, and scalability.

1

1 2 3

1 1

1

1

2

3

O
ut

In
1

2

3

Figure 1.4: Dual graph representation (left) as an adjacency matrix (right). The
boolean matrix encodes the edges between two vertices of the graph with a 1,
otherwise 0.

A general formulation of graph operations is expressed through semiring
algebra of a set of different semirings chosen specifically for each step in the
formulation of the graph algorithm. A specific semiring (D,⊗,⊕) containing two
binary operators called the plus (⊕), and multiplication (⊗) operators, which are
defined to operate on a domain D. Both multiplicative and additive operators
have identities 1 and 0, respectively. Further, (⊗) distributes over (⊕) and the
additive identity annihilates the set under the multiplication operator 0⊗ a = 0.
For example, often used is the boolean semiring (B,∨,∧) usign the boolean
domain 0, 1, with the identities 0 = 0 and 1 = 1.

1.2.2.3 Graph500

The Graph500 is a benchmark for parallel computers. It is orthogonal to the
commonly used Top500 benchmark, for which supercomputers attain ≥ 97.9%, of
the theoretical peak performance Rmax ≈ Rpeak [23b]. The Top500 benchmark
measures the performance in floating point operations per second (FLOPS) over
a dense matrix input. The Graph500 benchmark measures the traversal speed of
a breadth-first search, traversing the whole graph from a random start node to
produce a parent array, which represents one valid tree structure pointing to its
parents in the traversal. The performance is given in traversed edges per second
(TEPS). Compared to the Top500 benchmark, only a fraction of the theoretical
peak performance of a given system can be attained when benchmarking sparse
implementations [23a; SDM11].

Direction Optimization The direction optimization (DO) [BAP11] has become
a prevalent technique for optimizing BFS targeted to the Graph500 benchmarks.
The optimization observation reveals that during a graph breadth-first search,
the frontier can become exhaustive, resulting in excessive operations when

11



1. Introduction

progressing towards a few remaining nodes. This occurs as the layers grow
exponentially explicitly form the top, despite only requiring a single vertex to
activate a remaining vertex. Consequently, a significant number of unnecessary
operations are performed. The goal of the direction optimization is to identify
a specific level during the traversal process where a switch can be made from
the top-down approach, where each vertex claims its children, to a bottom-up
approach, where the remaining vertices query their neighbors for activations.
This switch results in a reduced number of computations heuristically. Thus, the
term direction optimization is used as the algorithm can alternate between the
top-down and bottom-up directions.

We further want to mention that this optimization only performs well on
low-diameter graphs, as they are used in the Graph500 benchmark. Higher
diameter graphs, such as road network graphs do not necessarily benefit from
this optimization. Furthermore, current implementations [Wan+16] have shown
that scaling the direction optimization to multiple hardware nodes is not possible
without losing significant performance, making the implementation less scaleable.

Yang et al. [YBO20] improve upon this formulation in their GraphBLAST
framework and formalize the direction optimization as pull and push-based
semantics using sparse linear algebra operations.

1.2.3 Bioinformatics

All living organisms are composed of one or multiple cells that engage in intricate
interactions, leading to the formation of purpose-driven organisms [Han04; SH05].
Analogous to a computer program, the genetic information required for the
development of cells and other biological structures is stored within genomes,
residing within cells. Bioinformatics, a specialized field, is interested in the
investigation of this genomic data as it encapsulates all the necessary instructions
for organismal production. A comprehensive understanding of this data is crucial
in unraveling the intricacies of human biology, disease processes, and cancer
etiology, among other phenomena. The majority of organisms’ genomes are
comprised of four nucleotide particles, collectively known as deoxyribonucleic
acid (DNA), which serve as the fundamental building blocks.

The DNA contains four nucleotide bases, represented as {A, T, C, G} for
Adenine, Thymine, Cytosine, and Guanine, respectively. These four bases, are
connected via 3’-5’ phosphodiester bonds between the desoxyribose sugars coupled
to the bases, create a long sequence that can be seen as a string. The DNA of
bacteria, such as Escherichia coli (E. coli) have 4.5− 5.5× 107 bases [Rod+99],
while the human genome has approximately 3× 109 bases (GRCh38) [Sch+17].
In reality, the genome has two strands (physical strings) that make up the same
sequence with complimentary bases called base pairs (bp). The two physical
possible base pairs are {A, T} and {C, G}.

The DNA creates Ribonucleic Acid (RNA), to serve different functions in
the organism. To create proteins, through transcription, DNA is converted into
mature messenger Ribonucleic Acid (mRNA), which contains a spliced section
of DNA encoding information for the synthesis of a specific protein. The mRNA

12



Background

is then translated into proteins, and through the help of ribosomes, proteins
are created. A ribosome successively takes three bases from the mRNA and
assembles one of 22 amino acids, of which 20 are found in humans, into a protein
structure. Thus, the DNA structure is responsible for creating organisms by
acting as a blueprint.

To analyze DNA data the first step is to bring the data from a physical
form into a digital representation. The digitalized form of DNA and protein
sequences is often a coherent long string of characters of either the four bases
of the amino acids, respectively. Gather digital data from the physical world
sequencing devices are used.

The sequencing devices produce randomly located continuous substrings of
the provided whole DNA sequence, each substring is called a read. The goal
often is to assemble the reads into a single representation of the DNA, before
other analyses can be conducted. Analogously this is like an illiterate person
trying to reassemble 783 Encyclopedia Britannica’s (8 billion characters) from a
pile of shredded books.

Our articles (Paper III, Paper IV) focus on sequence alignment algorithms,
which are used in bioinformatic pipelines to assemble genomes from a large set of
sequence reads, that were provided by sequencing devices. The main motivation
is that the sequence alignment methods and their implementation still make
up a majority of the pipeline’s runtime. This is further underscored by the
exponential growth and cost-effectiveness of genomic data generation, which
has propelled the field of bioinformatics toward the realm of HPC to tackle the
computational demands imposed by these data-intensive processes.

1.2.3.1 Sequencing Technology

The first human genome, sequenced by the human genome project took 13-years,
hundreds of research teams, and over a billion dollars. At the time of writing, the
cost to sequence all important protein-creating regions in the genome, i.e. whole-
exome sequencing, is less than 600 $ [Wet22]. The advances are in sequencing
technology, as well as in the accompanying algorithms.

The human genome project utilized a sequencing technology known as Sanger
sequencing, which was developed by Frederick Sanger and his colleagues in the
late 1970s. Sanger subsequently, for this work in 1980 earned the Nobel Prize in
chemistry, for determining the base sequence of nucleic acids. DNA, not RNA,
is the target of these sequencing approaches, as RNA is deemed too unstable to
be useful. The reads produced by the Sanger method usually have a length of
1000 bp [SL12; SNC77], at a cost-effective output of 750 Mb per day at an error
rate of ≤ 0.1% [Fra+13].

The next big change came with second-generation DNA sequencing devices,
or next-generation sequencing (NGS) [HC16]. NGS allows for parallelization
of the sequencing process, manifolding the reads output of the sequencing
devices [Mar+05]. Modern sequencing devices, such as the Illumina HiSeq,
can produce read sequences of approximately 150 bp, but with a much higher

13



1. Introduction

throughput of cost-effective 2500 Mb per day at an error rate of approximately
0.5% [Fra+13].

Modern or thrid-generation sequencing devices, using novel approaches, try to
eschew the short read length and provide longer reads, which provide advantages
in the late analysis. For example, at the time of writing PacBio HiFi sequencers
can produce reads in the length of 10−25 kb with an error rate of approximately
0.5% and better, while providing similar throughput as NGS devices. Oxford
Nanopore can produce ultra-long sequences up to a length of 4 Mb, but producing
lesser quality reads with more errors.

1.2.3.2 Sequence Alignment

Sequence alignment is tightly connected with string alignment methods. We
interpret the biological sequences of DNA and proteins as strings. Thus, we
use formal string methods to compare and relate sequences to each other. The
goal of the string algorithm, as we use them, is to generate an equivalence score
for two sequences. This score can be used to relate two sequences together;
this will be used in biological pipelines to reassemble a long coherent sequence
from a large set of smaller ones based on overlaps. A challenge these algorithms
have to overcome is that the provided sequences can both contain read errors
or modifications. These errors are modifications of the true sequence and can
be insertions, deletions, or substitutions of characters. Another motivation is
to determine the modifications applied to of homologous sequences that were
introduced by biological sequences.

All discussed algorithms are given two sequences S1 = a1a2 . . . an and
S2 = b1b2 . . . bm of an alphabet Ω. We define a subsequence of S as a string P ,
that can be obtained by deleting zero or more characters from S.

One fundamental type of sequence alignment algorithm is the Longest
Common Subsequence (LCS) algorithm. It is used to find the longest common
subsequence present in both S1 and S2. For example a input strings S1 =
ATAT, S2 = TCTC will share the longest common subsequence P = TT. We can
see the alignment of P to S1 is -T-T and to S2 it is T-T-. This can be seen as
a simple form of string alignment with insertions and deletions.

A common theme to approach the LCS problem is to use a dynamic
programming matrix spanned between the two input strings. The values of
the dynamic programming matrix represent scores, that can be improved. The
runtime is in O(n×m). The algorithm then fills in the matrix by comparing
characters and updating values based on specific rules. To construct the
alignment, or for LCS, the longest common subsequence, we trace back the
highest score from the matrix to its origin Figure 1.5.

Another popular string algorithm is the Levenshtein distance [Lev66], also
known as the edit distance, the algorithm is an extension of the LCS algorithm
that is specifically designed for sequence alignment. It is more robust than the
LCS algorithm because it also allows for substitution in the aligned sequences.

However, in these string alignment methods, biological properties are not
honored, a common theme for produced reads is that a long gap is more likely

14



Background

F

S

G

A

C

T

STACTAF

Figure 1.5: Longest Common Subsequence dynamic programming matrix. The
axis is created through the input sequences, while the fields of the matrix are
filled with values, depending on a match or mismatch. The result can be found
by tracing back from the highest result on the path containing the most matches
(--TC-T-S- or --TCA--S-).

than two adjacent ones. We call this affine-gap penalty. For protein sequences, we
also want to assign a probability to special substitutions, as not all substitutions
occur with the same probability in nature [HH92]. Furthermore, because reads
can appear in random positions of a provided reference sequence we need sequence
alignment algorithms, which can work in different scenarios. There are three
well-specified alignment categories:

global alignment Global alignments are the most restrictive form of aligning
two sequences S1 with S2. For this alignment, we assume that the sequences
are homologous and have the same start and end positions. In the dynamic
programming matrix, the optimal path can only begin in the top-left and
end in the bottom-right corner.

semi-global alignment The semi-global alignment is loosening the restrictions
of the global alignment and allows a free cost gap on either side of one
sequence each. This means, in the dynamic programming matrix the path
is still fixed to the sides, but not to the corners anymore. This alignment
is practical when the two string overlap at the borders.

local alignment Local alignment, compared to the global and semi-global
alignments, has no restrictions on the start and end gaps. The start
and end positions can be completely placed within one sequence. This
is especially useful when one sequence is much longer and the smaller
sequence is completely contained within the longer one.

Needleman-Wunsch [NW70] proposed an exact algorithm, similar to the
LCS algorithm, which produces a global alignment. The algorithm furthermore

15



1. Introduction

was extendable with affine-gap penalties and could custom substitution values
to honor biophysical probabilities through i.e. BLOSUM [HH92] matrices.
The Smith-Waterman algorithm [SW81] produces a local alignment. Later
Gotoh [Got82] improved the algorithm by reducing the algorithm from cubic,
to quadratic time, Myers and Miller introduced the idea of computing stripes
to reduce the memory usage to linear space from quadratic space [MM88], and
extensions for affine-gap penalties were added [AE86].

In addition to the named exact sequence alignment algorithms, there is a
multitude of heuristic algorithms, which trade the exact result with better space
and runtime.

1.2.3.3 Biological Pipelines

There are several types of pipelines we used in our articles. The term is not
well defined, as a pipeline can serve different purposes, i.e. variant calling,
metagenomic profiling, base calling, read mapping, or de novo assembly, amongst
others. We used two kinds of pipelines, two for DNA de-novo assembly, and one
for protein clustering. The inputs to these pipelines are often important, e.g.
short reads need other algorithms as long reads due to algorithm complexity and
biological properties. Short reads are not capable of identifying longer repeating
regions in the DNA, as the short reads are completely contained within the
repeating sections, it is impossible to identify the larger compositions of sequence
regions adjacent to the repeats. As the human genome contains repetitive
sequences [Lan+01], read mapping is often used, where a read is mapped against
a known ground truth (GRCh38), to detect mutations. However, mapping is not
possible without a ground truth.

De novo assembly is used to assemble a set of unordered reads into long
coherent sequences, named contigs, referring to a continuous genomic section.
Unlike reference-based assembly methods, de novo assembly does not rely on a
pre-existing reference genome. This feature enables the assembly of contigs even
for species that have not been previously studied or characterized.

Metagenomic assembly is a technique used for the simultaneous analysis
of whole microbiomes. Unlike approaches that involve isolating and analyzing
individual subparts of the microbiomes, metagenomic assembly allows for the
comprehensive examination of a sample containing multiple organisms. The
objective is to reconstruct multiple contigs representing different organisms
present in the sample and subsequently analyze their assignments and quantities
accurately. This approach eliminates the need to separate and analyze
microbiome subparts individually, streamlining the analysis process and providing
a more holistic understanding of the entire microbiome composition.

A common technique found in various pipelines to reduce the search space
is the utilization of k-mers. The idea is to reduce the search space by only
comparing sequences that initially have a large exactly overlapping section.
Essentially, a k-mer represents a substring of length k derived from an original
string, often extracted from a read. By exhaustively collecting all possible k-mers,
we construct a comprehensive histogram that encapsulates the distribution of

16



Research Questions

these k-mers. When dealing with a sequence of length m, we generate (m−k +1)
k-mers. In scenarios where multiple reads cover the original sequence, there
exists the potential for read errors to creep in. However, by collecting a k-mer
histogram, valuable insights into potential read errors can be gained. Specifically,
k-mers that manifest with a low frequency are likely attributed to reading errors
and can be discarded. Notably, in an ideal scenario where all reads overlap,
correct reads yield k-mers with a higher frequency, reinforcing their accuracy and
reliability. This analytical approach enables us to discern errors from authentic
data, thus bolstering the robustness and fidelity of our analyses.

1.3 Research Questions

In this section, we define the research questions that lead to the creation of our
four articles. The questions arise when trying to use the IPU for sparse and
irregular computations. Naturally, we want to limit the scope of our research
and propose three questions focused on the programmability and techniques for
using a novel architecture. We apply the research questions to three fields from
the HPC landscape. Namely, we applied the IPU to graph processing, by using
unstructured SpM(Sp)V operations, scientific simulations on irregular grids, and
high throughput bioinformatics applications.

Using the IPU, compared to GPUs, we are interested in three abstraction
levels, the single tile performance, the whole IPU performance, and the cluster
performance across multiple IPUs.

Research Question 1: How to effectively utilize a single tile? When it
comes to novel hardware and many-core architectures, it is crucial to attain high
utilization of the provided elemental units that make up the entire processor.
A tile is the fundamental scheduling unit on the IPU. Each tile is one of the
thousands of tiny dedicated processors with attached dedicated memory that
constitute the IPU chip. Each of these tiles has six threads, which share a
memory domain. We consider a tile efficiently utilized when all instructions are
productively used for the algorithm of choice while all threads are busy.

We focus on different tile threading techniques in each article. In Paper I
we focus on multiple threads inserting data into a shared queue without
atomic primitives. In Paper II we look at instruction latency and instruction
level parallelism for the IPU. In Paper III, we test different data types and
compiler optimizations and write hand-optimized assembly to attain real-world
performance close to our proposed model. In Paper IV we found that replacement
techniques for atomic counters can let multiple threads cooperatively work on a
pool of shared problems of undetermined runtime. Furthermore, we improved
the existing X-Drop algorithm to reduce memory requirements to make the
algorithm run on a single tile.

Research Question 2: How to efficiently utilize a single IPU chip? The
IPU’s enforcement of the BSP pattern often results in sparse problems failing

17



1. Introduction

to effectively utilize all cores, leading to suboptimal performance. To achieve
good efficiency, implementations must maximize the utilization of tiles on the
chip. Furthermore, it is essential to ensure that all tiles are utilized for an equal
amount of time, avoiding uneven completion and load imbalances that result in
idle tiles, thereby inefficiently utilizing the entire processor.

We have found different answers on how to utilize a whole chip effectively. In
Paper I we randomly permuted the matrix to obtain a uniform distribution for
the non-zero elements of the SpM(Sp)V operation. In Paper II, we used METIS
to partition the underlying 3D structural graph into many equal-sized partitions.
In Paper III we used a k-partitioning algorithm to balance the plannable runtime
of the many problems and achieve a high utilization. In Paper IV we used
heuristics and greedy subproblem splitting together with our k-partitioning from
Paper III to create roughly equal-sized batches.

Research Question 3: How to utilize multiple IPUs efficiently? Scaling to
multiple IPUs can trivially be achieved with the Poplar programming model.
However, when seeking high performance, placement and communication need
to be considered, as the intra-IPU bandwidth is an order of magnitude faster
than the inter-IPU bandwidth. Furthermore, the IPU only provides a ladder
network topology configuration; a restrictive layout compared to other network
topologies [Jyo+16]. We addressed this question in our four articles differently,
where in Paper I we introduced a pre-reduction to reduce memory requirements
allowing for larger systems to scale. In Paper II through matrix partitioning we
minimized communication, and through reordering the matrix into a banded
form most of the communication stayed between adjacent IPUs, allowing to
scale in a ladder topology. In Paper III, we scaled to 64 IPUs, using single IPUs
instead of a multi-IPU approach, avoiding the IPU-to-IPU communication, but
focusing more on the host-to-device bandwidth. In Paper IV, we introduced a
memory reuse strategy, which can reduce the transferred data by multiple times,
reducing the network saturation and thus allowing it to scale to more IPUs on a
shared network.

1.4 Summary of Papers

In this section, we introduce the four articles produced during this thesis and
provide further motivation, background, and summaries of their contributions.

1.4.1 Summary of Paper I

Luk Burchard, Xing Cai, Johannes Langguth “iPUG for Multiple Graphcore
IPUs: Optimizing Performance and Scalability of Parallel Breadth-First Search”.
In: 2021 IEEE 28th International Conference on High Performance Computing,
Data, and Analytics (HiPC). Vol. 28, (2021, December), pp. 162–171. DOI:
10.1109/HiPC53243.2021.00030.

18

https://doi.org/10.1109/HiPC53243.2021.00030


Summary of Papers

The first article of this thesis explores the use of multiple IPUs to accelerate
breadth-first search (BFS) in graphs. Multiple IPUs are used to avoid the
limitations of using the slow DRAM attached to the IPU, limiting the graph
placement to only on-chip memory providing more SRAM memory and higher
aggregate bandwidth. The underlying technique explored and discussed is a
sparse matrix-vector (SpMV) operation on a boolean semiring. The operation
can be summarized as xℓ+1 = A · xℓ, where A ∈ B|V |×|V | is the sparse adjacency
matrix of a graph G(V, E), and xℓ is the frontier, representing the activated
vertices of the current iteration level ℓ. By adding a micro queue system for
the frontier of new activations, we are sparsifying the input vector xℓ, making
it a sparse matrix sparse vector (SpMSpV) operation. We are interested in
accelerating BFS because it is a ubiquitous algorithm found throughout an
ample number of graph algorithms. Further, benchmarking BFS serves as
an indicator of challenges concerning other sparse and irregular requirements
for communication and hardware usage. As a means of comparison to other
implementations, we used the Graph500 benchmark, as it allows us to compare
the performance of multiple architectures and implementations through a single
score.

The BFS input is a sparse adjacency matrix created from a graph. To
avoid the advantages of specialized partitioners and only benchmark the BFS
implementation, the input has to be assumed to have a randomized pattern.
The inputs are scale-free graphs resembling properties found in online social
network graphs, with on average of 7 edges between any two vertices in the
graph [Ama+00; BW00; WS98], and a low graph diameter. This low graph
diameter property makes the traversal have only a few levels increasing the
parallelism by having a lot of operations in each level. For comparability, the
benchmark prohibits the use of matrix permutations that make use of the specific
graph generator. We also extend our analysis to graphs not specified in the
benchmark and use real-world input graphs found in the SuiteSparse [Kol+19]
dataset. These graphs can be more challenging to compute as they have a higher
diameter and can not use a high level of parallelism, which poses a challenge for
highly parallel architectures.

The goal of this first article is to discover building blocks for the general
SpMV/SpMSpV algorithm on multiple IPUs, which have applications in a wider
range of applications.

The Graph500 benchmark suggests to use the largest possible input instance.
The Kronecker graph generator used to generate the standardized benchmark
inputs is unfair in the sense that the graph densifies with higher dimension, giving
especially the direction optimization a benefit with larger input instances [SPK13].
This makes it difficult to compare larger systems with smaller ones.

Motivation The idea of using the IPU to accelerate BFS is that the algorithm
is heavily bounded by memory bandwidth and latency, especially through the
random fine-grained reads and writes that are required. On CPUs and GPUs
this leads to cache misses and makes it difficult to archive coalesced memory

19



1. Introduction

access. The thought is that the IPU is capable of providing fast fine-grained
memory access with its order of magnitude higher memory bandwidth compared
to CPUs and GPUs. Our previous publication used the earlier GC2 IPU with
fewer tiles and much less SRAM per tile (Table 1.1) and only a single IPU
instance used for the BFS algorithm [Bur+21].

Communication Reduction The BFS implementation is split into two phases,
the fold and expansion phase, this also applies to general SpMV and SpMSpV.
The expansion phase is responsible for computing the partial matrix-vector
multiplication results. All tiles in this phase are working on small 2D blocked
partitions of the matrix which are distributed among the tiles. All tiles are
multiplying their 2D blocked partition with the partial input vector of the current
level xℓ. The fold phase is a reduction operation that combines the results from
the expansion phase into the output of the BFS iteration xℓ+1. We view the
fold phases input as unstructured as each partition will likely produce a different
output with a varying amount of non-zeros which has to be reduced. Thus, we
have to communicate different data for each partition. During the expansion,
all partitions along the column receive the same input vector. We utilize this
observation to minimize transferred data.

To implement the initial algorithm we 2D block partitioned the adjacency
matrix and the respective in and output vectors.

To implement the initial scaling across multiple IPUs, we used a 1D block
partition among the IPUs. When applying the 1D block partition of the 2D
partitioned matrix, all partitions of one row are always placed on the same IPU.
This has the advantage that the fast on-chip network is used. The division
across the columns induces less communication effort because we use broadcast
messages, sending data only once and receiving it many times. In poplar this
is done by expressing a one-to-many relation of a tensor to the input field of
multiple compute-vertices. This way, the communication effort across multiple
IPUs is only at most O( |V |

p p) = O(|V |), instead of O(
[

|V |
p p

]
p) = O(|V |p), when

using p 1D partitions.

Multi IPU Scaling Instead of using binary encoded vectors to denote the
frontier, we encoded the frontiers xℓ as a set of small queues, where each queue is
responsible for its respective partitioned section of x. This representation allowed
us to compress the information in the vector. We observed that depending on
the discovery of the BFS level, the number of non-zeros of these queues varies
(Figure 1.6).

Observing that a lot of time is used for communicating the frontiers into the
expansion phase, especially with a growing number of IPUs, we intend to reduce
the communication volume. The reason for the growing latencies with more IPUs
was due to the ladder topology of the interconnect network, introducing longer
latencies when communicating between IPUs. Also, considering weak scaling,
the bisection bandwidth stayed the same, but the volume over the middle links
increased, taking more time.

20



Summary of Papers

Figure 1.6: The frontier is represented as a list of smaller queues, each serving
their respective partition. The queues encode the location of activations in the
BFS frontier. We observed that in earlier levels the frontier is mainly zeros,
while in peak levels the frontier is mainly filled with non-zeros during the BFS
iterations.

To reduce the communication size, we cut off the queues containing the
zeros and only send non-zeros. This is not trivially possible as communication
pattern and size is not dynamic and has to be determined at compile time. We
introduced a max reduction over the queue lengths to find the communication
size minimally required to transfer all values. We use this maximum queue value,
logarithmically rounded to reduce the number of possible communication sizes
and stay 2-competitive with respect to the best communication volume as the
communication cutoff. We showed that the max reduction is well amortized in
the overall runtime. However, we noted that when using non-randomized graphs,
the optimization is not effective, indicating that for better load balancing, a
random permutation should always be applied to the input.

Conclusions We found that the performance for SpM(Sp)V operations
depends on the structure of the input matrix. Especially high-diameter graphs
do not benefit from our optimization. Even if the input is structured, we found
that for the sake of load balancing it is beneficial to destroy the pattern of the
graph and uniformly randomize the input, such that all tiles gain work and can
contribute to the parallelization.

A shared memory system with synchronization operations has the advantage
of splitting a problem into multiple smaller parts, where computation is
parallelized but the memory complexity stays the same except for a small
overhead. The IPUs do not have synchronization operations on the same tile
but offer six threads. This results in data structures that need to be replicated
instead of being synchronized. Even though it is possible to synchronize problems
working on dense data through the deterministic instruction issue time, sparse
and irregular problems can not implicitly be synchronized. Our implementation
would have benefited strongly from simple tile-local atomic counters, which
would have reduced the memory requirement by 6× and provided speedups.

21



1. Introduction

Another takeaway from this BFS example was that not using the floating
point capabilities of the IPUs was inefficient, as there are two pipelines that
can be utilized but one is used, indicating that algorithms need to make use of
the second pipeline (AUX) to attain higher performance. As the IPU is built for
deep learning, much of the hardware resources are allocated for floating point
operations, found in the AUX pipeline. Finally, the BFS benchmark does not
play into the strengths of the IPU, as data is read only once; higher data reuse
would show better real-world benefits due to the fast random memory access
capabilities of the hardware.

Scaling more than 8 IPUs was made impossible because of the compilation
process, which kills the compilation after more than 8 IPUs requiring exponential
time and memory. Also, we noticed shortcomings in the network topology of
the IPU as the network is built like a ladder, linear scaling leads to linearly
increasing latencies and linearly increasing congestion. Ideally, a hypercube or
star topology would help the IPUs to improve the scaling performance. We
avoided a lot of traffic through the use of broadcast messages, made possible
through our work division scheme but also note that the generalized workloads
likely can not benefit from this communication reduction.

1.4.2 Summary of Paper II

Luk Burchard, Kristian Gregorius Hustad, Johannes Langguth, Xing Cai “En-
abling Unstructured-Mesh Computation on Massively Tiled AI-Processors: An
Example of Accelerating In-Silico Cardiac Simulation”. In: Frontiers in Physics.
Vol. 11, (2023, March), pp. 105. DOI: 10.3389/fphy.2023.979699.

A majority of HPC applications are used for modeling physical objects, such
as fluid dynamics, complex systems, structural engineering, weather forecasting,
chemistry and material science, and other life science applications. Of the
mesh-based approaches these can be roughly divided into regualr and irregular
methods. We are interested in the unstructured mesh-based methods, as they
exhibit bad coalesced memory access pattern, which is difficult to accelerate
with a GPU.

For the second article, we are focusing on an irregular mesh-based finite
volume cardiac electrophysiology simulation. The simulation uses a reaction-
diffusion model, including the cell model and the diffusion of the electrical signal
through the cardiac fibers. We are building upon the LYNX code [Lan+19],
which solves the monodomain model using CPUs or GPUs. It originally was
built for MPI parallelization and later extended to use GPU clusters [Hus19],
connected with MPI.

The fundamental idea of LYNX is that the reaction-diffusion model gets
separated into two parts, the PDE and ODE parts. The ODE part, a set of
ordinary differential equations is operating on a dense vector and encapsulates
the main arithmetic segments. In the PDE part, the partial differential equation
that couples all the computational elements is solved by a sparse matrix-vector
operation (SpMV) per time step, where the matrix is sparse and the pattern is

22

https://doi.org/10.3389/fphy.2023.979699


Summary of Papers

determined by the unstructured-mesh topology. The results of the PDE part
are input to the ODE part and vice versa. We iteratively compute one after
another, called a step. LYNX has to do multiple hundreds of thousands of these
steps, thus we can spend time optimizing the computations, as they will become
amortized over a long runtime of multiple minutes to hours, depending on the
input.

The original LYNX code significantly benefited from using GPUs, as the
cell model requires high arithmetic intensity on a dense vector of values, which
the GPU can provide. However, when analyzing the runtime for PDE and ODE
shares of the total runtime for a mid-sized mesh resolution, we observe that the
PDE is taking 2.7× the runtime of the ODE section. This is due to the difficult
coalesced access patterns. Through the learnings in SpMV calculations from the
BFS code we intended to speed up the PDE part of the LYNX simulator.

Background The SpMV operation performed in LYNX is compiled specifically
for the IPU, as the intention is to amortize the startup costs through good
planning. The geometric nature of the mesh implies that rows of the sparse
stiffness matrix required for the PDE part will never exceed 17 non-zeros per
row. Thus, we choose an ELLpack format, compared to the CSR/CSC format
used for the BFS, which has the advantage of being more memory efficient and
also provides an advantage for SIMD operations when considering CPUs. Thus
using this ELLPack format, we are looking at a 1D-partitioning problem with
unstructured dependencies between the partitions.

The CPU code reorders the matrix using a standard graph partitioner METIS,
for cache hit performance. This places the non-zeros into the diagonal of the
matrix and minimizes cuts, which would result in communication. We keep this
reordering, not to increase cache hits but to reduce the communication volume
between the partitions.

Matrix Partitioning and Inter-Tile Communication The matrix partitioning
we use in the article assumes that the majority of non-zeros are placed in blocks
on the diagonal. This permutation of the matrix is done at a previous step
through partitioning. Then applying 1D cuts to form partitions along the rows
and blocks, will ideally split the matrix into multiple disjunct blocks, as well
as the input vector. As in practice, the mesh is not split into many disjunct
blocks non-zero values are placed into column-owned regions of other partitions.
This requires the value to be communicated for the iterative result of the SpMV
operation. We follow the traditional HPC fashion and divide the cells of the split
matrix into three regions, the interior (local), separator (to be communicated),
and halo (to be received) regions. We facilitate the data movement between the
tile from the separator sections to the halo section of another tile by mapping
the tensor regions in the Poplar framework.

In this article, we explore how the communication and mapping of the
partitions have to be handled on the IPU, as too fine-grained communication is
not well compilable and too coarse communication is overhead heavy. We thus

23



1. Introduction

Table 1.2: Allocation volume of cells for each tile. The three communication
reordering strategies surveyed in the article were Full-separator, Mixed-separator,
and Range-separator, while the dominant strategy in all cases is the Mixed-
separator strategy.

IPUs
Method Cell Kind 1 2 4 8 16 32
Full TotalCells 9858 6221 3829 2357 1448 845

Interior 2058 1030 515 258 130 65
InboundVolume 7812 5184 3314 2099 1319 780
OutboundVolume 7656 5030 3228 2093 1339 793

Mixed TotalCells 4272 2803 1887 1303 930 649
Interior 2058 1030 515 258 130 65
InboundVolume 2226 1775 1370 1045 801 585
OutboundVolume 2121 1649 1269 1005 811 592

Range TotalCells 6417 3919 2479 1539 1099 579
Interior 2058 1030 515 258 130 65
InboundVolume 4358 2890 1962 1282 970 515
OutboundVolume 4265 2875 1913 1307 982 518

evaluate three proposed techniques to minimize the communication time of the
PDE phase. As a perfect reordering of the separator is not in polynomial time,
we used heuristics, which can be found in Table 1.2.

Interestingly, we observed that the effectiveness of the partitioning is becoming
quite bad when using finer partitioning. The partitioning requires the cells to
exchange more than 90% of their cell volume, meaning that almost all cells
have to be communicated throughout the processor. However, when observing
the full-time share of PDE and ODE time required the time of the PDE never
exceeds the time required for an ODE, not even with 16 IPUs.

Multi IPU Partitioning When scaling to multiple IPUs, we further relied on
the idea that the majority of the matrix non-zeros are placed into blocks,
thus communication would in the majority only happen between adjacent
blocks. Hence, an extension of the 1D splitting regime seemed feasible. For
the communication volume between more IPUs, we can observe that the used
approach works reasonably well, as the diagonal has the most communication.
However, placing these partitions onto a hardware topology might pose a larger
combinatorial problem.

Conclusions We have shown that the particular electrophysiological simulation
considered in this paper can be accelerated using single and multiple IPUs. And
to the best of our knowledge we were the first to show that it is feasible to use
the IPU to accelerate irregular mesh-based methods. Further, we found that
our approach improved the share of PDE to ODE from 2.7× on the GPU down

24



Summary of Papers

0 2 4 6 8 10 12 14
IPU

0

2

4

6

8

10

12

14

IP
U

100 2.8 0.8 1.2 1.1

2.7 96.4 1.4 0.7 0.3 1.7

0.8 1.5 95.5 1.5 0.5 0.4 1.2 0.6 0.4

1.2 1.4 94.9 1.5

85.4 1.4 1.7 0.5 0.1 0.4

1.5 83.9 0.7 0.1 0.5

1.7 92.4 1.6

1.1 0.7 0.4 0.5 1.6 88.8 0.6

0.7 91.2 2.8 0.8

0.1 2.8 95.5 1.6 1.5 0.8

0.3 0.4 0.1 0.5 1.5 92.6 1.7 1.2 1.4 0.2

1.8 1.6 1.6 97.4

1.1 0.5 0.6 1.1 95.2 2.5

0.6 1.4 2.5 93.2 0.4 0.8

0.4 1.6 0.5 93.1 2

0.8 0.8 0.2 0.8 2 92.5

20

40

60

80

100

20

40

60

80

100

Figure 1.7: Lynx communication volume between multiple IPUs, normalized to
the largest communication volume. Intra-communication volumes are on the
diagonal, while inter-communication volumes are on the off-diagonal.

to 0.3× on the IPU. However, as the ODE part is heavily reliant on arithmetic
instructions, the GPU is faster than the IPU for the ODE part. As the IPU
only supports single precision floating point data types, we verified that the used
simulation will produce accurate results compared to the double precision CPU
implementation.

In the end, a single IPU was still outperformed by a single GPU in the ODE
part, as the GPU is exceptionally good for regular SIMD workloads. The IPU
struggles here.

As with the BFS article, we were not able to compile our code for our
available 64 IPUs. We were limited to 16 IPUs, similar to the BFS article,
because the compilation would run out of time and memory. We observed
exponential memory usage and time requirement.

Seeing the SpMV IPU workload perform much better than on the GPU, but
the arithmetic-intensive part performs worse hints to us exploring workloads
that are inherently more sparse and irregular.

1.4.3 Summary of Paper III

Max Xiaohang Zhao†, Luk Burchard†, Daniel Thilo Schroeder, Johannes
Langguth, Xing Cai “iPuma: High-throughput Sequence Alignment for MIMD

†Shared first author, both authors contributed equally.

25



1. Introduction

AI Accelerators”. In preparation, to be submitted to journal.

The third article dives into bioinformatic applications, which are reliant on
string comparisons. Bioinformatic applications are part of the field of HPC
applications and often require string alignment algorithms in the beginning
when aligning DNA reads. An important observation is that the CPU is still
the dominant architecture for most bioinformatic pipelines, as GPUs require
homogeneous operations on their data which is often not given for these string
alignments.

The algorithm of choice is the Smith-Waterman (SW), as GPU implemen-
tations are still performing equivalently well [Bar20] to CPU implementations
and could not improve the algorithm like in other fields, where speedups in the
order of magnitudes were possible. Moreover, GPU implementations are only
performing well, when long sequence comparisons are assumed; this is not a
valid assumption in reality as sequence reads have for most applications and
next generation sequencing a more limited and varying length.

The goal of the article was to produce a library that can provide production-
quality local alignments through SW, that perform in real-world use cases.
While being flexible enough to be employed for DNA and proteomic data without
restrictions, as most libraries optimize for special use cases i.e.: only DNA, or
extremely long sequences.

Optimizing for Throughput For real-world applications, the IPU poses strong
restrictions, as the interconnect to a controlling host computer is slow compared
to a CPU or GPU. GPUs for the DGX-2 V100 are connected with a 300 GB/s
link and have almost 900 GB/s memory bandwidth, CPUs have approximately
400 GB/s memory bandwidth and the data is already available. The IPUs
numbers are pale in comparison with a shared 12.5 GB/s link and 20 GB/s
on-IPU machine DRAM bandwidth shared across the four IPUs per IPU blade,
of the Mk2 and Bow machines. Comparing these numbers would indicate that
we can not do much against the CPU and GPU; however, we are not memory
bound.

We introduced batching to send small work bundles to the IPU, keeping
it busy, while preloading data to the DRAM next to the IPU. This does not
help the bandwidth of the IPU but introduced pipelining, where the latency of
synchronization was reduced as the IPU only had to communicate with the local
DRAM. Software shortcomings made it not possible to use the approximately
400 GB DRAM, letting us only preload a single batch into the pipeline only
occupying 2.4 GB of the DRAM. This did not improve the overall latency of the
system, as work was preloaded to the IPU machines, but the overall throughput
was increased.

Partitioning Because of the bulk synchronous parallel (BSP) pattern the
IPU enforces it is not possible to do completely inhomogeneous computations.
Because, when a single tile is long-running the IPU is required to wait for that

26



Summary of Papers

single struggling tile. We used a k-partitioning approach in combination with
heuristic approaches to load-balance the work batches onto the tiles, minimizing
the difference of the makespan, and the time it takes to complete the last
computation.

Performance Model A benefit of the IPU architecture is that building
performance models becomes quite straightforward. We proposed a model which
indicates that 195.776 GCUPS were attainable. Later we confirmed that the
measured peak performance was 192 GCUPS. This is due to the deterministic
performance of the hardware itself. We created the performance model by
inspecting the instructions, thus simply improving the quality of the compilation
could lead to better performance. However, as the code was hand-optimized we
are confident that the peak performance of the hardware was attained.

Pipeline Integration As the goal was to produce a usable library, we showed
with integration into two biological pipelines the practicality. For this, we used
projects based on MPI and UPC++, PASTIS [Sel+20] and MetaHipMer [Geo+15;
Geo+18]. Those projects fall into the category of distributed memory and shared
memory systems, respectively. Although the design decisions were initially led by
the MetaHipMer UPC++ project, we were not able to attain the high speedups
we hoped for. This was due to the fact that multiple processes were placed on
the same node and bad batch partitions could only be attained due to the too
finely partitioned of the problem space. With the PASTIS project using MPI
and OpenMP-based project, we could utilize the fact that we are on a fat node
and used large batch partitioning, generating higher quality partitions. Thus,
the speedups for PASTIS were higher, although the design originated from the
MetaHipMer pipeline.

Conclusions We found that using the IPUs for string alignment algorithms
occupies a sweet spot for next generation sequencing alignment with sequences
approximately of length 200 − 350 bp for current IPU generations. Shorter
sequences are not practical as the communication overhead with the IPU and the
little computational time will become amortized. For longer sequences, GPUs
become increasingly more viable through their strong instruction throughput.

We want to notice here that our testing setup is present in a degenerate
configuration with 64 IPUs per host node, while the proposed setup by the vendor
has only 16 IPUs attached to a single host node. This leads to a faster saturation
of the interconnect when scaling to all 64 IPUs. However, we were still able to
show scaling for long protein sequences up to 64 IPUs, as the computational
time is increased and thus the interconnect is not as much used.

27



1. Introduction

1.4.4 Summary of Paper IV

Luk Burchard†, Max Xiaohang Zhao†, Johannes Langguth, Aydın Buluç, Giulia
Guidi “Space Efficient Sequence Alignment for SRAM-Based Computing: X-
Drop on the Graphcore IPU”. Accepted for publication in SC ’23: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. DOI: doi.org/10.1145/3581784.3607094

The fourth and last article of this thesis explores bioinformatics applications
further, as in the previous article we established that string alignment algorithms
are feasible to run on single and multiple IPUs. In addition we know that the IPU
does not heavily benefit from SIMD instructions, but from tile-to-tile balanced
instructions. Furthermore, our previous algorithm was performing well for short
to medium sequences. Thus, we want to make it possible to accelerate medium
to long sequences, from newer sequencing technologies, such as PacBio HiFi
sequencing. The algorithm of choice was the X-Dorp algorithm, which exhibits
a very irregular computational pattern and requires more memory. We again
were interested in the real-world performance of our approach and tested it with
two real-world pipelines, ELBA [Gui+21] and PASTIS [Sel+20].

GPU codes exist for the X-Drop algorithm, they parallelize the computations
through the use of long diagonals using SIMD instructions in the algorithm.
However, we want to note here that in real use cases with realistic parameters, it
is not likely that such long diagonals exist. Thus, the GPU implementations are
providing speedups in more theoretical scenarios, but can not provide acceleration
in real-world applications. Furthermore, only DNA-based GPU implementations
exist at the time of writing.

Space Optimization To make it possible to run X-Drop for larger sequences
on the IPU we first had to reduce the memory usage of the algorithm itself.
A single IPU tile currently has 624 kb of memory and input sequences are
30k symbols encoded as bytes. Alone the inputs occupy 360 kb of memory, a
memory scratch space for the traditional algorithm would occupy another 540 kb,
making it infeasible to use all six threads.

Similar to our other articles, we were not able to split the work between six
threads, thus requiring 6× the memory. Therefore, because no synchronization
instructions are available on the IPU, we have to provide six input instances.

Through the observation that only a small part region of the fully allocated
scratch memory is actually used, we introduced an algorithmic change to
the X-Drop algorithm to allocate only this active region. We analyzed the
parameter empirically for theoretical and real instances and determined that in
real applications we can reduce the memory usage up to 55×. This optimization
made it possible to reduce the 540 kb of scratch memory down to under 10 kb of
memory. Thus, we were able to use the remaining space for more input instances.

†Shared first author, both authors contributed equally.

28

https://doi.org/doi.org/10.1145/3581784.3607094


Summary of Papers

Compute Graph Optimization A problem with the X-Drop algorithm is that
the likely complexity the algorithm occupies is closer to linear than to quadratic.
This, poses a problem for the IPU, as the slow interconnect costs are more
difficult to amortize. However, we found that many pipelines need to do many-
to-many comparisons. We utilize the fact that values of comparison pairs will be
reused. Through a simple graph partitioning heuristic, we were able to increase
the computations done per tile, without increasing the transferred data.

The increased utilization time on time IPU and decreased data transfers also
resulted in better scaling efficiencies for multiple IPUs.

Thread Parallization X-Drop is an algorithm which has an undetermined
runtime, as the termination conditions can be triggered spontaneously. Thus, it
was very difficult to determine an accurate model for partitioning the work based
on the apriori runtime, such that the BSP’s global synchronization would not
wait for a single tile. For this, we introduce a simple work division scheme, that
splits the comparisons into smaller parts. Following the law of large numbers,
we intend to minimize the runtime variance. We further improved this work
division by changing the initial static scheduling with dynamic scheduling, which
employs an eventual global counter. In the case of race conditions, through the
idempotent property of the algorithm no information would be corrupted, only
computed multiple times.

Conclusion We have contributed to the X-Drop literature by improving the
space requirement of the X-Drop algorithm by 55×. Our implementation of
X-Drop sequence alignment surpasses existing state-of-the-art implementations
on both CPU and GPU platforms, delivering superior performance in both
DNA and protein alignment across realistic X-Drop values, in a single library.
Furthermore, we showcase near-linear strong scaling properties on common IPU
host configurations, leveraging our graph view-based many-to-many sequence
partitioning approach. However, due to the high work imbalances, we could
only utilize approximately 40% of the IPU, indicating that better load balancing
could improve our advantage to the CPU and GPU even further.

29



1. Introduction

1.5 Conclusion

This thesis has provided a first step into exploring multiple applications from the
field of HPC using the IPU. In this section, we look back at our research questions
and try to answer them using the papers and contributions throughout the thesis.
Furthermore, we will provide future work directions and recommendations to
mitigate the current shortcomings of the IPU architecture itself. Together, we
hope they can provide fruitful ground for easier adoption and higher-performing
implementation of the IPU, most notably by requiring less engineering effort
and imposing fewer restrictions on its users.

Research Question 1: How to effectively utilize a single tile?

Our first research question concerned the performance attainable on a single
IPU tile. This topic comes up as the core of each research article. In articles I
and IV , we used hand-optimized assembly to utilize dual issuing on the float
and integer pipeline simultaneously. In article II, due to the large codelets we
omitted hand-optimised assembly. In the last article, as the compiler became
more efficient we only provided codelets in C++. However, attention still has
to be paid when working with C++ code, as the compiler in some cases will
generate badly performing code. Therefore, we suggest always having the C++
and assembly code side by side for performance-oriented programming.

Splitting work per tile is possible when the amount of work is known at
compile time; this has been applied in article II. However, doing dynamic
fine-grained splitting and work division is infeasible. In article IV , we proposed
a more coarse-grained splitting of work that allows threads to partially share a
highly inhomogenous single-string alignment algorithm on a probabilistic basis.

Therefore, under consideration of our explored applications, we would like to
suggest improvements to the platform:

• In order to allow for a tile with all of its threads to share a problem instance,
we suggest extending the ISA with atomic capabilities, such as an atomic
add or a compare and swap. Already simple capabilities, such as a single
atomic add counter, would have allowed us in article I and IV to work
on a shared single problem instance instead of six problem instances per
tile. This would also have the advantage of oftentimes requiring 6× less
memory.

• When programming more irregular algorithms, especially when doing
hand optimization, we would have benefited from an increased number of
registers. Especially noting that only 12× 32 bit integer and 14 floating-
point registers are available.

30



Conclusion

Research Question 2: How to efficiently utilize a single IPU chip?

The second research question concerns the whole IPU chip. Work can not
easily be distributed, because memory and operation mapping will result in
communication and global synchronization. In all articles, we dealt with workload
balancing. In paper I we applied a random permutation of the inputs to balance
work. While in article II, we relied on the partitioning of a graph partitioner
for communication and workload balancing. In article III, we used an accurate
model of the individual work batches to load-balance computation. However, not
all work could be successfully load-balanced. In the last article IV , we coarsely
split work to allow for eventual load-balancing. However, this still fell short, as
we could only utilize approximately 40% of the IPU tiles, indicating that better
load balancing could improve our advantage over the established architectures
further.

Dynamic communication is not possible (Section 1.4.1), meaning that
communication partners and transmission sizes can not be determined during
runtime, but must be provided during compile time (Section 1.2.1). This makes
creating a program for dynamically changing inputs and data difficult. In article
I, we proposed a semi-dynamic scheme to reduce the transmission size although,
communication peers could not be changed.

Another obvious problem we did not address in the writing of this thesis is
the use of the DRAM for allowing us to work on larger problem instances. In
articles III and IV , we used the DRAM tangentially to preload data closer to
the IPU. However, this does only work better than using the interconnect directly
but does still impose a long communication phase, which can only be amortized
because the IPU chip itself does provide fast problem capabilities compared to
CPUs and GPUs. The first articles completely avoided the storing of problem
instances on the DRAM next to the IPUs, because the shared bandwidth to the
IPU is about 5 GB/s, which is 400× slower than modern A100 GPUs with an
approximate 2 TB/s access to high bandwidth memory. In addition, there is a
trend of more architectures adding high bandwidth memory, such as the Intel
Sapphire Rapids CPU. In articles I and II, we avoided the DRAM problem by
adding more IPUs.

Hence, we would suggest a few recommendations to the hardware developers,
based on our applications:

• A weakening, away from the strict BSP regime, would allow for more flexible
synchronization, not requiring waiting for a single processor. This could
be done through multiple BSP domains. This would eschew inefficiencies
arising from uneven work distribution. Other architectures like any CPU
or GPU have a scheduler, which naturally leads to these architectures
having higher utilization of the available silicon.

• Dynamic communication on a chip level will also aid the distribution
of larger problems. Currently, only compile-time static communication
is possible. Dynamic communication can be used to distribute larger

31



1. Introduction

problems onto multiple tiles, such that IPU programs do not need to be
recompiled for every input instance.

• The slow memory bandwidth of approximately 5 GB/s is a limitation for
many applications. Although, when having high data reuse within the
900 MB, it might often not be sufficient to keep the IPU feed with data.
Adding memory technologies with a higher bandwidth would place the IPU
into more competitive territory with the high bandwidth memory GPUs
and CPUs.

Research Question 3: How to utilize multiple IPUs efficiently?

Our third research question concerns the scaling-out aspect of using multiple
IPUs. The IPUs are not directly attached to the host nodes but are provided on
their bespoke system. The interconnect is part of that system called a POD; in
our case we used a a POD-64 containing 64 IPUs. In all four papers, we have
managed to scale out to using multiple IPUs. The scaling-out approaches can be
categorized into two groups: connected and isolated. In the connected approach,
a problem instance is created for a multi-IPU setup, while the isolated approach
utilizes multiple IPUs from the host-connected node.

In articles I and II, we used a connected multi-IPU. In article I, we identified
that scaling becomes an issue due to the ladder topology. We provided the reader
with a strategy of mapping SpMV operations onto multiple IPUs and showed
that through mapping the operations accordingly the data on the inter-IPU
links would only grow linearly, compared to quadratic growth through using
broadcast operations. Article II showed that using a 1D block distribution of a
graph-partitioned ELLPacked SpMV operation will enable scalability without the
downside of having infeasibly large partitions. We unveiled the shortcomings of
using current partitioners and are motivated to use novel partitioning techniques.

Articles III and IV used an isolated IPU configuration, as no global
communication was required. These implementations scale relatively well and are
restricted by the node and interconnect performance between the host computer
to the IPU POD instance.

In general, a problem for connected programs was the compile time and
memory requirement of the compilation, which would grow exponentially. This
compilation issue does not apply to the isolated IPU programs. Hence, for
connected programs, we were not able to scale over 8 and 16 IPUs for article I
and II, respectively. This is currently the most troubling issue for us, making it
impossible to test hardware configurations reaching our 64 IPUs.

Therefore, we propose the following improvements to the IPU hardware
setup:

• The network topology offered by the IPU is restrictive, as only a ladder
configuration is available. This increases latency and creates bottlenecks
along the communication pathway. Allowing for user-defined topologies,
such as trees would allow to provide better scaling performance.

32



Conclusion

• Compile time requirements for connected multi-IPU programs are pro-
hibitively long. An obvious solution is to improve the compilation and
reduce compile time. We do not know what the reason for the slow compile
times is, but allowing users to disable some optimizations and get slightly
worse communication performance would be a sensible tradeoff.

Using the IPU for multiple applications in HPC, we noticed a pattern emerging
for determining when to use the IPU. Firstly, all problems that are solved well on
the GPU and have a very regular memory access pattern are not well suited for
the IPU, as GPUs excel under these conditions. On the other hand, applications,
which are data-intensive and exhibit a low computational complexity, are also
not well-suited, as the off-chip memory bandwidth is one order of magnitudes
slower than that of a CPU. We see an opportunity for the IPU, when applications
are irregular, thus not well suited for the GPU, but also not data intensive.
Furthermore, based on the large SRAM size, all problems which fit into memory
can expectedly be solved fast on the IPU, as the cache bandwidth is one order
of magnitude more than that of a modern CPU.

In our expirience when coding for the IPU, a significant portion, 90% of
the time, is dedicated to setting up the host code in C++, while only 10%
of the time is spent working on the actual codelets. To program the codelets
effectively, we recommend analyzing the assembly code generated, as it offers
an accurate representation of the expected runtime behavior. However, it’s
crucial to acknowledge a common misconception regarding the IPU, which is the
assumption of straightforward and dynamic data transfer. This aspect must be
carefully considered when programming for the IPU, as problems on a larger scale
need to be regular in shape but not on a smaller scale. During the development
process, we encountered several subtle performance issues, which were revealed
through the utilization of the provided IPU profiling tools. However, the state
of debugging code on the IPU remains somewhat obscure, making development
a challenging task. While the profiling tooling could still benefit from further
improvement, particularly for irregular programs, the existing programming
frameworks enable the creation of custom tools.

Future Work The IPU is one of the more interesting AI accelerator architectures
currently available. We hope to see future usages of the IPU in the field of
HPC but are also aware of the challenges and hurdles we discovered. On the
other hand, the platform provides good performance results, given adequate
implementation efforts. Especially for sequence alignment algorithms, we intend
to do further work, as the IPU seems to be excellent providing advantages over
the current state-of-the-art, even at 40% utilization.

Given that SpMV operations perform well on the architecture, problems
using multiple SpMV iterations seem to be suited and future research in these
areas appears promising. This also applies to graph algorithms which are more
compute-intensive than the explored BFS application.

33



1. Introduction

Because 90% of the development time is used to set up the host code, we
intend to do further research in the direction of domain-specific languages (DSL)
for the IPU, or more expressive programming languages such as Python or Julia.

References

[23a] HPCG - November 2022 | TOP500. June 12, 2023. url: http :
//web.archive.org/web/20230612135525/https://www.top500.org/
lists/hpcg/2022/11/ (visited on 07/17/2023).

[23b] TOP500 List - November 2022 | TOP500. Apr. 1, 2023. url: http:
//web.archive.org/web/20230401203322/https://www.top500.org/
lists/top500/list/2022/11/ (visited on 07/16/2023).

[Abt+22] Abts, D. et al. “The Groq Software-defined Scale-out Tensor
Streaming Multiprocessor : From chips-to-systems architectural
overview”. In: 2022 IEEE Hot Chips 34 Symposium (HCS). IEEE
Computer Society, Aug. 1, 2022, pp. 1–69.

[AE86] Altschul, S. F. and Erickson, B. W. “Optimal sequence alignment
using affine gap costs”. In: Bulletin of Mathematical Biology vol. 48,
no. 5 (Sept. 1, 1986), pp. 603–616.

[Ama+00] Amaral, L. A. N. et al. “Classes of small-world networks”. In:
Proceedings of the National Academy of Sciences vol. 97, no. 21
(Oct. 10, 2000). Publisher: Proceedings of the National Academy of
Sciences, pp. 11149–11152.

[AMH23] Alexander, A., Mangnall, J., and Hedinger, P. Tile Codelet ISA.
July 12, 2023. url: https://web.archive.org/web/20230712222926/
https://docs.graphcore.ai/projects/isa/en/latest/_static/Tile-Vertex-
ISA_1.2.3.pdf (visited on 07/12/2023).

[Ang+23] Ang, J. A. et al. “Codesign for Extreme Heterogeneity: Integrating
Custom Hardware With Commodity Computing Technology to
Support Next-Generation HPC Converged Workloads”. In: IEEE
Internet Computing vol. 27, no. 1 (Jan. 2023). Conference Name:
IEEE Internet Computing, pp. 7–14.

[BAP11] Beamer, S., Asanovic, K., and Patterson, D. “Searching for a
parent instead of fighting over children: A fast breadth-first search
implementation for Graph500”. In: EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2011-117 (2011).

[Bar20] Barnes, R. A Review of the Smith-Waterman GPU Landscape. Tech.
rep. University of California at Berkeley, Aug. 2020, p. 27.

[BGS11] Buluç, A., Gilbert, J., and Shah, V. B. “13. Implementing Sparse
Matrices for Graph Algorithms”. In: Graph Algorithms in the
Language of Linear Algebra. Software, Environments, and Tools.
Society for Industrial and Applied Mathematics, Jan. 2011, pp. 287–
313.

34

http://web.archive.org/web/20230612135525/https://www.top500.org/lists/hpcg/2022/11/
http://web.archive.org/web/20230612135525/https://www.top500.org/lists/hpcg/2022/11/
http://web.archive.org/web/20230612135525/https://www.top500.org/lists/hpcg/2022/11/
http://web.archive.org/web/20230401203322/https://www.top500.org/lists/top500/list/2022/11/
http://web.archive.org/web/20230401203322/https://www.top500.org/lists/top500/list/2022/11/
http://web.archive.org/web/20230401203322/https://www.top500.org/lists/top500/list/2022/11/
https://web.archive.org/web/20230712222926/https://docs.graphcore.ai/projects/isa/en/latest/_static/Tile-Vertex-ISA_1.2.3.pdf
https://web.archive.org/web/20230712222926/https://docs.graphcore.ai/projects/isa/en/latest/_static/Tile-Vertex-ISA_1.2.3.pdf
https://web.archive.org/web/20230712222926/https://docs.graphcore.ai/projects/isa/en/latest/_static/Tile-Vertex-ISA_1.2.3.pdf


References

[Bre+14] Breß, S. et al. “GPU-Accelerated Database Systems: Survey and
Open Challenges”. In: Transactions on Large-Scale Data- and
Knowledge-Centered Systems XV: Selected Papers from ADBIS
2013 Satellite Events. Ed. by Hameurlain, A. et al. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2014, pp. 1–35.

[Bur+21] Burchard, L. et al. “iPUG: Accelerating Breadth-First Graph
Traversals Using Manycore Graphcore IPUs”. In: International
Conference on High Performance Computing. Springer. 2021,
pp. 291–309.

[BW00] Barrat, A. and Weigt, M. “On the properties of small-world network
models”. In: The European Physical Journal B - Condensed Matter
and Complex Systems vol. 13, no. 3 (Feb. 1, 2000), pp. 547–560.

[D31] D, K. “Graphok es matrixok (Hungarian) [Graphs and matrices]”.
In: Matematikai es Fizikai Lapok vol. 38 (1931), pp. 116–119.

[Ema+21] Emani, M. et al. “Accelerating Scientific Applications With
SambaNova Reconfigurable Dataflow Architecture”. In: Computing
in Science & Engineering vol. 23, no. 2 (Mar. 2021). Conference
Name: Computing in Science & Engineering, pp. 114–119.

[Fan+04] Fan, Z. et al. “GPU Cluster for High Performance Computing”.
In: SC ’04: Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing. SC ’04: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing. Nov. 2004, pp. 47–47.

[Fra+13] Frank, M. et al. “Genome sequencing: a systematic review of health
economic evidence”. In: Health Economics Review vol. 3 (Dec. 12,
2013), p. 29.

[Geo+15] Georganas, E. et al. “merAligner: A Fully Parallel Sequence Aligner”.
In: 2015 IEEE International Parallel and Distributed Processing
Symposium. May 2015, pp. 561–570.

[Geo+18] Georganas, E. et al. “Extreme Scale De Novo Metagenome Assem-
bly”. In: SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. SC18: International
Conference for High Performance Computing, Networking, Storage
and Analysis. Nov. 2018, pp. 122–134.

[Got82] Gotoh, O. “An Improved Algorithm for Matching Biological
Sequences”. In: Journal of Molecular Biology vol. 162, no. 3 (Dec.
1982), pp. 705–708.

[Gui+21] Guidi, G. et al. “Parallel String Graph Construction and Transitive
Reduction for De Novo Genome Assembly”. In: 2021 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS). ISSN: 1530-2075. May 2021, pp. 517–526.

[Gwe20] Gwennap, L. “Tenstorrent scales ai performance”. In: URL
https://www. linleygroup. com/mpr/article. php (2020).

35



1. Introduction

[Göd+07] Göddeke, D. et al. “Exploring weak scalability for FEM calculations
on a GPU-enhanced cluster”. In: Parallel Computing. High-
Performance Computing Using Accelerators vol. 33, no. 10 (Nov. 1,
2007), pp. 685–699.

[Han04] Handelsman, J. “Metagenomics: Application of Genomics to
Uncultured Microorganisms”. In: Microbiology and Molecular
Biology Reviews vol. 68, no. 4 (Dec. 2004). Publisher: American
Society for Microbiology, pp. 669–685.

[HC16] Heather, J. M. and Chain, B. “The sequence of sequencers: The
history of sequencing DNA”. In: Genomics vol. 107, no. 1 (Jan.
2016), pp. 1–8.

[HH92] Henikoff, S. and Henikoff, J. G. “Amino Acid Substitution Matrices
from Protein Blocks”. In: Proceedings of the National Academy of
Sciences of the United States of America vol. 89, no. 22 (Nov. 1992),
pp. 10915–10919.

[Hil+98] Hill, J. M. D. et al. “BSPlib: The BSP programming library”. In:
Parallel Computing vol. 24, no. 14 (Dec. 1, 1998), pp. 1947–1980.

[Hue+20] Huerta, E. A. et al. “Convergence of artificial intelligence and high
performance computing on NSF-supported cyberinfrastructure”. In:
Journal of Big Data vol. 7, no. 1 (Oct. 16, 2020), p. 88.

[Hus19] Hustad, K. G. “Solving the monodomain model efficiently on GPUs”.
MA thesis. http://urn.nb.no/URN:NBN:no-74080: University of
Oslo, 2019.

[HVH18] Hammond, S., Vaughan, C., and Hughes, C. “Evaluating the Intel
Skylake Xeon Processor for HPC Workloads”. In: 2018 International
Conference on High Performance Computing & Simulation (HPCS).
2018 International Conference on High Performance Computing &
Simulation (HPCS). July 2018, pp. 342–349.

[Jyo+16] Jyothi, S. A. et al. “Measuring and Understanding Throughput of
Network Topologies”. In: SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis.
ISSN: 2167-4337. Nov. 2016, pp. 761–772.

[Kep+15] Kepner, J. et al. “Graphs, Matrices, and the GraphBLAS: Seven
Good Reasons”. In: Procedia Computer Science. International
Conference On Computational Science, ICCS 2015 vol. 51 (Jan. 1,
2015), pp. 2453–2462.

[KG11] Kepner, J. and Gilbert, J. Graph algorithms in the language of
linear algebra. SIAM, Jan. 2011.

36

http://urn.nb.no/URN:NBN:no-74080


References

[Kin+09] Kindratenko, V. V. et al. “GPU clusters for high-performance
computing”. In: 2009 IEEE International Conference on Cluster
Computing and Workshops. 2009 IEEE International Conference on
Cluster Computing and Workshops. ISSN: 2168-9253. Aug. 2009,
pp. 1–8.

[Kno21] Knowles, S. “Graphcore”. In: 2021 IEEE Hot Chips 33 Symposium
(HCS). 2021 IEEE Hot Chips 33 Symposium (HCS). ISSN: 2573-
2048. Aug. 2021, pp. 1–25.

[Kol+19] Kolodziej, S. P. et al. “The SuiteSparse matrix collection website
interface”. In: Journal of Open Source Software vol. 4, no. 35 (2019),
p. 1244.

[KSH12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. “ImageNet
Classification with Deep Convolutional Neural Networks”. In:
Advances in Neural Information Processing Systems. Vol. 25. Curran
Associates, Inc., 2012.

[Lan+01] Lander, E. S. et al. “Initial sequencing and analysis of the human
genome”. In: Nature vol. 409, no. 6822 (Feb. 2001). Number: 6822
Publisher: Nature Publishing Group, pp. 860–921.

[Lan+19] Langguth, J. et al. “Towards Detailed Real-Time Simulations of
Cardiac Arrhythmia”. In: 2019 Computing in Cardiology (CinC).
IEEE. 2019, Page–1.

[Lau21] Lauterbach, G. “The Path to Successful Wafer-Scale Integration:
The Cerebras Story”. In: IEEE Micro vol. 41, no. 6 (Nov. 2021).
Conference Name: IEEE Micro, pp. 52–57.

[Lev66] Levenshtein, V. I. “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals”. In: Soviet Physics Doklady vol. 10 (Feb. 1,
1966). ADS Bibcode: 1966SPhD...10..707L, p. 707.

[Mar+05] Margulies, M. et al. “Genome sequencing in microfabricated high-
density picolitre reactors”. In: Nature vol. 437, no. 7057 (Sept. 2005).
Number: 7057 Publisher: Nature Publishing Group, pp. 376–380.

[McC95] McColl, W. F. “Scalable computing”. In: Computer Science Today:
Recent Trends and Developments. Ed. by Leeuwen, J. van. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1995,
pp. 46–61.

[Mit+21] Mittal, S. et al. “A survey of SRAM-based in-memory computing
techniques and applications”. In: Journal of Systems Architecture
vol. 119 (Oct. 1, 2021), p. 102276.

[MLA10] Monakov, A., Lokhmotov, A., and Avetisyan, A. “Automatically
Tuning Sparse Matrix-Vector Multiplication for GPU Architectures”.
In: High Performance Embedded Architectures and Compilers. Ed.
by Patt, Y. N. et al. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2010, pp. 111–125.

37



1. Introduction

[MM88] Myers, E. W. and Miller, W. “Optimal Alignments in Linear Space”.
In: Bioinformatics vol. 4, no. 1 (Mar. 1988), pp. 11–17.

[Mut+23] Mutlu, O. et al. “A Modern Primer on Processing in Memory”. In:
Emerging Computing: From Devices to Systems: Looking Beyond
Moore and Von Neumann. Ed. by Aly, M. M. S. and Chattopadhyay,
A. Computer Architecture and Design Methodologies. Singapore:
Springer Nature, 2023, pp. 171–243.

[NW70] Needleman, S. B. and Wunsch, C. D. “A General Method Applicable
to the Search for Similarities in the Amino Acid Sequence of Two
Proteins”. In: Journal of Molecular Biology vol. 48, no. 3 (Mar.
1970), pp. 443–453.

[PSS08] Phillips, J. C., Stone, J. E., and Schulten, K. “Adapting a message-
driven parallel application to GPU-accelerated clusters”. In: SC ’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing. ISSN: 2167-4337. Nov. 2008, pp. 1–9.

[Reu+20] Reuther, A. et al. “Survey of Machine Learning Accelerators”.
In: 2020 IEEE High Performance Extreme Computing Conference
(HPEC). 2020 IEEE High Performance Extreme Computing
Conference (HPEC). ISSN: 2643-1971. Sept. 2020, pp. 1–12.

[Rod+99] Rode, C. K. et al. “Type-Specific Contributions to Chromosome
Size Differences in Escherichia coli”. In: Infection and Immunity
vol. 67, no. 1 (Jan. 1999), pp. 230–236.

[Sch+17] Schneider, V. A. et al. “Evaluation of GRCh38 and de novo
haploid genome assemblies demonstrates the enduring quality of
the reference assembly”. In: Genome Research vol. 27, no. 5 (May
2017), pp. 849–864.

[SDM11] Shalf, J., Dosanjh, S., and Morrison, J. “Exascale Computing
Technology Challenges”. In: High Performance Computing for
Computational Science – VECPAR 2010. Ed. by Palma, J. M. L. M.
et al. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2011, pp. 1–25.

[Seb+20] Sebastian, A. et al. “Memory devices and applications for in-memory
computing”. In: Nature Nanotechnology vol. 15, no. 7 (July 2020).
Number: 7 Publisher: Nature Publishing Group, pp. 529–544.

[Sel+20] Selvitopi, O. et al. “Distributed many-to-many protein sequence
alignment using sparse matrices”. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’20. Atlanta, Georgia: IEEE Press, Nov. 9,
2020, pp. 1–14.

[SH05] Schloss, P. D. and Handelsman, J. “Metagenomics for studying
unculturable microorganisms: cutting the Gordian knot”. In:
Genome Biology vol. 6, no. 8 (Aug. 1, 2005), p. 229.

38



References

[SKK17] Sommer, L., Korinth, J., and Koch, A. “OpenMP device offloading
to FPGA accelerators”. In: 2017 IEEE 28th International Confer-
ence on Application-specific Systems, Architectures and Processors
(ASAP). 2017 IEEE 28th International Conference on Application-
specific Systems, Architectures and Processors (ASAP). ISSN: 2160-
052X. July 2017, pp. 201–205.

[SL12] Stranneheim, H. and Lundeberg, J. “Stepping stones in DNA
sequencing”. In: Biotechnology Journal vol. 7, no. 9 (2012). _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/biot.201200153,
pp. 1063–1073.

[SNC77] Sanger, F., Nicklen, S., and Coulson, A. R. “DNA sequencing
with chain-terminating inhibitors”. In: Proceedings of the National
Academy of Sciences vol. 74, no. 12 (Dec. 1977). Publisher:
Proceedings of the National Academy of Sciences, pp. 5463–5467.

[SPK13] Seshadhri, C., Pinar, A., and Kolda, T. G. “An in-depth analysis
of stochastic Kronecker graphs”. In: Journal of the ACM (JACM)
vol. 60, no. 2 (2013), pp. 1–32.

[SW81] Smith, T. F. and Waterman, M. S. “Identification of Common
Molecular Subsequences”. In: Journal of molecular biology vol. 147,
no. 1 (1981), pp. 195–197.

[TK06] Takizawa, H. and Kobayashi, H. “Hierarchical parallel processing of
large scale data clustering on a PC cluster with GPU co-processing”.
In: The Journal of Supercomputing vol. 36, no. 3 (June 1, 2006),
pp. 219–234.

[Val90] Valiant, L. G. “A bridging model for parallel computation”. In:
Communications of the ACM vol. 33, no. 8 (Aug. 1, 1990), pp. 103–
111.

[Wan+16] Wang, Y. et al. “Gunrock: A high-performance graph processing
library on the GPU”. In: Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.
2016, pp. 1–12.

[Wet22] Wetterstrand, K. A. The Cost of Sequencing a Human Genome.
Genome.gov. Sept. 14, 2022. url: https://www.genome.gov/about-
genomics/fact-sheets/Sequencing-Human-Genome-cost (visited
on 05/31/2023).

[WS98] Watts, D. J. and Strogatz, S. H. “Collective dynamics of ‘small-
world’ networks”. In: Nature vol. 393, no. 6684 (June 1998). Number:
6684 Publisher: Nature Publishing Group, pp. 440–442.

[YBO20] Yang, C., Buluc, A., and Owens, J. D. GraphBLAST: A High-
Performance Linear Algebra-based Graph Framework on the GPU.
2020.

39

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost




Papers





Paper I

iPUG for Multiple Graphcore IPUs:
Optimizing Performance and
Scalability of Parallel Breadth-First
Search

Luk Burchard, Xing Cai, Johannes Langguth
Published in 2021 IEEE 28th International Conference on High Performance
Computing, Data, and Analytics (HiPC), Vol. 28, (2021, December), pp. 162–
171. DOI: 10.1109/HiPC53243.2021.00030.

I

Abstract

Parallel graph algorithms have become one of the principal applications of
high-performance computing besides numerical simulations and machine
learning workloads. However, due to their highly unstructured nature,
graph algorithms remain extremely challenging for most parallel systems,
with large gaps between observed performance and theoretical limits.
Furthermore, most mainstream architectures rely heavily on single
instruction multiple data (SIMD) processing for high floating-point rates,
which is not beneficial for graph processing which instead requires high
memory bandwidth, low memory latency, and efficient processing of
unstructured data.

On the other hand, we are currently observing an explosion of new
hardware architectures, many of which are adapted to specific purposes
and diverge from traditional designs. A notable example is the Graphcore
Intelligence Processing Unit (IPU), which is developed to meet the needs
of upcoming machine intelligence applications.

Its design eschews the traditional cache hierarchy, relying on SRAM
as its main memory instead. The result is an extremely high-bandwidth,
low-latency memory at the cost of capacity. In addition, the IPU consists of
a large number of independent cores, allowing for true multiple instruction
multiple data (MIMD) processing. Together, these features suggest that
such a processor is well suited for graph processing.

The second and third authors were partially supported by the European High-Performance
Computing Joint Undertaking under grant agreement No 956213 and the Research Council of
Norway under contract 303404. The work has benefited from the Experimental Infrastructure
project eX3, which is financially supported by the Research Council of Norway under contract
270053.

43

https://doi.org/10.1109/HiPC53243.2021.00030


I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

We test the limits of graph processing on multiple IPUs by implementing
a low-level, high-performance code for breadth-first search (BFS), following
the specifications of Graph500 , the most widely used benchmark for
parallel graph processing. Despite the simplicity of the BFS algorithm,
implementing efficient parallel codes for it has proven to be a challenging
task in the past. We show that our implementation scales well on a system
with 8 IPUs and attains roughly twice the performance of an equal number
of NVIDIA V100 GPUs using state-of-the-art CUDA code.

Contents

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 44
I.2 IPU Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 46
I.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 48
I.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 52
I.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 62
I.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

I.1 Introduction

In the recent years, it has become increasingly clear that energy poses the
ultimate limit to processor performance, and that in order to attain higher energy
efficiency, specialized processor architectures are needed. As a consequence, in
the last decade, the GPU, which offers higher performance and energy efficiency
for many scientific computing and machine learning workloads, has made its
successful entrance to the world of high performance computing.

Now, with the end of Moore’s law getting closer and closer [Lei+20], a
large number of additional architectures, many of them geared towards machine
learning applications, have been developed. This “Cambrian explosion of novel
computer architectures” [HP19] has yielded several mature processors which
became available in the last two years. Among the first such processors is the
Graphcore Intelligence Processing Unit (IPU), which consists of a large number
of independent tiles, each having a multiple instruction multiple data (MIMD)
core and a small amount of SRAM memory. With more than 1000 such cores,
the IPU provides a massive amount of low precision FLOPS. Furthermore, the
absence of a cache hierarchy makes data access extremely fast and efficient. This
also makes the IPU well-suited for highly irregular workloads such as graph
algorithms. Our goal is to study the practical performance benefits that can be
attained from this architecture.

Two IPU versions have been released so far, the GC2, which became first
available in 2018, and the GC200 released in late 2020. The GC200 improves
upon the GC2 w.r.t. the number of cores, FLOPS, and SRAM memory. In this
paper, we focus on the second-generation hardware.

44



Introduction

For testing the graph processing performance of a new architecture, the
Graph500 [Mur+10] breadth-first search (BFS) benchmark offers an ideal starting
point. While there are more complex graph algorithms, efficient parallelization
of BFS remains challenging. It requires irregular communication patterns and
creates unbalanced workloads, thereby capturing the principal challenges of
implementing parallel graph algorithms. Since 2010, Graph500 has collected BFS
performance results for a wide range of hardware platforms and instance sizes,
making it by far the most studied parallel graph problem. Highly optimized codes
have been presented for both CPU and GPU systems [Che+20; Wan+16; YFG13].
Furthermore, graph-specialized hardware accelerators were proposed [Son+18].
This work facilitates a fair comparison between IPUs and GPUs using only
preexisting benchmark parameters.

While the Graph500 specifications allow for running small instances, the
memory of a single IPU is typically too small for most applications of practical
interest. And while it is possible to access data from the attached DRAM or
an external network connection on the IPU, the best-performing solution is to
scale out and use as many IPUs as needed for the problem to fit in the combined
SRAM.

Our work builds upon the iPUG BFS code [Bur+21] which was written for
a single GC2 IPU. In this paper we present a code that is capable of scaling
to multiple IPUs, as well as using the newer GC200 IPU. The main challenges
to overcome are grounded in the fact that the IPU was not originally designed
for running graph algorithms. First, the data structures are not well-suited for
maximizing data locality in BFS. In order to obtain high performance, we have
to design a manual data distribution. The optimum distribution also changes
between the two IPU versions. Second, IPU communication follows static
patterns, and has to be planned at compile time. To get around this limitation,
a 2-competitive solution was designed for iPUG [Bur+21]. However, when
moving to the multi-IPU scenario, communication becomes much more costly
since the device-to-device links are considerably slower than the core-to-core
communication inside the IPU.

We present our solutions to these problems in the following sections. While
the new multi-IPU code is capable of running BFS on larger graphs, the primary
goal of this paper is to outline techniques that can serve as a model for the
implementation of advanced graph algorithms in the future, many of which use
BFS as a subroutine. These include graph centralities and other algorithms
used in the analysis of social networks, such as triangle counting, clustering, and
matching. Thus, our paper makes the following contributions:

1. We present the first implementation of a graph algorithm on the new
GC200 IPU which scales to multiple IPUs.

2. We present an optimization that enables sparse communication in a dense
framework, allowing us to implement the sparse communication required
for graph algorithms in the communication model of the IPU.

45



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

Table I.1: Key architectural features of GC2 and GC200 IPU.

Chip GC2 GC200
Number of tiles 1216 1472
Number of threads 7296 8832
Memory per tile 256 KB 624 KB
Total SRAM memory 311 MB 918 MB
Memory bandwidth 46.6 TB/s 46.9 TB/s
Aggregate tile-to-tile bandwidth 7.78 TB/s 7.83 TB/s
Total chip-to-chip bandwidth 320 GB/s 320 GB/s
Clock frequency 1.6 GHz 1.33 GHz
FP32 compute 31.1 TFLOPS/s 62.5 TFLOPS/s

3. We investigate the performance of our implementation on a cluster of 8
IPUs and compare it to state-of-the-art GPU codes. The results show
that our iPUG code is highly competitive, delivering more than twice the
performance of a cluster of 8 V100 GPUs in the Graph500 benchmark.

The remainder of the paper is organized as follows: we introduce the IPU
in Section I.2 and discuss related BFS work on other architectures in Section
I.5. We present our IPU implementation in Section I.3 and our experiments in
Section I.4. In Sections I.5 and I.6 we survey related work, discuss the results,
and present our conclusions.

I.2 IPU Hardware

The Graphcore IPU consists of a large number of independent units called tiles.
Each tile consists of a core and a small amount of SRAM memory. Each core
runs six concurrent threads in a fine-grained temporal multithreading scheme.
Unlike simultaneous multithreading, which is commonly used in modern CPU
and GPU designs, IPU threads are scheduled consecutively in a fixed order. For
that reason, the design is also referred to as a barrel processor. In general, IPU
instructions, including loads and stores from the local tile memory, take exactly
6 cycles. Thus, individual threads do not experience latency since they execute
one instruction per cycle in which they are scheduled.

The tiles are organized into islands which themselves are grouped into columns.
Together, the columns form the IPU, as illustrated in Figure I.1. The number
of cores depends on the IPU model. Table I.1 gives an overview of the most
important features of the GC2 and GC200 IPUs. In previous work, architectural
details of the GC2 IPU were studied and benchmarked exhaustively [Jia+19].
Since all cores can read from memory concurrently, the aggregate memory
bandwidth is much higher than that of CPUs or GPUs. However, data that is
not local to a core must be moved between the tiles. A tile is capable of sending
4 bytes and receiving 4 bytes per cycle, which amounts to amounts to 5.3 GB/s
or 7.83 TB/s for all 1472 cores of the GC200. The network that connects the

46



IPU Hardware

link

IPU Tile

Memory
624KB

Compute
6 Threads

1472 x

link
link

IPU Exchange

1

lin
k

lin
k

lin
k

link
link

link

lin
k

lin
k

lin
k

...

...

... ...
......

1472

Figure I.1: Tile layout on the GC200 IPU processor.

cores inside the IPU is called the IPU exchange. The GC200 IPU can also access
DRAM memory at a speed of about 20 GB/s. However, in this paper we only
study problems that are placed entirely in the SRAM memory.

Between the IPUs, data is transferred via the IPU-Link, which performs both
intra-node and inter-node communication. It thus corresponds to both PCIe and
Infiniband in CPU/GPU systems (or alternatives such as NVIDIA NVLink and
CRAY Shasta). Each IPU has 10 IPU-links with a total bandwidth of 320 GB/s.
Pairs of IPUs are connected with 12 links, among themselves, which amount to
a bandwidth of 192 GB/s. This leaves 8 links to connect to other IPUs. These
connections use double-link cables. Thus they operate at 64 GB/s. Up to 32
such pairs can be connected in a ladder configuration with a bisection bandwidth
of 128 GB/s. See Figure I.2 for an example. The ladder can be closed to form a
torus, which doubles the bisection bandwidth. Multiple such groups of 64 IPUs,
which are referred to as PODs, can be connected via an additional interface
called Gateway Link, although this is not being used in this paper. The network
is the same for both IPU versions. Note that a single IPU has 150 W TDP,
which is approximately half of a competitive GPU. Thus, w.r.t. power, each IPU
pair is comparable to one powerful GPU, such as the NVIDIA V100 or A100.

There are multiple ways to program the IPU. Standard machine learning
workloads can interface via PyTorch [Pas+19] or TensorFlow [Aba+16], which
is the primary intended usage. Their IPU implementation is built upon the
Poplar framework which follows the dataflow model. A layered graph is used to
structure programs, where vertices in each layer alternate between representing
states stored in multidimensional arrays called tensors and subroutines that
perform the transition from one state to the next. These subroutines are called
codelets. Each vertex in a computation layer has such a codelet, and all codelets

47



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

Figure I.2: The 8 IPUs used in this paper are configured in a ladder interconnect.
A single IPU is denoted as a red circle, and the lines represent double IPU-
links with a capacity of 64 GB/s. The dark grey area shows a double IPU
configuration connected via three 64 GB/s lanes. The light gray area represents
a physical 4 IPU blade. The two blades are connected with two 64 GB/s cables.

within one layer can be executed in parallel without race conditions. Data is
distributed in a bulk-synchronous parallel (BSP) [Val90] manner. The size of the
tensors and thus the communication in each step is determined at compile time.

I.3 Implementation

BFS is a fundamental graph algorithm, finding the shortest path from a source
node to each other node on unweighted graphs. Due to the high-level definition,
various implementations of this algorithm exist. As the IPU is designed for
machine learning and artificial intelligence computing, linear algebra naturally
fits the design of the IPU. Therefore, our IPU code uses a linear algebra version
of the BFS algorithm, described by Kepner et al. [KG11]. The linear algebra
formulation of one level-synchronous BFS step is AT xt = xt+1. A is the adjacency
matrix representation of the graph G(V, E), where A : R|V |×|V |, and ai,j = 1 if
(vi, vj) ∈ E else 0. Here, xt is the current frontier, where xt(k) expresses that
node k is in the current frontier containing the level of nodes to be visited in
the current iteration, and xt+1 is the next iteration level to be visited. The
algorithm terminates when xt+1 does not contain any unseen nodes.

The advantage of this representation is that it allows the use of highly
optimized sparse linear algebra primitives to accelerate graph algorithms. It
provides a high-level view for understanding and comparing communication
patterns. It is important to note that most applications in scientific computing
and machine learning exhibit sparse matrix dense vector (SpMV) communication,
which means that the same communication pattern repeats over multiple rounds.
On the other hand, graph algorithms such as BFS exhibit sparse matrix sparse
vector (SpMSpV) communication where only some of the vertices or matrix
rows/columns are active in each round, thus creating a new communication
pattern each time.

We use a 2D decomposition to split the adjacency matrix into a p×p checker-

48



Implementation

board pattern, similar to other distributed memory implementations [Bul+17;
Yoo+05], and we let A(i, j) denote a partition. Moreover, we want to maxi-
mize the size of each partition while having at most one partition mapped to
a tile. Therefore, we choose p = ⌊

√
P ⌋. This partitioning makes each tile only

responsible for a subset of the outgoing edges of a vertex. After all partitions
have explored their locally adjacent neighboring nodes, these results need to be
merged into a coherent global state indicating if a vertex was visited and by
which node. This horizontal reduction on the IPU requires the exchange of data
using the IPU exchange fabric, as we do not have a global memory space.

To balance our computation, we randomly permute the adjacency matrix,
which on average leads to a good load balance, even compared to graph
partitioners [Pan+17].

In Algorithm 1, we describe a bulk synchronous parallel (BSP) and level
synchronous BFS algorithm based on linear algebra primitives. Like in the
Poplar framework, we do not need to describe communication explicitly, as
data-exchange is handled by the compiler by describing input and output tensor
regions for a partition on each tile.

Our algorithm can be divided into two major phases:

1. Expansion: Each processor Pi,j receives a part of QQQ, i.e. the frontier
queue, and uses the locally stored A(i, j) to expand the vertices from QQQ.
The output is a new intermediate status array dense vector SASASA(i, j)

2. Fold: A reduction that uses the intermediate output SASASA from the expansion
phase to update the parent array b. The reduction takes place along the
rows of the partitions into the new frontier QQQ. Each tile in the fold phase
owns the result of |V |

p2 vertices. Each tile generates a small queue as one
piece of QQQ.

Our algorithm implements an SpMSpV algorithm, which receives the input
frontier QQQ, split it into p parts that are shared across each column. These p
partitions in QQQ are themselves made out of smaller p partitions. As QQQ is a queue
structure, the data can be viewed as sparse data. The fold phase linearly maps
the tiles along with the columns and merges results across the rows. The linear
mapping is defined through (i− 1) ∗ p + j. The algorithm outputs b which stores
the direct parent on the path the source node s. The global barrier symbolizes
data exchange and global synchronization. Single tiles working longer before
reaching the barrier create imbalance.

I.3.1 Using multiple IPUs

The Poplar framework transparently allows us to expand our algorithm to
multiple IPUs thereby increasing the processor count P . As with a single IPU,
the compiler automatically generates exchange code for intra-IPU and inter-IPU
communication. The user can control data exchange only via an explicit mapping
of the partitions to the tiles, since the mapping determines both global and local
communication patterns.

49



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

Algorithm 1 Parallel BFS algorithm.
1: p← ⌊

√
P ⌋

2: qs ← |V |
p2

3: QQQ : Rp×p×qs ← {s} ▷ Tiny queues
4: SASASA(:, :, :) : Rp×p× |V |

p ← 0
5: b(:) : R|V | ← 0
6: while QQQ ̸= ∅ do
7: for all processor Pi,j in parallel do
8: for q ∈ QQQ(i, :) do
9: for vin ∈ q do

10: for vadj ∈ adj(A(i, j), vin) do
11: SASASA(i, j, vadj)← vin

12: end for
13: end for
14: end for
15: Global BSP Barrier ▷ End ComputeSet
16: QQQ(:, :)← ∅
17: l← Linearmapping(i, j)
18: for r ← lqs to (l + p)qs do
19: if b(r) = 0 then
20: for jf ← 1 to p do
21: vin ← SASASA(i : jf , jqs : (j + 1)qs)
22: if vin then
23: b(r)← vin

24: Union()QQQ(i, j) ,{r})
25: break
26: end if
27: end for
28: end if
29: end for
30: Global BSP Barrier ▷ End ComputeSet
31: end for
32: end while

We continue to use a 2D grid but split it by 1D cuts along row-blocks to the
available IPUs. Therefore, during the fold phase, as all communication occurs
row-wise, and thus uses only the fast IPU exchange interconnect.

All communication for the expansion phase happens column-wise, where
the input frontier QQQ is sent to all rows in their respective parts. As the 2D
grid is distributed across the IPUs, communication using the slower IPU-Link
interconnect is required here. Still, the 1D split between IPUs means that we
communicate between the IPUs only in one phase, as opposed to a naïve mapping
across P where we do so in both phases. In the following we further decrease
the required communication.

50



Implementation

I.3.2 (Sub)-queue packing

Sending data inside the IPU using the high-bandwidth IPU Exchange is much
faster than between IPUs. Packet sizes and transmission patterns do not
significantly affect the on-chip bandwidth achieved. Due to a much smaller
interconnect bandwidth when scaling to multiple IPUs, we are forced to use
a more bandwidth-efficient mapping and algorithmic optimizations. In the
following section, we describe our “(sub)-queue packing” technique which saves
a significant amount of data sent in inter-IPU transmissions.

The expansion phase receives a list of queues from the p2 tiles in the fold
phase. These small queues build a bigger queue QQQ which gets communicated
along each column. A tile in the expansion phase will receive p of those small
queues from the fold phase. Our queues have the property that the values
they are always densely packed. We know the maximum number of values that
can be placed in the queue S originating from a folding tile, which is equal to
cap(S) = |V |/p2 with values in the queue size(S) ≤ cap(S). Therefore, the final
frontier exchanges into each partition is defined as size(QQQ(i, :, :) = size(S) ∗ p.

The activation queues get copied across the IPU interconnects in our
algorithm, making up a significant portion of the runtime. This is illustrated in
Figure I.6. As only size(S) is required, we could optimally save cap(S)− size(S)
data from transmission. However, this is not trivial as the communication code
is generated at compile-time, and there is no possibility to shorten the exchange
phases by omitting data. We could generate an exchange program for all tiles
sending queues with data sizes from 0 to cap(S), but doing this in all possible
combinations would lead to in total (cap(S) + 1)p2 exchange programs, which is
not tractable. Instead, we assume that our partitioning resulted in fairly good
load balancing, which means that the sizes of the queues are similar. If all queues
are assumed to be of the same size, we can choose max(size(S)) ∈ Q to be the
maximum size bound of all queues in the current phase. We assume that the
number of values to be transmitted per partition is approximately the same.

This optimization needs a max-reduction phase for all sizes of S to determine
the maximum size to be transmitted prior to the expansion phase. We interleave
the max-reduction with the fold phase for checking if the next frontier is empty,
making it close to zero-cost. If we generate an exchange program for each
possible queue size, we would have to compile cap(S) programs which is still too
high for bigger graph instances where cap(S) can be in the order of thousands.
In addition, a complex compute graph leads to more memory usage and a
significantly increased compile time. Therefore, we introduce a 2-competitive
online algorithm for deciding upon the data transmission size.

To limit the amount of exchange code generated, we only compile exchange
phases that transmit {1, 2, 4, ..., 2n, cap(S)} sized queues. We always choose
the next bigger transmission size which fits our data. Choosing the possible
exchange sizes in an exponential manner decreases the number of exchange
programs generated to O(log(cap(S))). In the worst case, assuming a well-
balanced graph, we choose a transmission size bigger than our current maximum
frontier with a difference of 2n − (n + 1) which makes a worst-case limit of

51



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

Figure I.3: Switching between log(cap(S)) different exchange programs which
heuristically decrease the amount of data to be transmitted between tiles across
IPUs. Here A denotes the BFS fold phase generating the new frontier used in
Bcap. We find the biggest queue which needs to be allocated and use this as our
exchange size for all other queues.

limx→inf 2n− (n + 1) = 2 times the amount of the necessary data to send.
However, for highly unbalanced graphs, it is possible that no saving is achieved.
Figure I.3 shows the inflation of the compute graphs with the max-reduction and
the following switching of the (sub)-queue packing optimized exchange phases
for the expansion phase. At the start of the BFS program, we always choose a
transmission size of one as only one node is active, and thus no queue can hold
more values.

I.4 Experiments

For our experiments, we used a system of 8 GC200 Graphcore IPUs spanning
two IPU-POD4 blades, connected with 2 IPU lanes. Technical details are given
in Table I.1. We compile our code with the Poplar 2.1.0 SDK and popc, i.e. the
latest releases at the time of writing.

For comparison with the GPU, we use the Gunrock framework [Wan+16], on
up to 8 Volta V100 GPUs inside a DGX-2 system. Unlike previous work [Bur+21],
we omit comparison with the CPU. The reason is that the CPU typically exceeds
GPU and IPU performance only on high-diameter graphs where the available
concurrency is too low for the GPU or IPU to benefit from their high number of
parallel threads. On the other hand, reported results for Graph500 show that
CPUs perform much weaker on the Kronecker graphs. Thus, the GPU versus
IPU comparison is more relevant since both devices excel on high-concurrency,
low-diameter graphs.

The current version of Gunrock is 1.0, which we use for single-GPU results.

52



Experiments

Multi-GPU capabilities were discontinued after version 0.5, so we use this version
for multi-GPU. For compatibility, we are using CUDA version 10.0.130.

The DGX-2 system has 16 Volta V100 GPUs, connected via NVlink to a
crossbar switch. This allows concurrent communication at 300 GB/s between
every pair of GPUs. Furthermore, the NVlink-connected GPUs have a slightly
higher clock frequency than their PCIe counterparts. We use a one-to-one ratio
between GPUs and IPUs as the basis for our comparison. As mentioned in
Section I.2, based on power consumption, it is also reasonable to compare two
IPUs to one GPU. The same is true w.r.t. rackspace and approximate price.

For performance measurements, we follow the guidelines set by the Graph500
benchmark [Mur+10], which offers a wide range of comparison results. However,
since Graph500 uses only a single type of graph obtained from a Kronecker
graph generator with initiator parameters {A, B, C, D} = {0.57, 0.19, 0.19, 0.05},
we supplement the generated graphs with instances from SuiteSparse [Kol+19].
These instances were selected to match previous work [YBO20], although some
graphs are too large to run on IPUs. Table I.2 lists both types of instances,
along with their size and diameter.

For the generated instances, in names such as kron20_16 the first number
refers to the number of vertices as a power of 2, while the second number shows
the edge factor. We use a Graph500 compliant edge factor of 16, as well as
higher values to investigate edge scaling.

We included graphs from the SNAP group which come from the Stanford
Large Network Dataset Collection [LK14] and represent real-world networks.
The wiki-topcats graph represents the most popular hyperlinks between top
Wikipedia pages. The soc-Pokec, com-Youtube, loc-Gowalla, and com-Orkut
graphs represent online social networks, where a friendship is represented as
an edge. We also included roadNet-CA and belgium_osm as road network
graphs, where road intersections are vertices connected by edges representing
roads. We include other real-world graphs: coAuthorsDBLP, coPapersDBLP,
coAuthorsCiteseer, and coPapersCiteseer which represent online collected co-
authroships and citation networks. The preferentialAttachment graph was
generated by a synthetic graph generator. The delaunay_n{scale} graphs were
created from a triangulation of points in a plane. The kron_g500-logn{scale}
graphs are generated like the Graph500 instances using the same initiator
parameters, but despite their name have an edge factor of 48. They are included
to enhance the reproducibility of our results. Furthermore, we included the
hollywood-2009 graph with actors as vertices joined together by movies as edges.
Finally, the webbase-1M graph connects websites together through hyperlinks.

The Graph500 benchmark splits timings into a preparation kernel, and the
BFS graph traversal itself. We follow this specification and report the timings of
the graph traversal starting from the time when the search key is sent to the
device and ending with the termination of the last BFS round. Performance
is measured in traversed edges per second (TEPS). Following previous work
[LH15; YBO20], we count TEPS using the directed edges, excluding self-loops
and duplicated edges. In the following, we present a series of experimental results
that investigate the performance of our implementation.

53



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

Table I.2: Datasets split into synthentically generated Kronecker graphs and
SuiteSparse instances. Graph diameters marked with a (*) are approximated
with 10k random BFS walks.

SuiteSparse
graph diameter |V | |E|
com-Orkut 10 3.072.441 117.185.083
webbase-1M 28 1.000.005 3.004.970
coAuthorsDBLP 24 29.9067 977.676
delaunay_n17 167 131.072 393.176
delaunay_n18 228 262.144 786.396
delaunay_n19 319 524.288 1.572.823
kron_g500-logn18 6 262.144 10.583.222
kron_g500-logn19 7 524.288 21.781.478
kron_g500-logn20 7 1.048.576 44.620.272
coAuthorsCiteseer 33 227.320 814.134
coPapersDBLP 23 540.486 15.245.729
coPapersCiteseer 34 434.102 16.036.720
citationCiteseer 36 268.495 1.156.647
preferentialAttachment 7 100.000 499.985
belgium_osm 1987 1.441.295 1.549.970
roadNet-CA 865 1.971.281 2.766.607
hollywood-2009 12 1.139.905 57.515.616
soc-Pokec 14 1.632.803 22.301.964
wiki-topcats 11 1.791.489 25.447.873
wikipedia-20060925 13 2.983.494 35.065.981
com-Youtube 24 1.134.890 2.987.624
loc-Gowalla 16 196.591 950.327

Generated
graph diameter |V | |E|
kron20_16 8 1.048.576 15.700.872
kron21_16 8 2.097.152 31.770.104
kron22_16 8 4.194.304 64.153.736
kron23_16 9 8.388.608 129.340.089
kron21_32 7* 2.097.152 61.720.652
kron21_64 7* 2.097.152 118.598.465
kron21_128 7* 2.097.152 224.855.774
kron21_256 6* 2.097.152 536.847.237
kron20_64 7* 1.048.576 67.104.118
kron20_128 6* 1.048.576 134.208.329
kron20_256 6* 1.048.576 268.416.593
kron20_512 6* 1.048.576 536.833.050

54



Experiments

1 2 4 8
1

2

4

8

Processors

Sc
al

in
g

fa
ct

or
[×

]
perfect

(WV) kron20_16
(S) kron21_16

1 2 4 8

perfect (WE) kron20_16
(WE) kron20_32 (WE) kron20_64
(WE) kron21_16

Figure I.4: Strong Scaling (S), Weak Vertex Scaling (WV), and Weak Edge
Scaling (WE).

I.4.1 Scaling

We run weak and strong scaling experiments on the IPU and GPU systems with
1, 2, 4, and 8 devices respectively. As suggested by the Graph500 specification,
we take the average from a sample of 64 starting nodes for the weak scaling
results. Furthermore, we are using the Kronecker graph instances for scaling
experiments as it is possible to set the scaling parameter of the problem instance.
Moreover, the Kronecker graph generator allows us to define two parameters, the
edge factor, and the vertex scale. Henceforth, we are adjusting both parameters,
which will lead to a larger instance. For strong scaling, we are using a kron21_16
as it is the biggest instance that fits on a single IPU; for the GPU, we use
a kron25_16. In our weak scaling experiments, we start with kron20_16 for
the vertex scaling experiment and four different instances for the edge scaling
experiment.

Results

In Figure I.4 we show strong and weak scaling results. On 1, 2, 4, and 8 IPUs
we archive 55.6, 67, 75.4, and 72 GTEPS on kron21_16 for strong scaling
respectively. When scaling to multiple IPUs the tiles get less saturated and
more imbalanced. Combined with the rather slow interconnect bandwidth, this
leads to a flat scaling curve. However, our main focus is on larger instances, and
therefore we study weak scaling behaviour. As shown in Figure I.4, we archive
better results with weak edge scaling, where we observe a superlinear speedup.
This can be explained by the decreased overhead for each vertex being visited.

55



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

We archive up to 1.03 TTEPS on 8 IPUs for the kron20_512 instance. For the
weak vertex scaling, which is the basis of the Graph500 benchmark, we go from
kron20_16 to kron23_16, as it is the largest graph we can fit on 8 IPUs. In order
to fit the graph onto the IPUs, we needed to use int16 datatypes, which at the
time of writing lead to redundant instructions, thus decreasing the performance.
We expected this issue will disappear in future compiler versions.

I.4.2 Overall Performance

We compare the performance of our implementation by sampling 64 BFS runs
from connected vertices and taking the average of these results. Here, we collect
data on all of our graph instances. Furthermore, we compare our results to
a top-down BFS and a direction optimizing BFS (DOBFS). We include both
results, as previous work [Pan+17] has shown that DOBFS is effective on one
GPU but does not scale well.

The top row of Figure I.5 shows the SuiteSparse graph instances, mainly
containing real-world graphs. We can observe that the IPUs outperform the
GPUs in most cases. The GPU attains its best performance with the DOBFS
implementation on a single device, while the GPU top-down implementation
performs consistently worse but scales better.

We also show Kronecker graph performance in the second row of Figure I.5.
DOBFS shows the biggest advantage over our implementation with higher density
graphs as the optimization allows for an exponential increase in performance
with linearly increasing runtime. However, compared to the top-down GPU
implementation our IPU implementation is consistently faster by a factor of 3×
to 4.6×.

I.4.3 Runime Analysis

We aim to give an in-depth overview of the inner workings of our algorithm and
show the execution and inner timings of our implementation. Each iteration of
our algorithm contains two major phases: (1) the expansion phase, in which the
current frontier is distributed to discover the future nodes to be visited, and
(2) the fold phase, which merges all discoveries from the expansion phase and
reduces them into a single vertex. Finally, the fold phase generates the frontier
for the next expansion phase.

We dissect the timings from weak and strong scaling runs on Kronecker
graphs. For the strong scaling results, we used a kron21_16. We started with a
kron20_16 using a single IPU for the weak scaling experiment and scaled up to
a kron23_16 on eight IPUs. The results were generated with the PopVision™
graph analyzer suite of tools used to extract profiling information generated by
the Poplar framework during the compilation and execution phase. All results
make use of all of our optimizations, such as (sub)-queue packing.

56



Experiments

iPUG 1 IPU iPUG 2 IPU iPUG 4 IPU iPUG 8 IPU
Gunrock DO 1 GPU Gunrock DO 2 GPU Gunrock DO 4 GPU Gunrock DO 8 GPU
Gunrock Top 1 GPU Gunrock Top 2 GPU Gunrock Top 4 GPU Gunrock Top 8 GPU

belgium_osm

citationCiteseer

coAuthorsCiteseer

coAuthorsDBLP

com-Orkut

com-Youtube

coPapersCiteseer

coPapersDBLP

delaunay_n17

delaunay_n18

delaunay_n19

hollywood-2009

loc-Gowalla

preferentialAttachment

roadNet-C
A

soc-Pokec

webbase-1M

wiki-to
pcats

wikipedia-20060925

100

101

102

103

104

105

Th
ro

ug
hp

ut
[M

TE
P

S
]

kron_g500-logn18

kron_g500-logn19

kron_g500-logn20

kron19_16

kron20_128

kron20_16

kron20_256

kron20_32

kron20_512

kron20_64

kron21_128

kron21_16

kron21_256

kron21_32

kron21_64

kron22_16

103

104

105

106

Th
ro

ug
hp

ut
[M

TE
P

S
]

Figure I.5: Performance of the SuiteSparse instances (top) for the IPU M2000
and the V100 DGX-2 using iPUG and Gunrock, respectively. The lower plot
shows performance numbers of our synthetic Kronecker graphs, combined with
Kronecker graphs from the SuiteSparse collection. GPU results are stacked for
scaling factors. The lower result is in the front and the higher result is stacked
into the back.

Results

Figure I.6 shows that the compute time to solve the kron21_16 instance decreases
by adding IPUs. The communication and execution time of the fold phase

57



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

Overhead Expand Exchange Expand Compute
Fold Exchange Fold Compute

0% 50% 100%

1

2

4

8

IP
U

s

1 2 4 8

0.5

1

·106

C
yc

le
s

0% 50% 100%

1

2

4

8

IP
U

s

1 2 4 8

1

2

·106

IPUs

C
yc

le
s

Figure I.6: The graphs show the timings of the fold and expansion phase divided
into data exchange between tiles and computation and all additional cycles. The
first two charts are strong scaling results on an kron21_16. The first chart shows
the total runtimes of each stage, the second chart gives the relative share of
the steps taken for each IPU scale size. The last two charts depict weak vertex
scaling results from a kron20_16 to a kron23_16. The third chart shows weak
scaling execution times of each phase on each and the last chart the shares each
phase takes executed on N IPUs respectively.

decreases as the communication and computation only take place within one
IPU. The computing time in the expansion phase decreases every round by
36% to 24%. The communication increases by 8× going from one to two IPUs.
However, this trend does not continue linearly, as the communication time
reduces when going to 4 IPUs, only to increase by 2× going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program has further overhead,
such as globally switching the BSP-supersteps, the reduction determining if
the algorithm should continue, and the reductions from our optimizations. We
can observe that the additional compute and communication time within this
overhead category increases to up to 28% of the global runtime. The overhead

58



Experiments

increase is due to the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that the cycle overhead
does not increase much when scaling from 1 to 8 IPUs. Like in the strong
scaling experiment, both fold communication and exchange decrease. The
communication phase of the expansion phase constantly increases from 2% to
35% and, together with the compute phase, the expansion phase takes more
than 68% of the total time.

I.4.4 (Sub)-queue packing

We tested our (sub)-queue packing optimization on three representative graphs.
First, we choose a low diameter generated Kronecker graph with an edge factor
of 16 and a scale of 221 nodes, and then a real-world graph problem from the
SuiteSparse representing a co-author network with a medium diameter. As the
last graph, we choose a high diameter Delaunay graph with an average edge
factor of 3.

We compare the saved amount of data sent to the previous dense message
size transmitted for each BFS level in all graphs instances. We additionally
show the best possible communication cost calculated from all values in the
frontier compared to all activations over time. We also compare a well-balanced
Delaunay graph with an unbalanced Delaunay graph to show the impact of
load-balancing on this optimization.

Each BFS execution started from the largest node for each graph. As
execution is deterministic, we only executed a single run for each setup. For the
Delaunay graphs, there is no single largest degree as the graph is made from a
triangulation of points.

Results

In Figure I.3 we compare the data (sub)-queue packing to our previous method
of transmitting data on the IPU. A general speedup can be seen for the initial
phases of the Kronecker graphs, which in the explosion phase converge to dense
transmission. However, the optimal data transmission size is still close to ours.
For the real-world coPapersCitiseer network, we can observe the same effect in
the explosion phase but recovering in the thinly expanding graph phases. The
Delaunay graphs perform the worst as the actual needed data send size is small,
but slight load imbalances cause the transmission size to increase.

We observe decreasing effectiveness when considering strong scaling from a
single to eight IPUs. This trend can be seen in all graphs and can be explained by
the reduced queue capacities. Small partition queues are more likely to become
imbalanced and have fewer sizes to choose from, which prevents queue savings
through tiny imbalances.

Overall we can observe a reduction in data size of 78.23% for the Kronecker
graph on a single IPU, and 73% for eight IPUs. For the real-world co-author
network, we observe an overall data reduction between 91% one IPU and 80%

59



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

1 IPU 2 IPU 4 IPU 8 IPU Optimal

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.50%
20%
40%
60%
80%

100%
D

at
a

sa
ve

d
[%

]
kron21_16

2 4 6 8 10 12 14 16 18 20 22 24 260%
20%
40%
60%
80%

100%

D
at

a
sa

ve
d

[%
]

coPapersCiteseer

20 40 60 80 100 120 140 160 180 2000%
20%
40%
60%
80%

100%

BFS level

D
at

a
sa

ve
d

[%
]

delaunay_n19

Figure I.7: The graphs show the possible amount of data saved compared to dense
communication of the expansion phase input queues. Each BFS level displays
the potential saving that could have occurred. The optimal size is the number
of values in the current frontier by counting all values over time in the frontier.
Kronecker graphs are with our heuristic close to optimal. In contrast, Delauney
graphs have the highest potential to save data than dense communication but
show the widest gap to the optimal transmission size. Real-world co-author
networks perform similar to the Kronecker graphs but are not as effective in the
explosion phase.

for eight IPUs. Depending on balancing, we can reach from 95% to 81% for
eight IPUs or 80% to 36% for eight IPUs with bad load balancing, respectively.

In Figure I.8, we plotted the effect of unbalanced and balanced graphs on
our optimization. Delaunay graphs generate many small frontiers. Henceforth,

60



Experiments

0×

5×

10×

15×

20×
Im

pr
ov

em
en

t

20 40 60 80 100 120 140 160 180

40%

60%

80%

100%

BFS level

D
at

a
sa

ve
d

[%
]

1 IPU 2 IPU 4 IPU 8 IPU

Figure I.8: Difference between a randomly balanced graph and an unbalanced
graph, for smaller queue sizes on more IPUs, the imbalance leads to oversizing
transmission sizes are leading to less efficient communication. The graphs show
the possible amount of data saved compared to dense communication of the
expansion phase input queues.The top plot shows the improvement in data size
over an unbalanced graph.

when queues are only generated in a few partitions, the data transmission size
is significant as the largest queue inflates the communication size. Random
permutation of the graph reduces the imbalance and leads to a 3.5× smaller
transmission size on average.

Figure I.9 shows an overall performance improvement ranging from −13%
for high diameter graphs to 33% for small-world graphs. The performance
decrease can be explained as a result of our initial max-reduction. Also, the
graph program switching is not completely zero-cost. With a high diameter,
repeated execution means that the small overhead adds up. Furthermore, higher
IPU counts show a slight performance decrease compared to all double IPU
implementations since we are introducing two weak IPU links into our topology
with only 2 × 64 GB/s, while a double IPU pair has three of these links and
thus a bisection bandwidth of 192 GB/s.

61



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

1 2 4 8
−20%

0%

20%

40%

0%0%

IPUs

kron21_16 delauney_19 coPapersCiteseer

Figure I.9: Performance difference by enabling our (sub)-queue packing
optimization. We used a synthetic Kronecker, real-world high-diameter road
network, and citation network graph for comparision across different classes of
graphs.

I.5 Related Work

BFS is a fundamental graph algorithm and its sequential version is frequently
implemented as a subroutine in other graph algorithms. On the other hand,
efficient implementation of parallel BFS is challenging since workload and
communication patterns shift during the execution of the algorithm. With
the wider adoption of parallel computers, efficient implementations have been
presented for distributed and shared memory computers, as well as GPUs [BM06;
GL05; HN07; KS05; Yoo+05].

After the introduction of the Graph500 benchmark [Mur+10] in 2010, it
became the starting point for a new series of implementations on CPUs [BM11;
Che+20; CP14; HOO11; YFG13] and GPUs [Gai+19; LH15; Wan+16; YBO20].
Due to the structure of the test instances in Graph500, direction optimizing
searches [BAP11] are highly efficient and thus employed by most modern
implementations. However, these are difficult to implement effectively on
distributed memory, and they did not lead to performance gains in our IPU
implementation.

While AI processors only recently became available, the first papers that
evaluate their usefulness for non-AI workloads have appeared recently, both for
the Graphcore IPU [Bur+21; LM21; Moh+20] and for the Cerebras Wafer Scale
Engine [Roc+20], presenting improvements on the state-of-the-art for a wide
range of problems.

62



Conclusion

I.6 Conclusion

We have implemented the Graph500 compliant BFS on a multi-IPU systems
and tested it on up to 8 IPUs. In a direct comparison, the IPUs are typically
faster than GPUs. However, since BFS does not scale linearly, the difference
varies widely with the test instance. Due to the direction optimizing BFS, a
single GPU can sometimes outperform 8 IPUs or GPUs. On the other hand,
direction optimization does not scale well to multiple GPUs, and in the Graph500
benchmark an equal number of IPUs is around four times faster. We identified
three challenges to scaling the computation to larger clusters of IPUs:

I.6.0.1 (Sub)-queue packing

The decreasing effectiveness of this optimization is a more significant concern for
strong scaling than for weak scaling, as partition sizes increase with increasing
instance size. To counteract the effect of small queue imbalance, an IPU-local
queue-merging phase can be introduced.

I.6.0.2 Interconnect

We were able to support weak scaling on the 8 available IPUs, but in larger
IPU clusters, such as the IPU-POD64 systems, the bisection bandwidth remains
the same and is thus likely to cause communication bottlenecks. It would be
remedied if IPUs or other AI processors support more performant topologies in
the future.

I.6.0.3 Square partitioning

Our current implementation only supports square partitions of the adjacency
matrix. Hence, this leads to a p × p partitioning pattern, leaving some tiles
unused. This imbalance becomes more significant with an increasing number of
IPUs, since the partition size becomes more restricted due to the constraint of
an even 1D split between the IPUs.

A new GPU system called DGX A100 was recently released, with eight even
more powerful A100 GPUs with an even faster connection. Thus, we expect that
the GPU results will improve in the near future. Note however that standard
GPU systems that rely on PCIe interconnects rather than switched NVLINK are
far less competitive. A recent preprint [Gre21] claimed a performance of more
than 300 GTEPS for a large Kronecker Graph on 16 V100 GPUs in a DGX-2
system, but at the time of this writing, the code was not publicly available.

While this exceeds the IPU performance reported in this paper, based on
power consumption one could argue that 32 IPUs should be the equivalent of
one DGX-2. At these sizes the above limitations will play a significant role.

63



I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability
of Parallel Breadth-First Search

Acknowledgement

The second and third authors were partially supported by the European High-
Performance Computing Joint Undertaking under grant agreement No 956213
and the Research Council of Norway under contract 303404. The work has
benefited from the Experimental Infrastructure project eX3, which is financially
supported by the Research Council of Norway under contract 270053.

References

[Aba+16] Abadi, M. et al. “TensorFlow: A system for large-scale machine
learning”. In: 12th {USENIX} symposium on operating systems
design and implementation ({OSDI} 16). 2016, pp. 265–283.

[BAP11] Beamer, S., Asanovic, K., and Patterson, D. “Searching for a
parent instead of fighting over children: A fast breadth-first search
implementation for Graph500”. In: EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2011-117 (2011).

[BM06] Bader, D. A. and Madduri, K. “Designing multithreaded algorithms
for breadth-first search and st-connectivity on the Cray MTA-2”. In:
2006 International Conference on Parallel Processing (ICPP’06).
IEEE. 2006, pp. 523–530.

[BM11] Buluç, A. and Madduri, K. “Parallel breadth-first search on
distributed memory systems”. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis. 2011, pp. 1–12.

[Bul+17] Buluç, A. et al. “Distributed-memory breadth-first search on massive
graphs”. In: arXiv preprint arXiv:1705.04590 (2017).

[Bur+21] Burchard, L. et al. “iPUG: Accelerating Breadth-First Graph
Traversals Using Manycore Graphcore IPUs”. In: International
Conference on High Performance Computing. Springer. 2021,
pp. 291–309.

[Che+20] Chenglong, Z. et al. “Efficient Optimization of Graph Computing
on High-Throughput Computer”. In: Journal of Computer Research
and Development vol. 57, no. 6 (2020), p. 1152.

[CP14] Checconi, F. and Petrini, F. “Traversing trillions of edges in real time:
Graph exploration on large-scale parallel machines”. In: 2014 IEEE
28th International Parallel and Distributed Processing Symposium.
IEEE. 2014, pp. 425–434.

[Gai+19] Gaihre, A. et al. “XBFS: exploring runtime optimizations for
breadth-first search on GPUs”. In: Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing. 2019, pp. 121–131.

64



References

[GL05] Gregor, D. and Lumsdaine, A. “Lifting sequential graph algorithms
for distributed-memory parallel computation”. In: ACM SIGPLAN
Notices vol. 40, no. 10 (2005), pp. 423–437.

[Gre21] Green, O. “ButterFly BFS–An Efficient Communication Pattern
for Multi Node Traversals”. In: arXiv preprint arXiv:2103.13577
(2021).

[HN07] Harish, P. and Narayanan, P. J. “Accelerating large graph algorithms
on the GPU using CUDA”. In: International conference on high-
performance computing. Springer. 2007, pp. 197–208.

[HOO11] Hong, S., Oguntebi, T., and Olukotun, K. “Efficient parallel graph
exploration on multi-core CPU and GPU”. In: 2011 International
Conference on Parallel Architectures and Compilation Techniques.
IEEE. 2011, pp. 78–88.

[HP19] Hennessy, J. L. and Patterson, D. A. “A new golden age for computer
architecture”. In: Communications of the ACM vol. 62, no. 2 (2019),
pp. 48–60.

[Jia+19] Jia, Z. et al. “Dissecting the Graphcore IPU architecture via
microbenchmarking”. In: arXiv preprint arXiv:1912.03413 (2019).

[KG11] Kepner, J. and Gilbert, J. Graph algorithms in the language of
linear algebra. SIAM, Jan. 2011.

[Kol+19] Kolodziej, S. P. et al. “The SuiteSparse matrix collection website
interface”. In: Journal of Open Source Software vol. 4, no. 35 (2019),
p. 1244.

[KS05] Korf, R. E. and Schultze, P. “Large-scale parallel breadth-first
search”. In: AAAI. Vol. 5. 2005, pp. 1380–1385.

[Lei+20] Leiserson, C. E. et al. “There’s plenty of room at the Top: What
will drive computer performance after Moore’s law?” In: Science
vol. 368, no. 6495 (2020).

[LH15] Liu, H. and Huang, H. H. “Enterprise: breadth-first graph traversal
on GPUs”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 2015,
pp. 1–12.

[LK14] Leskovec, J. and Krevl, A. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. June 2014.

[LM21] Louw, T. and McIntosh-Smith, S. Using the Graphcore IPU for
traditional HPC applications. Tech. rep. EasyChair, 2021.

[Moh+20] Mohan, L. R. M. et al. “Studying the potential of Graphcore
IPUs for applications in particle physics”. In: arXiv preprint
arXiv:2008.09210 (2020).

[Mur+10] Murphy, R. C. et al. “Introducing the Graph 500”. In: Cray Users
Group (CUG) vol. 19 (2010), pp. 45–74.

65

http://snap.stanford.edu/data


I. iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of
Parallel Breadth-First Search

[Pan+17] Pan, Y. et al. “Multi-GPU Graph Analytics”. In: 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS).
2017, pp. 479–490.

[Pas+19] Paszke, A. et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information
Processing Systems 32. Ed. by Wallach, H. et al. Curran Associates,
Inc., 2019, pp. 8024–8035.

[Roc+20] Rocki, K. et al. “Fast stencil-code computation on a wafer-
scale processor”. In: SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE.
2020, pp. 1–14.

[Son+18] Song, L. et al. “GraphR: Accelerating graph processing using
ReRAM”. In: 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE. 2018, pp. 531–
543.

[Val90] Valiant, L. G. “A bridging model for parallel computation”. In:
Communications of the ACM vol. 33, no. 8 (1990), pp. 103–111.

[Wan+16] Wang, Y. et al. “Gunrock: A high-performance graph processing
library on the GPU”. In: Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.
2016, pp. 1–12.

[YBO20] Yang, C., Buluc, A., and Owens, J. D. GraphBLAST: A High-
Performance Linear Algebra-based Graph Framework on the GPU.
2020.

[YFG13] Yasui, Y., Fujisawa, K., and Goto, K. “NUMA-optimized parallel
breadth-first search on multicore single-node system”. In: 2013
IEEE International Conference on Big Data. IEEE. 2013, pp. 394–
402.

[Yoo+05] Yoo, A. et al. “A scalable distributed parallel breadth-first search
algorithm on BlueGene/L”. In: SC’05: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing. IEEE. 2005, pp. 25–25.

Authors’ addresses

Luk Burchard Simula Research Laboratory, Kristian Augusts gate 23, 0164
Oslo, Norway, luk@simula.no

Xing Cai Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo,
Norway, xingca@simula.no

Johannes Langguth Simula Research Laboratory, Kristian Augusts gate 23,
0164 Oslo, Norway, langguth@simula.no

66

mailto:luk@simula.no
mailto:xingca@simula.no
mailto:langguth@simula.no


Paper II

Enabling Unstructured-Mesh
Computation on Massively Tiled
AI-Processors: An Example of
Accelerating In-Silico Cardiac
Simulation

Luk Burchard, Kristian Gregorius Hustad, Johannes Langguth,
Xing Cai
Published in Frontiers in Physics, Vol. 11, (2023, March), pp. 105. DOI:
10.3389/fphy.2023.979699.

II

Abstract

A new trend in processor architecture design is the packaging of
thousands of small processor cores into a single device, where there is
no device-level shared memory but each core has its own local memory.
Thus, both the work and data of an application code need to be carefully
distributed among the small cores, also termed as tiles. In this paper,
we investigate how numerical computations that involve unstructured
meshes can be efficiently parallelized and executed on a massively tiled
architecture. Graphcore IPUs are chosen as the target hardware platform,
to which we port an existing monodomain solver that simulates cardiac
electrophysiology over realistic 3D irregular heart geometries. There are
two computational kernels in this simulator, where a 3D diffusion equation
is discretized over an unstructured mesh and numerically approximated
by repeatedly executing sparse matrix-vector multiplications (SpMVs),
whereas an individual system of ordinary differential equations (ODEs) is

The work of the second author was partially supported by the European High-Performance
Computing Joint Undertaking under grant agreement No. 955495 and the Research Council
of Norway under contract 329032. The work of the third and fourth authors was partially
supported by the European High-Performance Computing Joint Undertaking under grant
agreement No. 956213 and the Research Council of Norway under contracts 303404 and 329017.
The research presented in this paper has benefited from the Experimental Infrastructure for
Exploration of Exascale Computing (eX3), which is financially supported by the Research
Council of Norway under contract 270053.

67

https://doi.org/10.3389/fphy.2023.979699


II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

explicitly integrated per mesh cell. We demonstrate how a new style of
programming that uses Poplar/C++ can be used to port these commonly
encountered computational tasks to Graphcore IPUs. In particular, we
describe a per-tile data structure that is adapted to facilitate the inter-tile
data exchange needed for parallelizing the SpMVs. We also study the
achievable performance of the ODE solver that heavily depends on special
mathematical functions, as well as their accuracy aspect on Graphcore
IPUs. Moreover, the topics of using multiple IPUs and performance
analysis are addressed. In addition to demonstrating an impressive level of
performance that can be achieved by IPUs for the monodomain simulation,
we also provide a discussion on the generic theme of parallelizing and
executing unstructured-mesh multiphysics computations on massively tiled
hardware.

Contents

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 68
II.2 Monodomain Model of Cardiac Electrophysiology . . . . . 71
II.3 Numerical Strategy and Distributed-Memory Parallelization 72
II.4 Porting to Graphcore IPU . . . . . . . . . . . . . . . . . . 74
II.5 Math Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 79
II.6 Niederer Benchmark . . . . . . . . . . . . . . . . . . . . . . 81
II.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 82
II.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

II.1 Introduction

Real-world problems of computational physics often involve irregularly shaped
solution domains, which require unstructured computational meshes [BP00]
to accurately resolve them. The resulting numerical couplings between the
entities of an unstructured mesh are irregular, thus in implementations of
unstructured-mesh computations, irregular and indirectly-indexed accesses to
arrays of numerical values are unavoidable. With respect to performance, there
arise several challenges. First, irregular and indirect accesses to array entries are
prohibitive for achieving the full speed of a standard memory system [Una+17].
Second, for using a distributed-memory parallel platform, explicit partitioning
of an unstructured mesh is required, which is considerably more difficult than
partitioning a structured mesh [Bul+16]. Third, there currently exists no
universal solution that ensures perfect quality of the partitioned sub-meshes. One
specific problem inside the latter challenge is associated with the so-called halo
regions. That is, the sub-meshes that arise from a non-overlapping decomposition
need to be expanded with one or several extra layers of mesh entities, which
constitute a halo region of each sub-mesh. These halo regions will be used
for facilitating the necessary information exchange between the sub-meshes.

68



Introduction

However, most of the partitioning strategies are incapable of producing an even
distribution of the halo regions, leading to imbalanced volumes of communication
between the sub-meshes, as well as different memory footprints of the sub-meshes.

One particular trend of the latest hardware development requires new
attention to the above mentioned challenges. Namely, we have recently seen the
arrival of processors with a huge number of small cores sharing no device-level
memory. The most prominent examples are the wafer-scale engine (WSE) from
Cerebras [22b] and the intelligence processing unit (IPU) from Graphcore [21].
For example, the second-generation WSE-2 is a chip that consists of 2.6 trillion
transistors and houses 850,000 cores. The MK2 GC200 IPU is smaller in scale,
but still has 59.4 billion transistors and 1,472 cores. A common design theme of
these processors is that there is no device-level memory that is shared among
the cores. Instead, each core has its private SRAM and the aggregate on-chip
memory bandwidth is staggeringly high, at 20 PB/s for WSE-2 [22b] and 47.5
TB/s for MK2 GC200 IPU [21], respectively. Although these processors are
primarily designed for AI workloads, the available aggregate memory bandwidth
is appealing to many tasks of scientific computing for which the performance
relies on the speed of moving data in and out of the memory system. Storing data
directly in SRAM can avoid many “data locality problems" that are typically
associated with the multi-leveled caching system found on standard processor
architectures. However, we need to remember that a core with its private SRAM,
termed as a tile, constitutes the basic work unit on WSE-2 or IPU. This leads
to higher requirements related to partitioning unstructured-mesh computations,
both due to the huge number of available tiles and because all the data needed by
each tile must fit into its limited local SRAM. In addition, enabling the necessary
communication and coordination between the sub-meshes (i.e., the tiles) requires
a new way of programming, unlike using the standard MPI library [Mes21].

Motivated by the extreme computing power that theoretically can be delivered
by the massively-tiled AI processors, researchers have recently started applying
these AI processors to the “traditional" computational science. For example,
Graphcore IPUs have been used for particle physics [Moh+20], computer
vision [Ort+20] and graph processing [BCL21; Bur+21]. Regarding mesh-based
computations for numerically solving partial differential equations (PDEs), the
current research effort is limited to porting stencil methods that are based on
uniform meshes and finite difference discretization. This limitation applies to
both Cerebras WSE [JAM22; Roc+20] and Graphcore IPU [Håp21; LM21]. To
the best of our knowledge, the subject of porting unstructured-mesh computation
to massively tiled processors has not yet been addressed.

This paper aims to investigate how to program massively tiled processors
for unstructured-mesh computations. The Graphcore IPU, which is a relatively
mature AI processor, is adopted as the hardware testbed. Specifically, we study
the performance impact of partitioning an unstructured mesh into huge numbers
of sub-meshes, as well as how to facilitate communication between the sub-meshes
through special IPU programming. Another topic of generic characteristic to
study in this paper is the achievable performance and accuracy of evaluating
special mathematical functions, such as exp, log and sqrt, on the IPU. As a

69



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

real-world application of computational physics, we port an existing code that
simulates the electrophysiology inside the ventricles, which need to be resolved
by high-resolution 3D unstructured meshes. Our work thus makes the following
contributions:

• We present a new programming scheme, based on Graphcore’s Poplar
software stack, for implementing parallel sparse matrix-vector multiply
(SpMV) operations that arise from partitioning unstructured meshes.

• We study the impact of mesh partitioning on the size of the halo regions
and the associated memory footprints, as well as the performance loss due
to the communication overhead. These will be investigated for both single
and multi-IPU scenarios.

• We benchmark, in detail, the achievable accuracy and speed of some chosen
mathematical functions on IPUs using single precision.

• We demonstrate how a real-world application of computational physics,
namely simulating cardiac electrophysiology on 3D unstructured meshes,
can utilize the computing power of IPUs.

• We also address the subject of performance analysis of unstructured-mesh
computational on IPUs.

It is remarked that the chosen existing code numerically solves a widely
used mathematical model in computational electrophysiology. The choice is
also motivated by the fact that the performance of the code on GPUs has been
carefully optimized and studied in [Hus19], thus providing a comparison baseline
for this paper where one of the research subjects is the achievable performance
of unstructured-mesh computations on IPUs. No new numerical algorithm will
be introduced in this paper, specifically, cell-centered finite volume discretization
in space and explicit integration in time (used by the existing code and more
details can be found in Section II.3) will continue to be used. The readers will
recognize two familiar computational kernels, namely, parallel SpMV operations
arising from unstructured meshes and explicit integration of systems of nonlinear
ordinary differential equations (ODEs). The findings of this paper, regarding
both the programming details needed to enable inter-tile communication on
IPUs and the achievable performance, will thus be applicable beyond the domain
of computational electrophysiology.

The remainder of this paper is organized as follows. Section II.2 gives a
brief introduction to the mathematical model considered, whereas Section II.3
explains the numerical strategy and its parallelization of the existing simulator.
Section II.4 focuses on the new programming details required for using the IPU.
Numerical accuracy is considered in Sections II.5 and II.6. The former measures
general floating-point accuracy of the IPU while the latter tests the fidelity of the
simulation using an established benchmark. Section II.7 presents the measured
performance of our IPU implementation, together with a comparison with the
GPU counterpart. The impact of imbalanced halo region distribution is also
investigated. Section II.8 concludes the paper.

70



Monodomain Model of Cardiac Electrophysiology

II.2 Monodomain Model of Cardiac Electrophysiology

The increase in computing power over the past decades has facilitated the use of
computer simulations to better understand cardiac pathologies. One of the most
important cardiac processes is the propagation of the electrical signals, which
trigger the contraction of the heart muscle. This process of electrophysiology,
in its simplest form, can be mathematically described as a reaction-diffusion
system using the following monodomain model (see e.g. [Cla+11]):

∂v

∂t
+ χIion(t, v, s⃗) = ∇ · (M∇v). (II.1)

In the above model, v(x, y, z, t) denotes the transmembrane potential and
is mathematically considered as a time-dependent 3D field, M(x, y, z) is a
conductivity tensor field describing the space-varying cardiac muscle structure, χ
is the ratio of the cell membrane area to the cell volume, and Iion(t, v, s⃗) denotes
the total ionic current across the cell membrane. Here, s⃗(t) denotes a vector of
state variables (apart from v) that also contributes to the evolvement of Iion at
each spatial point, where the evolution of s⃗ is governed by a system of ODEs
(see below).

Despite its simplicity, the monodomain model (II.1) is frequently used by
researchers to capture the main features of the signal propagation, especially
over the entire heart. Numerically, this reaction-diffusion system is often solved
using an operator splitting method to decouple the reaction term, χIion(t, v, s⃗),
from the diffusion term, ∇· (M∇v). The reaction part of the monodomain model
is then formulated as a system of non-linear ODEs:

dv

dt
= −χIion(t, v, s⃗), (II.2)

ds⃗

dt
= f⃗(t, v, s⃗). (II.3)

This ODE system needs to be individually solved on each mesh entity of a
computational grid. The diffusion part of the monodomain model is thus a linear
3D PDE as follows:

∂v

∂t
= ∇ · (M∇v). (II.4)

This PDE needs to be solved involving all the discrete v values in a computational
grid.

In this paper, the ten Tusscher–Panfilov model (TP06, see [TP06]) is used
for modeling Iion, where the entire ODE system (II.2)-(II.3) involves v and 18
state variables. These state variables include various ionic currents and so-called
gating variables. Special math functions such as exp are heavily used in the
ODEs. The source code of a straightforward implementation of the specific
ODE system can be found in [ten21]. Furthermore, the TP06 model prescribes
different parameters for three types of cardiac cells located in the epicardium
(outer layer), the myocardium (middle layer), and the endocardium (inner layer)
of the muscle wall in the cardiac ventricles.

71



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

Figure II.1: Activation map for a realistic bi-ventricular mesh, named heart04,
with a stimulus applied initially to the apex of the left ventricle (darkest blue).
The panels show two different viewing angles of the same mesh.

II.3 Numerical Strategy and Distributed-Memory
Parallelization

II.3.1 Unstructured Tetrahedral Meshes

To sufficiently resolve the irregular shapes inside a heart, we adopt unstructured
tetrahedral meshes. The adopted bi-ventricular meshes are based on the dataset
published by Martinez–Navarro et al. (see [Mar+19]), and the LDRB algorithm
(see [Bay+12]) for determining muscle fibre directions. We have used transversely
isotropic conductivity tensors such that the conductivity only depends on the
longitudinal fibre direction, i.e., parallel to the muscle fibres. Two realistic bi-
ventricular meshes have been used for the numerical experiments to be presented
later in this paper. The heart04 mesh has in total 3,031,704 tetrahedrons and
a characteristic length of 0.4 mm, whereas the finer heart05 mesh has in total
7,205,076 tetrahedrons and a characteristic length of 0.3 mm. Figure II.1 shows
a simulated activation map of heart04 where a stimulus is applied initially to
the apex of the left ventricle.

II.3.2 Discretization of the ODE Systems

The nonlinear ODE system (II.2)-(II.3) needs to be individually solved per
tetrahedron. We follow previous studies [Mir+12; MZS12] in using an augmented
forward–Euler scheme, where one of the state variables (the so-called m gate)
is integrated using the Rush–Larsen method [RL78] for improved numerical
stability. That is, the other 17 state variables and v are explicitly integrated by
the standard forward–Euler scheme. In order to obtain sufficient accuracy, we
use a time step ∆tODE = 20 µs for the ODE system (II.2)-(II.3).

72



Numerical Strategy and Distributed-Memory Parallelization

II.3.3 Discretization of the Diffusion Equation

The numerical solver for the diffusion equation (II.4) is based on cell-centered
finite volume discretization in space and explicit integration in time [Lan+15a;
Lan+15b]. (There exist other numerical strategies that are based on finite
element discretization in space and/or implicit integration in time. We will
provide a discussion in Section II.8.) The resulting computational stencil from
the cell-centered finite volume discretization covers the four direct neighboring
tetrahedrons plus the twelve second-tier neighbors, such that the computational
formula per tetrahedron depends on its 16 neighbors in addition to itself. This
can be expressed straightforwardly as an SpMV operation:

v⃗n+1 = Zv⃗n, (II.5)

where the vectors v⃗n+1 and v⃗n contain the numerical solutions at t = (n+1)∆tPDE
and t = n∆tPDE, respectively. Each value of vectors v⃗n+1 or v⃗n is the numerical
approximation of the transmembrane potential v at the center of a tetrahedron
(which will also be called a cell in the remaining text). The matrix Z has a dense
diagonal, and each row, corresponding to a specific tetrahedron, has up to 16
off-diagonal non-zero entries. The column positions of these non-zero entries are
irregular due to the unstructured tetrahedral mesh.

Suppose the number of tetrahedrons of the 3D unstructured mesh is denoted
by N . The dense diagonal of the matrix Z is stored as a separate 1D array, D,
of length N , whereas the off-diagonal entries are stored in the ELLPACK format
(see [GKY79]) with 16 values per row. This results in two 2D arrays each with
N × 16 entries: A contains the non-zero floating-point values in the off-diagonal
part of the matrix Z, and I contains the corresponding column indices.

As is common for explicit methods, the entries of Z impose a limit on how
large the PDE time step ∆tPDE can be chosen without giving rise to numerical
instability. When the criterion on ∆tPDE is much stricter than that on the
ODE time step ∆tODE, we use multi-stepping, meaning that p PDE steps with
∆tPDE = ∆tODE

p are executed for each ODE step. Otherwise, if the accuracy-
determined value of ∆tODE is roughly the same as the stability-determined
value of ∆tPDE, the minimum of the two is used for solving both parts of the
monodomain model.

II.3.4 Distributed-Memory Parallelization

On distributed-memory architectures, we need to partition the unstructured
tetrahedral mesh in such a manner that the computation is evenly distributed
among the hardware units, e.g., the GPUs on a cluster or the tiles within an IPU.
Furthermore, the partitioning should ideally lead to a minimal communication
volume to allow for scaling of the parallelized simulator. Specifically, we first
construct an undirected graph based on the cell connectivity of the tetrahedral
mesh and then use a graph partitioner (e.g., from the METIS library [KK98]) to

73



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

create a partitioning that attempts to minimize the total communication volume
within the constraints of a given maximal work imbalance ratio.

With respect to parallelizing the SpMV operation (II.5) that constitutes
the computation of each PDE step, the non-overlapping sub-meshes that are
produced by the graph partitioner dictate how the rows of the sparse matrix Z
are distributed among the hard units (such as the tiles within an IPU). Also,
the input vector v⃗n that is to be multiplied with Z needs to be partitioned
accordingly. On each hardware unit, besides its non-overlapping partition of v⃗n,
additional halo values of v⃗n need to be included. These halo values represent the
needed contributions from the neighboring partitions, see Section II.1. Before
a distributed-memory parallel SpMV is executed, the halo values must be
communicated from the neighbors. In return, some values within each non-
overlapping partition of v⃗n are needed as halo values on the neighbors, so these
values must be communicated to the neighbors.

II.4 Porting to Graphcore IPU

We have chosen as the starting point an existing code, which is described
in [Hus19; Lan+15a; Lan+15b], for simulating the monodomain model. The
numerical strategy of the existing monodomain simulator is as described in
Section II.3. The same distributed-memory parallelization will also be used, with
the exception of how halo-data exchanges are enabled.

II.4.1 Halo-Data Exchanges

Before describing the communication details, we need to introduce some
definitions first. The cells of each non-overlapping partition are of two types:
the interior and separator cells, where the interior cells are not needed by any
other partition, whereas each separator cell is needed by at least one neighboring
partition. Therefore, the interior cells are not included in any communication.
Values of the separator cells are computed on the owner partition, but need
to be communicated outwards to the requiring partition(s). On the receiving
partition(s) the corresponding cells are called halo cells.

On each sub-mesh, the interior and separator cells are identified on the basis
of the non-overlapping partitioning result produced by the graph partitioner
(see Section II.3.4). The needed addition of halo cells uses the same partitioning
result. However, the cells and their dependencies arise from a 3D geometry that
is represented in 1D memory. Therefore, the separator cells on each partition
may not be rearranged in such a way that the “outgoing" data to the different
neighbors appear as non-overlapping memory ranges.

Suppose destination partitions A, B, C all require some values from the same
source partition, where A requires cells {1, 2}, B requires {2, 3}, and C requires
{1, 3}. Since the “outgoing" data from the source partition to the destinations
A, B, C have overlapping values, it is impossible to arrange the separator cell
values in the memory of the source partition as three non-overlapping ranges.

74



Porting to Graphcore IPU

Figure II.2: Definition of interior , separator , and halo cells. The left side depicts
the three cell regions, where the interior region is not communicated, values
in the separator region need to be sent to other partitions, and the halo region
receives separator values from neighbor partitions. The right side depicts three
separator range methods, (full) transmits the entire separator cell range to every
neighbor, (ranged) uses the smallest enclosing range for each receiving partition,
and (mixed-clean) splits the separator cell range into a mixed part and a clean
part.

Consequently, if each outgoing data sequence must be marked by a contiguous
range, using one start position and one end position in memory, such as required
to enable inter-tile data exchanges on the IPU (see Section II.B.4), the destination
partitions may have to receive some “unwanted" data together with the needed
data. This issue is particularly important for using the IPU, because Poplar
programming (see Section II.B.4) does not provide explicit communication, such
as sending and receiving messages in the MPI standard. Instead, the need for
inter-tile data exchange is automatically identified and arranged by the popc
compiler during compilation, based on shared data ranges between the tiles.

We thus reorder the separator cells in each partition such that the data
range for each destination partition contains minimal unused values. An
alternative approach would be to generate many tiny ranges for each cell
in each location. However, this fine-grained mapping would generate many
communication programs, which will require a significant amount of program
memory. Therefore, we consider three separator division schemes that are
responsible for reordering the separator cells and generating outgoing ranges
over segments of memory, see Figure II.2 and also an algorithmic description in
Appendix II.A.

75



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

II.4.1.1 Full Separator Communication

The simplest form of separator reordering and outgoing range determination is
to declare the full separator region as the outbound region for all neighbors. This
has the advantage that the compiler may optimize the internal exchanges to use
broadcast operations, having fewer data transmissions on the exchange fabric.
The downside is that the whole separator contains values that are not needed
for all neighbors. Since memory is a scarce resource on the IPU, a concern is
about the unused values included in these exchanges, as they will also increase
the size of the halo region on the receiving partitions.

II.4.1.2 Ranged Separator Communication

The ranged separator communication scheme creates one outgoing range from a
source tile to each of its destination tiles. Instead of using the whole separator ,
we can use the smallest range for each destination tile as the outgoing memory
region range, which contains all values that must be transferred. As the values
can not be sorted such that ranges do not overlap, we still transfer unused values
(but fewer) similar to the full separator communication scheme.

II.4.1.3 Mixed-Clean Separator Communication

To reduce the number of unused values sent, we can create two ranges for each
destination. One range includes values only destined to the specific destination
and another range contains values destined to multiple neighbors. We reorder the
values destined to multiple partitions into a “mixed" range, which gets transferred
to all neighbor partitions. The values only destined to a single destination
partition are in a “clean" range, not containing unused values. Therefore, up to
two exchange packets are sent to each neighbor partition.

The advantage of this scheme is that the mixed range can still be broadcast
as they are the same for all neighbor partitions. Furthermore, clean ranges
reduce the number of values transmitted and stored in the halo regions, thus
reducing memory usage.

II.4.2 Specific IPU Programming

Porting the existing monodomain simulator to the IPU requires porting two
components, a PDE step and an ODE step, each programmed as a Poplar
codelet (see Section II.B.4). The ODE step is independent between the cells;
therefore, it can be easily distributed and executed in parallel on all tiles without
communication. Each tile goes through all its interior and separator cells and
integrate the ODE system per cell. The required Poplar programming is mostly
about deriving a Poplar Vertex class that wraps C functions in the existing
monodomain simulator.

The PDE step does an SpMV (II.5) involving the voltage values on all the
cells. This requires beforehand the communication and propagation of halo values
between each pair of neighboring tiles. In Poplar, inter-tile communication is

76



Porting to Graphcore IPU

described implicitly, see Section II.B.4. When partitioning the unstructured
tetrahedral mesh, we also determine the ranges that need to be communicated
from one tile to another. Section II.4.1 has described how these ranges are
obtained. The globally addressed vector of voltages, V , is required and
partitioned into different partitions to be multiplied with the sparse matrix
Z, partitioned and stored in the ELLPACK format per tile. Specifically, vector
V is decomposed into multiple partitions V|i,j = Vp with the global index ranging
from i to j for the tile with index p.

Here, we recall that each value in vector V is owned by one tile, and the
value may be a halo value in one or several tiles. Poplar requires defining
the locality of data on subdomains of tensors. We can do this mapping
with, e.g., graph.setTileMapping(V.slice(i,j), 123), which maps
the range i to j of V to the tile with the identifier of 123. To append
halo data into an existing tensor that is already on the tile we can create
a virtual tensor, composed of different tensor regions. This virtual tensor
will be created through copies and exchanges once the BSP-superstep is
launched using this tensor (see Section II.B.4). Such a virtual tensor can
be created by localV = concat(localV, V.slice(m,n)) ∀(m, n) ∈
separatorReceive, where localV is a tensor representing Vp. This simple
statement implies the needed tile-to-tile communication, as the ranges (m, n) are
owned and computed by other tiles. The compiler automatically generates the
exchanges and synchronization steps needed when the PDE compute-vertex using
localV is running. On the other hand, localV is not necessarily materialized
when the PDE compute-vertex is not running. The memory space can be
overwritten by other operations.

Attention must be paid when working with big exchanges of data, as data is
duplicated when transferred. Therefore, bigger exchanges can transfer at most
half of the per-tile memory in an optimal scenario. An alternative approach is
to communicate in smaller chunks to mitigate this problem.

II.4.3 Performance Modeling

On CPUs and GPUs, all hardware optimizations need to be accounted for
to determine the expected runtime. Hence, if not done rigorously, the actual
performance can differ dramatically from a pre-determined performance model.
However, the IPU does not have special hardware optimizations such as caches
or instruction pipelining (see Section II.B.3) and stalling.

Due to the simplicity of the IPU architecture, we can count instructions in
any algorithm in the computation phase, to create a performance model. In the
following, our focus is on the computations involved in the PDE and ODE parts
of the monodomain simulator. Using Graphcore’s popc compiler with the -O3
flag we generated the assembly output for the GC200 platform.

77



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

II.4.3.1 Performance Model for the PDE Part

On conventional platforms, due to the unstructured computational mesh used,
the SpMV operation during each PDE step has to access values that are randomly
stored in the main memory. On such systems, due to the random access pattern,
the values cannot be fully cached, leading to long runtimes for SpMV.

On IPU, however, once the sparse matrix and the associated vectors (with
halo parts) are partitioned among the tiles, data is only accessed from the local
SRAM of each tile. The Poplar code that implements the compute phase of
SpMV is given in Listing II.1.

Listing II.1: ELLPACK formatted SpMV used for the PDE computation.
const int RNZ = 16; // Rank Non-Zero
class TestPDEPartMW : public Vertex
{

public:
// Constants
Input<Vector<float>> A;
Input<Vector<int>> I;
Input<Vector<float>> D;

// Vertex In/Out
Input<Vector<float>> V;
Output<Vector<float>> newV;

bool compute(unsigned workerId)
{

for (int i = 0; i < newV.size(); i++) {
const int j = RNZ * i;
float a = 0;
a += A[j + 0] * V[I[j + 0]];
a += A[j + 1] * V[I[j + 1]];
// ...
a += A[j + 15] * V[I[j + 15]];
newV[i] = D[i] * V[i] + a;

}
return true;

}
};

Counting the instructions of the inner SpMV loop we estimated for each
tetrahedron 107 execution context local cycles, and measured a real performance
of 106 execution context local cycles. We noticed that of the 107 cycles, 18
cycles are used to store and load spilled registers. Furthermore, the generated
code makes use of instruction bundles but does not yet include more specialized
instructions available to the GC200, such as headless loops. The one-time start
and teardown overhead is 153 instructions.

78



Math Accuracy

II.4.3.2 Performance Model for the ODE Part

As mentioned in Section II.2, the ten Tusscher–Panfilov model (TP06, see [TP06])
is used for modeling the ionic currents (II.2)-(II.3). An augmented forward–
Euler scheme is used to explicitly integrate the ODE system (see Section II.3.2).
Through counting instructions of the TP06 model, we arrive at 1077 instruction
bundles. Adding latencies for the involved math functions (see Section II.B.2),
we get an estimate of 1401 cycles per tetrahedron (per time step). Adding the
loop overhead gives us a total of 1418 cycles. Our measurements can confirm this
model with the 1415 cycles actually used. We noticed that 111 instructions, or
about 7.9%, were used to handle register spilling. Furthermore, we noticed that
the compiler generated in some places 2-element vectorized operations, which is
the maximum SIMD operation width for 32bit single-precision float values.

II.5 Math Accuracy

This section has the purpose of rigorously verifying the accuracy of some
representative mathematical functions when executed on the IPU using single
precision. We consider it a very important step before adopting this new processor
architecture for numerically solving the monodomain model.

The IPU has access to the IEEE754 [IEE08] standard for single-precision
floating-point numbers. IEEE754 specifies these as binary32 with one sign bit
indicating a positive or negative number, an exponent of 8 bits, and 23 mantissa
bits. The general form of a normalized floating number can be given as

(m0.m1 . . . mp)2 × βe

with one non-zero digit in front of the comma. For the IPU, the base is β = 2
and according to IEEE754 m0 = 1 is specified.

II.5.1 Subnormal Numbers

The IEEE754 [IEE08] standard formulates an extension of floating-point numbers
to subnormal numbers. Subnormal numbers are used to represent numbers
smaller than the minimum floating-point number at the loss of accuracy.
Subnormals have are represented with emin = 1 − emax and have m0 = 0.
The numbers they can represent are numbers between zeros and the minimum
normalized single float number. The subnormals are linearly spaced, while
normalized floating-point numbers have logarithmic spacing.

The IPU does not support hardware accelerated subnormals. However, CPUs
and GPUs are also not primarily optimized to deal with subnormals. As shown
by Fasi et al. [Fas+21], the V100 and A100 have hardware-accelerated support for
subnormals. However, noted in both Intel and Nvidia developer documentation,
subnormals can be an order of magnitude slower than normalized floats.

79



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

II.5.2 Units in the Last Place

To compare floating-point numbers in one format, such as the IEEE754 single-
precision format, we choose the units in the last place (ULP) as a metric rather
than the relative error. One ULP is equivalent to

ulp(β, e) = (01.02 . . . 0p−11p)2 × βe

and defined under a constant basis and exponent. One ULP has the scalar
distance between representable numbers, with bases β and exponent e.

When considering the error, we generally are speaking about the difference
from a calculated result ŷ to the mathematically precise and accurate result y:

errorabsolute = |y − ŷ|

Even with perfect accuracy, we can not precisely represent y in any machine
format, as the real value can always be between two representable numbers.
Considering that we are rounding to the nearest number, even with a perfect
calculation, the error can still be up to 0.5 × ulp(β, e), because we have
ŷ ≤ y ≤ ŷ + 0.5ulp(β, e) ≤ ŷ + ulp(β, e).

II.5.3 Experiment Setup

We are interested in determining the accuracy of the most important mathe-
matical functions used in our simulator. The functions with one argument we
want to analyze are {exp, expm1, log, sqrt}. The function with two operands of
interest is {÷}.

All functions operands xn are represented in the IEEE754 single-precision
floating-point format. The results ŷ are like the input operands in single precision.
When considering the mathematically accurate result y for a comparison with ŷ,
we are using double-precision floating-point numbers. However, for |y − ŷ|, we
are interested in the error represented in ULPs, which gives us a fair estimate of
how far we are off in our given representation. Therefore, to get the difference of
y− ŷ in ULPs, we need to convert y into the same floating-point format as ŷ with
the same base and exponent. This conversion gives us the most accurate result in
our chosen representation. We assume the double floating-point result is accurate
and precise only with a minimal error, which occurs beyond the representation of
single-precision floating-point numbers. Therefore, when converting from double
to single precision, we do not introduce an error bigger than 0.5 × ulp(β, e).
The final error in ULPs represents how many places in our single-precision
representation we are off. For example, we are able to only represent one place
behind the comma with a basis and exponent βe, our accurate mathematical
result would be y = 1.3315 × βe. If we calculated ŷ = 1.5 × βe, while the
mathematical result in our representation would be y = 1.3× βe, the observed
result ŷ is wrong by by two ULPs.

For functions with one operand, we can iterate over all single-precision
floating-point values as the possible inputs, thus bounded by just 232 different

80



Niederer Benchmark

representable states. However, we are unable to iterate through functions with
two operands as the number of possible inputs is not iterable with 264 possible
states. Hence, we randomly sample 10 billion different input operand pairs.

II.5.4 Experiment Results

All single-operand math functions {exp, expm1, log, sqrt} and the two-operand
function {÷} have been implemented as hardware instructions and specifiable in
the assembly. We noticed that subnormal values are rounded off to zero in input,
also, if a not normalized output could be expected. Furthermore, operands that
are normalized and produce a subnormal output are rounded off to zero. Both
cases are covered in the hardware implementation and produce faster results
after a single cycle.

All functions showed no more than a 1× ulp(β, e) error. Errors of one ULP
were found randomly distributed throughout the results. Thus, we can say that
the single-precision floating-point implementation of the IPU can be considered
accurate.

II.6 Niederer Benchmark

II.6.1 Running the Benchmark

Now the task is to verify the correctness of our IPU implementation. Ideally we
should choose a well-known problem instance and compare our computational
results with real-world measurements. However, cardiac simulations are very
complex, with multiple parameters and non-trivial geometries. Therefore,
the scientific community has agreed to compare multiple codes against each
other to create a golden solution that is between all viable simulations.
Niederer et al. [Nie+11] formulated a N-version benchmark to compare cardiac
electrophysiology simulators independent of the numerical scheme used.

More specifically, the Niederer benchmark uses a box-shaped geometry to
represent a 20× 7× 3 mm slab of cardiac tissue with fibers aligned along the
long (20 mm) axis. A stimulus is applied within a small 1.5 × 1.5 × 1.5 mm
cube at a corner of the geometry for a duration of 2 ms and with a stimulation
strength of 50000 µA/cm3.

II.6.2 Benchmark Results

As described above, the Niederer Benchmark compares multiple simulation
results against each other. As the baseline, we used the existing monodomain
code (its CPU version denoted as "OMP" in Figure II.3), executed on an Intel
Xeon CPU with IEEE754-float64 double precision. We compared the IPU
implementation of the same cell model to the CPU implementation with more
accurate math.

The benchmark is run for three meshes of 0.5, 0.2, and 0.1 mm in resolution.
The PDE and ODE time steps are fixed to 0.05 ms. In Figure II.3 we observe

81



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

that the benchmark results computed by the IPU do not diverge significantly
from the CPU baseline. When using the same mesh resolution, e.g., 0.1 mm, the
two implementations produce results that are difficult to distinguish with naked
eyes.

Figure II.3: The Niederer Benchmark results reported as the activation time
versus the distance from the stimulus origin.

In Section II.7.4, we will present another comparison of the simulation results
between the ported IPU code and an existing GPU implementation. This
comparison addresses a realistic heart geometry and unstructured computational
meshes.

II.7 Experiments

II.7.1 Separator Experiments

To determine the effectiveness of the three schemes for reordering and dividing the
separator cells on each tile, as discussed in Section II.4.1, we use the heart04
mesh (see Section II.3.1) as an example. For a given number of IPUs, the
unstructured mesh is decomposed by the k-way partitioner of METIS [KK98]
into N sub-meshes, with N equaling the total number of tiles available. For all
the experiments, we have always used an imbalance ratio of 3% while minimizing
the adjacency edge-cut, meaning that the number of cells on the largest partition
can not be more than 1.03 times greater than the ideal partition size. This
offered us a good tradeoff between runtime and partitioning quality. With more

82



Experiments

Table II.1: Partitioning the heart04 mesh using 1 to 16 IPUs under three
different exchange strategies. The inbound cells correspond to the halo cells.
The total cells are of the biggest partition. Unused cells refer to the cells in the
halo region not used by the receiving partition.

Inbound Cells Max Total Cells Max Unused Cells Median
IPU Count Full Mixed Ranged Full Mixed Ranged Full Mixed Ranged

1 3.4× 1× 2.1× 2.6× 1× 1.7× 5.3× 1× 2.7×
2 2.8× 1× 1.8× 2.3× 1× 1.6× 3.9× 1× 2.0×
4 2.2× 1× 1.5× 2.0× 1× 1.4× 3.0× 1× 1.6×
8 1.9× 1× 1.3× 1.7× 1× 1.3× 2.4× 1× 1.3×

16 1.5× 1× 1.2× 1.5× 1× 1.2× 1.8× 1× 1.3×

workload imbalance, the downsides are twofold: (1) As the IPU uses a BSP
(bulk synchronous parallel) programming model, all tiles need to wait until the
last tile is finished, leading to poor use of the hardware resources. (2) The
maximum problem size which fits on a set of IPUs is reduced, because once a
single partition becomes too large, the popc compiler fails. Setting a lower work
imbalance ratio would reduce the computation time in the PDE and ODE steps,
but it might increase the communication volume and thereby the time spent on
the halo-data exchange phase that occurs before each PDE step.

First, we are interested in the maximum and median memory used on the
tiles, because the maximum memory requirement per tile indirectly determines
how big meshes can fit on a single or multiple IPUs. The second metric of
interest is the maximum and median inbound communication volume per tile
and the number of unused cells included in the halo regions. To evaluate the
effect on a real-world application, we benchmarked the PDE exchange phase
and count the number of cycles used for the exchanges (see details in Table II.2
later in Section II.7.3).

A high-level comparison is shown in Table II.1. We can observe that the
mixed-clean strategy outperforms the full and ranged strategies. The latter two
are on average 2× worse. As expected, the full separator strategy performs
consistently worse than the ranged separator strategy. However, the advantage
of the mixed-clean strategy may not hold for very small partitions, e.g., when
the number of IPUs used is very large. This is because as the partitions get
smaller, the overlapping ranges in the mixed-clean separator strategy increase,
approaching the same level of the full separator strategy. The ranged separator
strategy, therefore, may have a small advantage.

When running the real-world benchmarks, such as those to be presented in
Section II.7.2, we observed a correlation between the number of inbound cells
and the exchange time usage. The mixed-clean strategy was thus used when
running the IPU-ported monodomain simulator.

83



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

Figure II.4: Three snapshots of the 3D transmembrane potential field from a
realistic monodomain simulation using the heart04 mesh.

II.7.2 Strong-Scaling Experiments

We continue with some strong-scaling experiments, i.e., the computational mesh
is fixed while the number of IPUs increases. For all the IPU numbers tested, we
used the heart04 mesh (with 3,031,704 cells), as it is the biggest fitting instance
that runs on a single IPU. Figure II.4 shows three snapshots from a monodomain
simulation using the heart04 mesh. It simulates the propagation of the electrical
signal in the heart for 500 ms, with ∆tODE = 20 µs and ∆tPDE = 5 µs, i.e., one
ODE step per 4 PDE steps. Besides heart04, we also used heart05 (with
7,205,076 cells) for which two IPUs were the smallest configuration. This mesh
has a finer resolution than heart04, thus a smaller value of ∆tPDE = 4 µs was
used, i.e., one ODE step per five PDE steps. In addition, we compared the IPU
performance with the GPU performance of the existing code [Hus19] using one
to eight GPUs in an NVIDIA DGX A100 system. A high-level summary of the
comparison is shown in Figure II.5, where Section II.7.4 contains a deep-dive
analysis.

The k-way partitioner from the METIS software package was used to divide
the unstructured meshes, with k equal the total number of tiles used for each
IPU experiment. For the GPU experiments, the METIS partitioner only needs
to divide the unstructured meshes into sub-meshes equaling the number of GPUs
used. (The intra-GPU parallelism utilized the device-level memory accessible
for all the CUDA threads.) All the experiments used a METIS load imbalance
constraint of 3%.

Figure II.5 shows the results of the strong-scaling experiment. We can observe
that both IPU and GPU implementations scale almost linearly. The A100 has
almost twice the performance and is always matched by twice the number of
IPUs. However, when approaching eight GPUs the scaling efficiency drops. This
is not the case for the IPUs, which are able to scale up to 16 IPUs. We were not
able to run this experiment on more than 16 IPUs, as the popc compilation ran
out of memory when trying to compile for 32 IPUs.

When increasing the number of IPUs from 1 to 16 for the heart04 mesh,
we observe that the time decreases almost linearly with added hardware. From

84



Experiments

0.0

0.2

0.4

0.6

0.8

1.0
Sc

al
in

g 
ef

fic
ie

nc
y

heart04
heart05

heart04
heart05

1 2 4 8 16
Number of IPUs

0.062

0.125

0.250

0.500

Ti
m

e 
pe

r 
st

ep
 (m

s)

heart04
heart05

1 2 4 8
Number of GPUs

heart04
heart05

Figure II.5: Strong-scaling experiments using the meshes of heart04 and
heart05. (The heart05 mesh is too large for a single IPU.)

the perspective of computation alone, this scaling trend is expected, because
each tile is responsible for less work. However, due to the increasing number of
tiles used, the amount of halo cells increases. When using a single IPU for the
heart04 mesh, we see a median of 2058 interior+separator cells per tile and a
median of 2226 halo cells per tile. That is, the halo cells occupy about 51.9% of
the total cells per tile. Let us also recall that the values of these halo cells need
to be transferred from other tiles before every diffusion step. With more IPUs,
the transfer volume increases to about 63.33%, 72.60%, 80.20%, 86.13% of all the
cells, for 2, 4, 8, 16 IPUs respectively. The memory footprints of the halo cells
are thus steadily increasing.

II.7.3 Phase Breakdown

We used the Graphcore PopVision tools to visualize the inner workings of our IPU-
enabled simulator. In order to generate a profile containing runtime and compile
information, an environment variable has to be passed during compilation, which
will make the Poplar libraries generate profiling information. The profiling
information contains static runtime-independent data, such as the memory usage
on each tile. Runtime-dependent information is also collected. However, runtime
profiling incurs a small performance and memory usage penalty. We are thus only

85



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

Table II.2: Breakdown of the different algorithmic phases (in number of clock
cycles) for the strong-scaling experiments using the heart04 mesh. The PDE
per ODE factor p is always 4, i.e., four PDE steps per ODE step.

IPUs PDE Ex PDE Comp ODE Comp PDE Total ODE Total PDE/ODE PDE
p /ODE

1 11,365 250,916 3,018,062 1,049,124 3,018,062 34.76% 8.69%
2 14,642 125,600 1,512,146 560,968 1,512,146 37.10% 9.27%
4 12,960 63,296 763,441 305,024 763,441 39.95% 9.99%
8 14,144 32,144 383,185 185,152 383,185 48.32% 12.08%

16 13,101 15,860 193,406 115,844 193,406 59.90% 14.97%

interested in the proportions of the execution steps that can be back-adjusted
through the non-profiled walltime usage.

We profiled the four phases of our IPU code, i.e., PDEcompute, PDEexchange,
ODEcompute, ODEexchange, respectively based on the computing and exchange
phases of the PDE and ODE parts. Table II.2 gives a breakdown of the PDE and
ODE phases. For example, when using 1 IPU, the PDE part took about 25.8%
of the total execution time, while the data exchanges within the PDE steps only
took about 1.1%. The compute phase of a PDE step consumes about 22× as
much time as the exchange phase. The ODE computation is by large the slowest
part, requiring approximately 74.2% of the total execution time. Recall that
four PDE steps were executed per ODE step, each ODE step thus requires about
11.5× the time of a single PDE step. No communication is required to start the
ODE step after the preceding PDE step has finished. Therefore, ODEexchange
is 0. We also noticed that the execution of the ODE step starts without any
synchronization.

The PDEcompute phase took an average of 238K cycles per tile, where the
fastest tile finished after 231K cycles and the last after 245K. The standard
deviation is 5.2K cycles. However, workload imbalances have no significant
impact on the performance, because the ODE part can start without requiring a
global synchronization. ODEcompute took on average 2.8M cycles per tile, with
a minimum of 2.7M and a maximum of 2.9M cycles. The standard deviation
for ODEcompute is 63.1K cycles.

If we quantify effectiveness as the percentage of time during which the
tiles on average remain non-idle, then the effectiveness is 97% for both the
ODEcompute and PDEcompute phases. However, the effectiveness is only 57.4%
for the PDEexchange phase. These numbers are associated with the single-IPU
experiment. Using more IPUs will see lower effectiveness particularly for the
PDEexchange phase, due to a more unbalanced distribution of the halo cells. This
problem is currently not properly handled by the mainstream mesh partitioners.

Breaking down the phases of the strong-scaling experiments in Figure II.6
shows that the share of communication (Ex) time increases. This increasing
communication share can be explained due to the ladder topology (see Figure II.8),
which increases the latencies linearly with the number of IPUs used.

86



Experiments

1 2 4 8 16
Number of IPUs

0.0

0.2

0.4

0.6

0.8

1.0

Ph
as

e'
s 

sh
ar

e 
of

 to
ta

l t
im

e

ODE PDE exchange PDE compute

1 2 4 8 16
Number of IPUs

0

1

2

3

4

C
lo

ck
 c

yc
le

s 
(m

ill
io

ns
)

ODE PDE exchange PDE compute

Figure II.6: Breakdown of the strong-scaling experiments using the heart04
mesh. Blue denotes the total ODE step time composed of only compute, yellow
is the compute phase of the PDE step and red denotes the cycles used for the
PDE exchanges.

Table II.3: Performance comparison between GC200 IPUs and A100 GPUs,
related to a monodomain simulation using the heart04 mesh with 25,000 ODE
steps and 100,000 PDE steps.

IPUs Total time PDE part ODE part GPUs Total time PDE part ODE part
1 76.57 s 19.75 s 56.82 s 1 37.40 s 27.34 s 10.05 s
2 38.99 s 10.55 s 28.44 s 2 18.77 s 13.26 s 5.51 s
4 20.06 s 5.73 s 14.33 s 4 9.75 s 6.89 s 2.86 s
8 10.71 s 3.49 s 7.22 s 8 9.54 s 8.81 s 0.73 s

16 6.02 s 2.26 s 3.76 s

II.7.4 Detailed Performance Comparison between IPUs and GPUs

Figure II.5 has already shown a high-level comparison of the performance between
IPUs and GPUs. Now, we want to provide a more detailed performance
comparison between the two processor architectures, using dissected time
measurements of the strong-scaling test with the heart04 mesh.

It can be seen in Table II.3 that the GC200 IPUs and A100 GPUs behave
very differently for the PDE and ODE parts. (Note that the PDE part includes
the time spent on halo-data exchanges.) The GC200 IPU is considerably more
powerful than the A100 GPU for running the SpMVs that constitute the PDE
part. We remark that the GPU version of the monodomain simulator is highly
optimized as studied in [Hus19]. This can be confirmed by a simple study on
the memory traffic. Namely, let us assume perfect data reuse in the L2 cache
of the A100 GPU, i.e., each value of the input vector v⃗n to the SpMV (II.5)
is loaded exactly only once from the GPU’s device memory per SpMV. This
will produce an idealized lower-bound estimate of the memory traffic on the
GPU, which can in turn be translated to a minimum bandwidth of 1507.48
GB/s that has been achieved when one A100 GPU is used. Compared with
the realistically achievable memory bandwidth of 1774.37 GB/s per A100 GPU,

87



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

which is measured by the BabelStream micro-benchmark [22a], we can conclude
that the GPU implementation of the SpMV has achieved at least 85% of the
realistically achievable maximum performance. Considering the high level of
A100’s SpMV performance, it is very impressive that the GC200 IPU beats the
A100 GPU in this regard. The explanation lies in the aggregate on-chip SRAM
bandwidth of IPU. On the other hand, the GPU performance of the ODE part
is much higher than the IPU counterpart, thanks to the GPU’s tremendous
floating-point capability. One remark, however, is that the GPU implementation
can allow a certain level of overlap between the halo-data exchange and the ODE
step, which may make the ODE time measurement on the GPU seem shorter
than it actually is. This is evident for the ODE time measurement in Table II.3
when 8 GPUs are used.

Last but not least, we have also taken a closer look at the simulated results
that are produced by the IPU and GPU implementations. (Three example
snapshots from the simulation are shown in Figure II.5.) Human eyes can not
detect any difference between the two numerical solutions. During the entire
simulation that spans 500 ms, the largest maximum difference between the IPU-
produced and GPU-produced v values is found to be 0.18 mV. Considering that
the simulated v values lie in the range of [-90 mV, 40 mV], this small discrepancy
is acceptable.

II.8 Conclusion

In this work, we have ported an existing simulator of cardiac electrophysiology to
Graphcore IPUs. In this process, we investigated the Poplar programming needed
and the impact of partitioning and halo-data exchange on SpMV operations that
arise from unstructured computational meshes. The speed and accuracy of some
special math functions were also rigorously checked on IPUs. These topics are
by no means constrained to the particular cardiac simulator, but with a good
possibility of becoming useful for other computational physics applications.

II.8.1 Limitations

There are several limitations of the present work. First, the SpMV operations
that have been ported to the IPU use the ELLPACK format to store the
off-diagonal part of a sparse matrix. This is due to the cell-centered finite
volume discretization adopted for the diffusion equation, resulting in the same
number of non-zeros per matrix row. In the case of node-centered finite volume
discretization or finite element discretization in general, the number of non-zeros
per matrix row will no long be the same. For example, the standard compressed
sparse row format can then be used to store the resulting sparse matrix. This
will however require a change in the partitioning step, where each row should
be weighted by its number of non-zeros. Thus the sub-meshes can be assigned
with different numbers of rows. Such a weighted partitioning scheme actually
suits the IPU very well, because the computing cost per tile will be strictly

88



Conclusion

proportional to the total number of non-zeros assigned. The GPU counterpart,
on the other hand, may need to adopt other storage formats to achieve its full
memory bandwidth capacity. (This is an active research field illustrated by many
recent publications such as [Moh+21].)

Second, still with respect to the partitioning step, the present work has
another limitation related to using multiple IPUs. Our current partitioning
strategy is single-layered, i.e., an unstructured mesh is decomposed into as many
pieces as the total number of IPUs available on multiple IPUs. No effort is made
to limit the halo-data exchanges that span between IPUs. As shown in Figure II.8
in Section II.B.1, the communication speed between IPUs is heterogeneous and
much lower than the intra-IPU communication speed between the tiles. An
idea for improvement is to introduce a hierarchical partitioning scheme, where a
first-layer partitioning concerns only the division between the IPUs, whereas a
second-layer partitioning divides further for the tiles within each IPU. Moreover,
the partitioning on both layers should attempt to evenly distribute the halo
cells. Otherwise, tiles over-burdened with halo cells will quickly become the
bottlenecks.

Third, we have only considered explicit time integration for the diffusion
equation. The up-side is that the PDE solver only needs SpMVs, but the
down-side is the severe stability restriction on the size of ∆tPDE. Implicit time
integration is good to have with respect to numerical stability, but will give rise
to linear systems that need to be solved. Here, we remark that SpMVs constitute
one of the building blocks of any iterative linear solver.

II.8.2 Lessons Learned

The design of algorithms must be reconsidered for massively tiled processors.
While the HPC community already has ample experience in using technologies
like distributed memory and BSP, their use in the IPU has not been explored
equally well. Most of current projects and their underlying design considerations
are not adjusted to the tradeoffs of this new class of accelerators. New ways to
think of communication and load balance are necessary.

Furthermore, Poplar programming requires us to implicitly define commu-
nication at compile time. This makes it impossible to have predefined kernels
such as those commonly found on CPUs and GPUs. One could argue that the
compilation of regular-mesh kernels for IPUs only needs to happen once for
all inputs. However, compiling for irregular meshes is required for every single
communication scenario unless a regular representation can be found. This
unavoidable compilation requires us to be aware of the expensive compilation
time. We also found that the compilation time and mesh preprocessing time
substantially increase with multiple IPU devices.

The current IPU architecture also has clear limitations. These include
the support of only single-precision computing and limited SRAM resource
per tile. Instead of waiting for Graphcore to develop new IPUs capable of
double-precision computing, a possible strategy can be to identify the most
accuracy-critical parts of a computation and emulate double-precision operations

89



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

by software for these parts, whereas the remaining parts use single precision.
Better partitioning algorithms, which adopt a hierarchical approach and are
aware of the heterogeneity in the communication network, will also be useful
for optimizing the usage of the limited SRAM per tile. On the other hand,
we should not forget about one particular advantage of AI processors such as
IPUs. That is, these processors are already good at running machine-learning
workloads. Thus, if “conventional" scientific computing tasks can be efficiently
ported to AI processors, the distance to converged AI and HPC is short.

In future work, we will investigate further optimizations of halo-data
exchanges both on and between the IPUs (with help of better partitioning
strategies) and extend our work to other more general unstructured-mesh
computations.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential
conflict of interest.

Author Contributions

All the authors contributed to the conceptualization of the work. LB designed
and implemented the IPU code, performed the related experiments and collected
the measurements. The original GPU version of the Lynx code was designed
and implemented by JL, with the ODE part added by KGH. KGH performed
all the GPU experiments. All the authors participated in the discussions and
analyses of the experimental results. All the authors contributed to the writing
of the manuscript.

Funding

The work of the second author was partially supported by the European High-
Performance Computing Joint Undertaking under grant agreement No. 955495
and the Research Council of Norway under contract 329032. The work of the third
and fourth authors was partially supported by the European High-Performance
Computing Joint Undertaking under grant agreement No. 956213 and the
Research Council of Norway under contracts 303404 and 329017. The research
presented in this paper has benefited from the Experimental Infrastructure for
Exploration of Exascale Computing (eX3), which is financially supported by the
Research Council of Norway under contract 270053.

Acknowledgments

Julie J. Uv segmented the surface files that were used to generate fibre directions
for the bi-ventricular meshes. James D. Trotter generated the meshes with fibre

90



References

directions.

Data Availability Statement

The original contributions presented in the study are included in the article/sup-
plementary material, and further inquiries can be directed to the corresponding
author.

References

[21] Designed for AI–Intelligence Processing Unit. https : / / www .
graphcore.ai/products/ipu. 2021.

[22a] BabelStream. https://github.com/UoB-HPC/BabelStream. 2022.
[22b] The Future of AI is Here. https://cerebras.net/chip/. 2022.
[AIM17] Abadi, M., Isard, M., and Murray, D. G. “A computational

model for TensorFlow: an introduction”. In: Proceedings of the
1st ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages. 2017, pp. 1–7.

[Bay+12] Bayer, J. D. et al. “A novel rule-based algorithm for assigning
myocardial fiber orientation to computational heart models”. In:
Ann Biomed Eng vol. 40 (Oct. 2012), pp. 2243–2254.

[BCL21] Burchard, L., Cai, X., and Langguth, J. “iPUG for Multiple
Graphcore IPUs: Optimizing Performance and Scalability of Parallel
Breadth-First Search”. In: 2021 IEEE 28th International Conference
on High Performance Computing, Data, and Analytics (HiPC). 2021,
pp. 162–171.

[BP00] Bern, M. and Plassmann, P. “Chapter 6–Mesh Generation”. In:
Handbook of Computational Geometry. Ed. by Sack, J.-R. and
Urrutia, J. North-Holland, 2000, pp. 291–332.

[Bul+16] Buluç, A. et al. “Recent Advances in Graph Partitioning”. In:
Algorithm Engineering: Selected Results and Surveys. Vol. 9220.
Lecture Notes in Computer Science. Springer, 2016, pp. 117–158.

[Bur+21] Burchard, L. et al. “iPUG: Accelerating Breadth-First Graph
Traversals Using Manycore Graphcore IPUs”. In: International
Conference on High Performance Computing. Springer. 2021,
pp. 291–309.

[Cla+11] Clayton, R. H. et al. “Models of cardiac tissue electrophysiology:
Progress, challenges and open questions”. In: Progress in Biophysics
and Molecular Biology vol. 104 (Jan. 2011), pp. 22–48.

[Fas+21] Fasi, M. et al. “Numerical behavior of NVIDIA tensor cores”. In:
PeerJ Computer Science vol. 7 (2021), e330.

91

https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/products/ipu
https://github.com/UoB-HPC/BabelStream
https://cerebras.net/chip/


II. Enabling Unstructured-Mesh Computation on Massively Tiled
AI-Processors: An Example of Accelerating In-Silico Cardiac Simulation

[GKY79] Grimes, R. G., Kincaid, D. R., and Young, D. M. ITPACK 2.0
User’s Guide. Center for Numerical Analysis, University of Texas,
1979.

[Hus19] Hustad, K. G. “Solving the monodomain model efficiently on GPUs”.
MA thesis. http://urn.nb.no/URN:NBN:no-74080: University of
Oslo, 2019.

[Håp21] Håpnes, S. “Solving Partial Differential Equations by the Finite
Difference Method on a Specialized Processor”. MA thesis. http:
//urn.nb.no/URN:NBN:no-92505: University of Oslo, 2021.

[IEE08] IEEE. “IEEE Standard for Floating-Point Arithmetic”. In: IEEE
Std 754-2008 (2008), pp. 1–70.

[JAM22] Jacquelin, M., Araya-Polo, M., and Meng, J. Massively scalable
stencil algorithm. arXiv, 2022.

[Jia+19] Jia, Z. et al. “Dissecting the Graphcore IPU architecture via
microbenchmarking”. In: arXiv preprint arXiv:1912.03413 (2019).

[KK98] Karypis, G. and Kumar, V. “A fast and high quality multilevel
scheme for partitioning irregular graphs”. In: SIAM Journal on
Scientific Computing vol. 20, no. 1 (Aug. 1998), pp. 359–392.

[Lan+15a] Langguth, J. et al. “Parallel performance modeling of irregular
applications in cell-centered finite volume methods over unstruc-
tured tetrahedral meshes”. In: Journal of Parallel and Distributed
Computing vol. 76 (Feb. 2015), pp. 120–131.

[Lan+15b] Langguth, J. et al. “Scalable Heterogeneous CPU-GPU Computa-
tions for Unstructured Tetrahedral Meshes”. In: IEEE Micro vol. 35,
no. 4 (2015), pp. 6–15.

[LM21] Louw, T. R. and McIntosh-Smith, S. N. “Using the Graphcore IPU
for Traditional HPC Applications”. In: 3rd Workshop on Accelerated
Machine Learning: Co-located with the HiPEAC 2021 Conference,
AccML; Conference date: 18-01-2021. 2021.

[Mar+19] Martinez-Navarro, H. et al. Repository for modelling acute myocar-
dial ischemia: simulation scripts and torso-heart mesh. https://ora.
ox.ac.uk/objects/uuid:951b086c-c4ba-41ef-b967-c2106d87ee06.
2019.

[Mes21] Message Passing Interface Forum. MPI: A Message-Passing Inter-
face Standard Version 4.0. June 2021.

[Mir+12] Mirin, A. A. et al. “Toward real-time modeling of human heart
ventricles at cellular resolution: simulation of drug-induced arrhyth-
mias”. In: SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis.
IEEE. Nov. 2012.

92

http://urn.nb.no/URN:NBN:no-74080
http://urn.nb.no/URN:NBN:no-92505
http://urn.nb.no/URN:NBN:no-92505
https://ora.ox.ac.uk/objects/uuid:951b086c-c4ba-41ef-b967-c2106d87ee06
https://ora.ox.ac.uk/objects/uuid:951b086c-c4ba-41ef-b967-c2106d87ee06


References

[Moh+20] Mohan, L. R. M. et al. “Studying the potential of Graphcore
IPUs for applications in particle physics”. In: arXiv preprint
arXiv:2008.09210 (2020).

[Moh+21] Mohammed, T. et al. “DIESEL: A novel deep learning-based tool for
SpMV computations and solving sparse linear equation systems”. In:
The Journal of Supercomputing vol. 77, no. 6 (2021), pp. 6313–6355.

[MZS12] Marsh, M. E., Ziaratgahi, S. T., and Spiteri, R. J. “The secrets to
the success of the Rush–Larsen method and its generalizations”. In:
IEEE Transactions on Biomedical Engineering vol. 59, no. 9 (June
2012), pp. 2506–2515.

[Nie+11] Niederer, S. A. et al. “Verification of cardiac tissue electrophysiology
simulators using an N-version benchmark”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences vol. 369, no. 1954 (2011), pp. 4331–4351.

[Ort+20] Ortiz, J. et al. “Bundle Adjustment on a Graph Processor”. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, 2020, pp. 2413–
2422.

[RL78] Rush, S. and Larsen, H. “A practical algorithm for solving dynamic
membrane equat ions”. In: IEEE Transactions on Biomedical
Engineering, no. 4 (1978), pp. 389–392.

[Roc+20] Rocki, K. et al. “Fast Stencil-Code Computation on a Wafer-Scale
Processor”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’20.
Atlanta, Georgia: IEEE Press, 2020.

[ten21] ten Tusscher, K. H. W. J. Source code second version Human
Ventricular Cell model. http : / / www - binf . bio . uu . nl / khwjtuss /
SourceCodes/HVM2/ [Accessed on July 23, 2021]. 2021.

[TP06] Tusscher, K. H. ten and Panfilov, A. V. “Cell model for efficient
simulation of wave propagation in human ventricular tissue under
normal and pathological conditions”. In: Physics in Medicine &
Biology vol. 51, no. 23 (2006), p. 6141.

[Una+17] Unat, D. et al. “Trends in Data Locality Abstractions for HPC
Systems”. In: IEEE Transactions on Parallel and Distributed
Systems vol. 28, no. 10 (2017), pp. 3007–3020.

[Val90] Valiant, L. G. “A bridging model for parallel computation”. In:
Communications of the ACM vol. 33, no. 8 (1990), pp. 103–111.

Authors’ addresses

Luk Burchard Simula Research Laboratory, Kristian Augusts gate 23, 0164
Oslo, Norway, luk@simula.no

93

http://www-binf.bio.uu.nl/khwjtuss/SourceCodes/HVM2/
http://www-binf.bio.uu.nl/khwjtuss/SourceCodes/HVM2/
mailto:luk@simula.no


II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

Kristian Gregorius Hustad Simula Research Laboratory, Kristian Augusts
gate 23, 0164 Oslo, Norway, kghustad@simula.no

Johannes Langguth Simula Research Laboratory, Kristian Augusts gate 23,
0164 Oslo, Norway, langguth@simula.no

Xing Cai Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo,
Norway, xingca@simula.no

Appendix II.A Algorithmic Description of Three Separator
Partitioning Methods

The description in Algorithm 2 corresponds to Section II.4.1. The three schemes
are for reordering the separator cells and generating outgoing ranges over
segments of memory (see Figure II.2 in Section II.4.1). The deps parameter is
a multiset where each depsj is a set that indicates for a tetrahedron tetsj the
partitions pi with index i ∈ depsj that requires the value of the tetrahedron j.
We denote the subrange of a multiset X from the n-th to m-th element inclusive
with X(n, m).

Appendix II.B Technical Information of Graphcore IPUs

II.B.1 Architectural Overview

Developed as an accelerator for machine intelligence, the Graphcore IPU is a
massively parallel, multiple-instruction-multiple-data (MIMD) processor that
consists of a large number of independent units called tiles. Each tile features a
core and a small amount of private SRAM used as scratchpad memory. Although
the entire device has access to slower DRAM, the SRAM of the individual tiles
jointly make up the primary device memory, thereby eschewing the need for a
traditional cache hierarchy.

In this paper, we use the second-generation IPU, named GC200. It has in
total 1472 tiles organized into islands and columns, as shown in Figure II.7.
Each tile has 624 KB of SRAM, for a total of 918 MB per IPU. Both cores and
SRAM run at 1.33 GHz, giving the device an aggregate memory bandwidth of
47.5 TB/s. However, data that is not local to a core must be communicated
between the tiles via the IPU exchange network. In previous work, architectural
details of the first-generation IPU called GC2 was exhaustively studied and
benchmarked [Jia+19].

A tile is capable of sending and receiving 4 bytes per cycle, which amounts
to 5.3 GB/s for a total of 7.83 TB/s for all 1472 tiles. Moreover, the IPU
alternates between computation and communication in a bulk-synchronous
parallel (BSP) [Val90] manner with no overlap between the phases.

Each core runs six concurrent threads in a fine-grained temporal multithreading
scheme for a total of 8832 threads. Unlike simultaneous multithreading, which
is commonly used in modern CPU and GPU designs, IPU threads are scheduled

94

mailto:kghustad@simula.no
mailto:langguth@simula.no
mailto:xingca@simula.no


Technical Information of Graphcore IPUs

Algorithm 2 Three schemes for reordering the separator on a tile and generating
outgoing ranges

1: procedure AssignFullRange(tets, deps) ▷ dependencies for each tet.
2: for dest ∈

⋃N
j=1

⋃|depsj |
j′=1 depsj,j′ do

3: pdest ← tets(0, N)
4: end for
5: end procedure
6:
7: procedure AssignRanged(tets, deps)
8: for dest ∈

⋃N
j=1

⋃|depsj |
j′=1 depsj,j′ do

9: L← min{i : dest ∈ depsi}
10: U ← max{i : dest ∈ depsi}
11: pdest ← tets(L, U)
12: end for
13: end procedure
14:
15: procedure AssignMixed(tets, deps)
16: mixed← {}
17: singleton← {{}, . . . , {}}, |singleton| = |

⋃N
j=1

⋃|depsj |
j′=1 depsj,j′ |

18: for t ∈ tets do
19: if |destt| = 1 then
20: singleton← singleton ∪ {t}
21: else
22: mixed← mixed ∪ {t}
23: end if
24: end for
25: for dest←

⋃N
j=1

⋃|depsj |
j′=1 depsj,j′ do

26: pdest ← singletondest

27: pdest ← mixed
28: end for
29: end procedure

consecutively in a fixed order. For that reason, the design is also referred to as
a barrel processor. IPU instructions, including loads and stores from the local
tile memory, take exactly 6 cycles. Thus, individual threads do not experience
latency since they execute one instruction per cycle in which they are scheduled.
Similar to the tensor cores on recent NVIDIA GPUs, the IPU has Accumulating
Matrix Product units which enable a peak performance of 62.5 TFLOPS/s in
32-bit precision for dense matrix multiplications. Other floating-point operations
are performed significantly slower though. With one FMA (fused-multiply-add)
operation per clock cycle per tile, the IPU reaches approximately 4 TFLOPS/s,
which is substantially slower than comparable GPUs.

Four IPUs are deployed together in an IPU-M2000 blade, which in turn can
be combined into larger systems called IPU PODs. Each M2000 contains the

95



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

Figure II.7: Tile layout on the GC200 IPU processor. Each of the 1472 tiles
(green/blue) has 624 KB of directly accessible memory and a core with 6 threads,
temporarily scheduled through a barrel processor. All tiles are connected through
7.83 TB/s interconnect.

Gateway Link, a network adapter that connects the M2000 to a CPU host that
controls the IPU system. The Gateway link has a nominal bandwidth of 32 GB/s
to each IPU, and the network connecting the Gateway to the host has 100 Gb/s
(12.5 GB/s). The M2000 also contains up to 448 GB of DRAM memory, which
it can access at a speed of about 20 GB/s.

Between the IPUs, data is transferred via the IPU-link, which performs both
intra-blade and inter-blade communication. The IPU-link thus corresponds to
both PCIe and Infiniband in CPU/GPU systems (or alternatives such as NVIDIA
NVLink and CRAY Shasta). Each IPU has 10 IPU-links with a total bandwidth
of 320 GB/s. Pairs of IPUs are connected with 12 links, which amount to a
bandwidth of 192 GB/s. Therefore, 8 links are left in the system to connect to
other IPUs. These connections use double-link cables. Thus they operate at
64 GB/s. Up to 32 such pairs can be connected in a ladder configuration with a
bisection bandwidth of 128 GB/s, see Figure II.8 for an example. The ladder
can be closed to form a torus, which doubles the bisection bandwidth. Note
that a single IPU has 150 W TDP, which is approximately half of a competitive
GPU. Thus, with respect to power consumption, each IPU pair is comparable to
one powerful GPU, such as the NVIDIA V100 or A100.

96



Technical Information of Graphcore IPUs

Figure II.8: A single IPU is denoted as a red circle, and the lines represent
IPU-links each with a bandwidth of 64 GB/s. A double-IPU configuration is
connected via three 64 GB/s lanes, with an aggregate bandwidth of 192 GB/s.
Each box denotes a blade and multiple blades are connected with two 64 GB/s
cables, extending horizontally in a ladder configuration.

II.B.2 Execution Latency

The IPU is a time-multiplexed barrel processor, which hides instruction latency
by round-robin cycling through 6 hardware contexts, each taking six cycles to
execute. Thus, the true execution latency is six cycles; normalized, a hardware
context has a frequency of 1.33GHz

6 ≈ 221 MHz. In the following section, we
refer to time-multiplexed latencies as one cycle even though it takes six global
cycles to execute them.

A tile on the IPU has two execution pipelines, one for integer and management
instructions (main), the other for floating-point operations (aux). These two
pipelines run together and can issue instructions on both pipelines during the
same cycle through instruction-bundles, which contain two instructions.

All instructions issued in the main pipeline have a execution time of a single
cycle. The main pipeline executes all memory load and store instructions up
to quad-register wide loads of 128 bit. However, the platform does not have
speculative execution or other non-deterministic optimizations often found with
CPUs. Furthermore, branches and conditional execution are also executed within
one cycle.

The aux pipeline, used for floating-point operations, executes instructions of
different latencies. Most instructions only require a single cycle, but instructions
commonly used in scientific computing can take up to 6 cycles. The one-cycle
lower bound for these instructions is an in-hardware-handled special case, e.g.,
calling a math function with a special operand such as exp((float32) 0.0).
In particular, our measurements show that div, exp2, and exp normally require
3 cycles on the Graphcore IPU. Moreover, sqrt and tanh require 5 cycles,
whereas log requires 6 cycles.

II.B.3 Execution Dependency

Pipelining is a commonly used technique for processors to hide the latencies
of instructions by simultaneously executing multiple instructions (at different

97



II. Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors:
An Example of Accelerating In-Silico Cardiac Simulation

stages) such that they are interleaving each other. Interleaving instructions can
be trivially done when there are no dependencies between them. In the common
scenario, the IPU does not need interleaving as all instructions are completed
within one cycle. However, some instructions (see Section II.B.2) require more
time to execute; therefore a form of pipelining would be beneficial.

To determine if the IPU is capable of instruction interleaving, we can choose
an instruction that runs over multiple cycles and can be interleaved. We then
measure the cycles this instruction needs. A form of simple interleaving can
occur in two ways:

1. The same AUX pipeline could be used for a different instruction bundle.

2. Only the MAIN pipeline is capable of interleaving while the AUX pipeline
is busy.

For case 1, we added a one-cycle AUX instruction with independent
registers after the long-running instruction. We observed that the cycle count
proportionally increased. Therefore, we can conclude that no interleaving on the
AUX pipeline exists. For case 2, a one-cycle MAIN instruction with independent
registers after the long-running instruction also increased the cycle count.

This experiment shows that a long-running instruction bundle blocks both the
MAIN and AUX pipelines. Therefore, we can count the instructions to determine
the runtime under the assumption that the operand values are known. This is
used in Section 4.3 where we develop performance models of the monodomain
simulator when executed on IPU.

II.B.4 Poplar Programming

Programming can be done through Poplar, the lowest level C++ library
to interact with the IPU. Poplar adheres to the BSP structure of the
underlying hardware. Following machine learning frameworks like TensorFlow
or Pytorch [AIM17], Poplar also adopts a dataflow architecture with mutable
state. The underlying hardware will then schedule this dataflow graph in a BSP
fashion.

Formally there are three elements in such a dataflow graph: tensors that hold
data in an n-dimensional array, compute-verticies that specify the computations,
and edges that connect the tensors with their vertices. Compute vertices can
modify an incoming tensor or create a new one. Poplar calls the underlying code
to a compute vertex a codelet.

All tensors and compute-verticies are mapped to tiles on the physical chip with
the assigned tile-local memory. Therefore, when an edge in the dataflow graph
is created between tensors and a compute-vertex , the data will be transferred to
the tile executing the compute-vertex . Globally, this can create duplicated data.

It is possible to view the dataflow graph as a two-colored level-wise alternating
directed graph through time. Each layer either contains data in the form of
tensors, and the next layer contains the compute-verticies. We can map a pair
of these layers into a BSP-superstep, where we synchronize the computation

98



Technical Information of Graphcore IPUs

before exchanging the data between the tensors and compute-verticies in the
next BSP-superstep.

It is also possible to have control flow within the dataflow graph. Operations,
such as branches, operate on the value of a tensor and are executed as a BSP-
superstep, which is introduced by the compiler. A variety of basic operations
are available such as WHILE and IF. The control-flow operations are globally
synchronized, which get more expensive when more devices are connected, as
the synchronization becomes more costly. However, when a decision variable
is known on all IPUs, it is possible to make this IPU-local without requiring a
global synchronization phase.

The Poplar programming model makes the data exchanges implicit by defining
a tensor as an input to a compute-vertex mapped to a different tile. The data-
exchange code is statically generated by the compiler before runtime. All
exchanges happen simultaneously and take place after a synchronization step.
This static graph compilation makes it impossible to do dynamic data exchanges
or sparse communication. One workaround is to create different compute groups
of compute vertices, all using a different amount of data and switching between
them. However, this strongly assumes that sparsity occurs evenly throughout
all partitions and that the reduced communication time offsets the additional
synchronization phase for a global branch. The compiler can optimize simple
cases, for example, merging multiple BSP-supersteps into one if no outer-tile
exchange occurs.

Writing a user-defined function for a compute-vertex happens in the form of
a C++ codelet. The codelet is defined as a templated C++ class. The user can
define multiple class member variables. The compiler will fill in these member
variables, and appropriate fields will be created on the compute-vertex to connect
tensors in the computational graph. The tensors in the codelet are accessible in
a row-major C style array. Once the compute-vertex in the graph gets called, an
entry function in the codelet is executed, which can then modify data available
during the execution of the codelet. After completion, the data from the output
tensors are copied to their respective owning tile.

99







Paper IV

Space Efficient Sequence
Alignment for SRAM-Based
Computing: X-Drop on the
Graphcore IPU

Luk Burchard†, Max Xiaohang Zhao†, Johannes Langguth,
Aydın Buluç, Giulia Guidi
To appear in SC ’23: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis.

IV

Abstract

Dedicated accelerator hardware has become essential for processing AI-
based workloads, leading to the rise of novel accelerator architectures.
Furthermore, fundamental differences in memory architecture and paral-
lelism have made these accelerators targets for scientific computing.

The sequence alignment problem is fundamental in bioinformatics;
we have implemented the X-Drop algorithm, a heuristic method for
pairwise alignment that reduces search space, on the Graphcore Intelligence
Processor Unit (IPU) accelerator. The X-Drop algorithm has an irregular
computational pattern, which makes it difficult to accelerate due to load
balancing.

Here, we introduce a graph-based partitioning and queue-based batch
system to improve load balancing. Our implementation achieves 10×
speedup over a state-of-the-art GPU implementation and up to 4.65×
compared to CPU. In addition, we introduce a memory-restricted X-Drop
algorithm that reduces memory footprint by 55× and efficiently uses the
IPU’s limited low-latency SRAM. This optimization further improves the
strong scaling performance by 3.6×.

The work of the first author was partially supported by the European High-Performance
Computing Joint Undertaking under grant agreement No. 955495 and the Research Council
of Norway under contract 329032. The work of the third author was partially supported by
the European High-Performance Computing Joint Undertaking under grant agreement No.
956213 and the Research Council of Norway under contracts 303404 and 329017. The research
presented in this paper has benefited from the Experimental Infrastructure for Exploration of
Exascale Computing (eX3), which is financially supported by the Research Council of Norway
under contract 270053.
†Shared first author, both authors contributed equally.

131



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

Contents

IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 132
IV.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 135
IV.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
IV.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 141
IV.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 148
IV.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . 150
IV.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 153
IV.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

IV.1 Introduction

Today’s architectures are complex but often suboptimal for modern irregular
computation, being overprovisioned for arithmetic computation and challenging
the programmer to cope with the high cost of moving data. A clear insight
into this problem is provided by the Top500 list, in which the world’s 10 fastest
machines achieve peak performance of up to 83% in the computationally intensive
LINPACK benchmark but no more than 3% peak performance in the High-
Performance Conjugate Gradient (HPCG) benchmark, which involves irregular
computation [Meu+01].

In the last decade, the Graphics Processing Unit (GPU) has emerged as a
leading architecture for high-performance computing (HPC) challenges involving
dense linear algebra and scientific computing [VN14]. However, GPUs are single
instruction multiple data (SIMD) architectures, and this can be a limitation for
computational challenges that suffer from high load imbalance, as is often the
case with data analytics and general computation. They require regular data
access and work pattern to reach their theoretical peak performance [Lee+10]. A
general-purpose processor such as a CPU is better suited for non-uniform data
access but does not provide the high instruction throughput achieved by GPUs,
since CPUs are optimized for latency rather than throughput. Therefore, new
architectures are needed for HPC that can provide more flexible acceleration like
CPUs while providing high throughput like GPUs.

Recently, the Graphcore Intelligence Processing Unit (IPU), a massively
parallel multiple instruction multiple data (MIMD) SRAM-based processor
designed as an AI accelerator, has emerged as a potential solution to
irregular computation by combining fine-grained memory access with wide
parallelism [Jia+19]. While processors connected to external RAM are
constrained by the von Neumann bottleneck, SRAM-based computing eschews
complex memory hierarchies by providing sufficient SRAM storage on the
processing chip to fit a problem instance [Mit+21]. IPUs were developed for AI
applications but showed potential for other applications, such as for the breadth-
first search algorithm, stencil computations, and cardiac simulation [Bur+21;
Bur+23; LM21]. The question we seek to answer in this work is if new SRAM-

132



Introduction

based architectures can improve performance on a wider range of emerging HPC
challenges, such as bioinformatics.

In bioinformatics, pairwise sequence alignment is a fundamental technique
used in many scenarios, such as genome assembly, phylogenetic analysis, protein
structure prediction based on homology, and searching for similar sequences in
databases [AG98]. Long-read sequencing technologies are increasingly available,
producing sequences with an average length of about 15, 000-30, 000 base pairs
(bp). Longer sequences allow for more precise genome assembly [Ama+20]
but they come with increased algorithmic complexity and computational cost.
Therefore, there is a need for efficient algorithms that can handle long-read
sequencing data.

The Needleman-Wunsch (NW) algorithm is used for finding the best global
alignment, while the Smith-Waterman (SW) algorithm is used for finding the
best local alignment. There is also a version of pairwise alignment called semi-
global, where one side of the sequences is forced to align, but the other is not.
However, finding the optimal solution for these algorithms requires quadratic
time as a function of sequence length, which is inefficient for long sequences. The
critical role that sequence alignment plays in understanding protein and DNA
sequences has made it a focal point in attempts to optimize both algorithms and
hardware [Als+21]. In practice, assumptions can be made based on the input
data and the type of computation desired to create heuristic algorithms with
subquadratic runtimes.

(a) Banded (b) X-Drop
Figure IV.1: On the left, the alignment is forced to stay within the banded
area regardless of the score, missing the optimal alignment (gray). On the right,
when the score (yellow-blue) X goes below the current best score, the search is
terminated (red boundary), and the optimal alignment (black) is returned.

A popular heuristic that we target in this work is called X-Drop. The X-
Drop algorithm is a heuristic for restricting the search space of a semi-global
alignment algorithm. It reduces the quadratic cost by dynamically searching
only for a high-quality alignment and stopping the computation early when a
good alignment is impossible. This allows for a more dynamic fit to the data
than a static search space (Figure IV.1). It is a promising algorithm for long-read

133



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

sequencing data because a good alignment can be found in nearly linear time.
Genomic pipelines already use X-Drop and its variants Y -Drop and Z-Drop
due to their good alignment quality and fast runtime [Alt+90; Gui+20; Li18;
Sel+20].

In the literature, we only found one implementation of the X-Drop
algorithm on GPUs [Zen+20], and one on Field Programmable Gate Arrays
(FPGAs) [Zen+21], which can only run on DNA sequences (no protein sequences).
However, X-Drop is widely implemented on CPUs [Alt+90; Li18; Rei+17].
In this paper, we present an implementation of the X-Drop algorithm on a
novel AI accelerator hardware, the Graphcore IPU, that is suitable for both
DNA and protein alignment. The proposed IPU-based approach provides a
competitive solution for accelerating X-Drop on a wider range of problem
instances compared to traditional CPUs and GPUs. Here we demonstrate
the practicality of our implementation by integrating it into two distributed-
memory pipelines with high alignment volumes: ELBA, a de novo long-read
genome assembler [Gui+20; Gui+22], and PASTIS, a protein similarity search
engine [Sel+20]. Our implementation is tested on a variety of real-world data,
reporting speedup over state-of-the-art CPU and GPU implementations. Our
work thus demonstrates the potential of AI architectures to accelerate the
pairwise alignment of long sequences and their suitability for irregular scientific
computations.

IPUs and other SRAM-based devices, such as Cerebras hardware [Lau21],
rely on the MIMD paradigm and a large SRAM, making them more effective
for handling irregular computation. In this work, we not only highlight the
advantages of SRAM-based computing for scientific computing and the speedup
achieved for the X-Drop algorithm but also show where these novel devices need
progress to be widely deployed. For example, improving the IPU interconnect
would lead to significantly cheaper host-to-device transfer times.

Our contributions are as follows:

• First, we demonstrate the first application of a cluster of Graphcore IPUs
for high-performance processing of irregular genomic data.

• Then, we present a memory-restricted version of X-Drop which reduces
the required memory by a factor of up to 55×. This enables the algorithm
to run in the IPU’s SRAM memory.

• To solve the host-device communication bottleneck, to the best of our
knowledge, we are the first to treat sequence comparisons as a graph and
perform graph partitioning to reduce data transfer.

• Finally, we integrate our algorithm into ELBA and PASTIS, two state-of-
the-art bioprocessing pipelines.

134



Background

IV.2 Background

In this section, we first describe the architectural features of the Graphcore
IPU and give a definition of the X-Drop pairwise alignment problem. Then,
we briefly describe two biological pipelines that use x-drop alignment and into
which we have integrated our approach.

IV.2.1 Graphcore IPU

The Graphcore IPU is a massively parallel multiple instruction multiple data
(MIMD) processor consisting of a large number of independent units called tiles.
Each of these tiles has a core and a small amount of SRAM memory. Instead of
serving as a cache, the SRAM memories of the individual tiles together form the
device memory, so no traditional cache hierarchy is required.

IV.2.1.1 Hardware

Three IPU generations have been released so far, called GC2, GC200, and BOW.
Functionally, the latter differs from its predecessor only in its clock frequency.
In this paper, we make use of both the GC200 and the BOW. Both recently
released IPU models consist of 1472 tiles, each of which contains a core and
624 KB of SRAM which run at 1.33 GHz on the GC200 and at 1.85 GHz on the
BOW. Each IPU core runs six concurrent threads in temporal multithreading,
meaning that they are scheduled consecutively in a fixed order. The majority
of IPU instructions, including loading and storing from local tile memory, take
exactly six cycles. Once issued, instructions are completed the next time a
thread is scheduled. Thus, the 8832 threads can be viewed as independent
cores running at one-sixth of the original clock frequency without instruction or
memory latency. The total SRAM per IPU is 918 MB which can be read with
an aggregate memory bandwidth of 46.9 TB/s (GC200) or 65.2 TB/s (BOW).
However, data that is not local to a core must be communicated between the tiles
via the IPU exchange network, which has an aggregate bandwidth of 7.83 TB/s
(GC200) or 10.9 TB/s (BOW). The IPU alternates between computation and
communication in a bulk-synchronous parallel (BSP) [Val90] manner with no
overlap between phases.

As the IPU is an accelerator that does not run its operating system, it
is dependent on a host machine. Unlike GPUs, whose CPU host is typically
contained inside the same machine, a group of IPUs is connected to the host
node via 100 Gb/s Ethernet. This means that the number of IPUs per host can
vary widely.

Our GC200 test system contains 64 IPUs, but only one dual-socket Xeon-
based server. Consequently, host-to-device transfers can become a bottleneck.
Four IPUs are used together in an IPU-M2000 blade, which in turn can be
combined into larger systems called IPU PODs. The M2000 also contains up
to 448 GB of DRAM memory, which it can access at a rate of about 20 GB/s.
While this memory is too slow for most computations, it can be used to buffer

135



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

data from host-to-device transfers. The IPUs themselves are connected in a
ladder topology with a bisection bandwidth of 128 GB/s. In terms of power
consumption, two IPUs are comparable to a powerful GPU like the NVIDIA
A100 or a pair of moderately powerful CPUs.

IV.2.1.2 Programmability

Unlike other hardware accelerators, the IPU is a distributed memory system
consisting of multiple tiles that use a direct memory write technique for
communication.

Poplar is the C++ framework used to program the IPU at the lowest level.
It is inspired by TensorFlow and the dataflow programming model, as high-level
program flow is defined as a dataflow graph, where we can define a state as Tensor
and transfer functions as Vertex. Code that executes in a vertex is called a codelet.
One can think of a codelet as analogous to a CUDA kernel. To synchronize
computation and data accesses, the IPU hardware supports the Bulk-Synchronous
Parallel (BSP) programming model, which divides algorithm execution into level-
synchronous supersteps with three phases: Compute, Exchange, and Synchronize.

In Poplar, each Tensor and Vertex must be mapped to a tile. The programmer
must define input and output Tensor for the Vertex. The compiler uses the
dataflow graph and vertex mapping to create a synchronized data exchange
following the BSP pattern. A higher-level control flow can be introduced to
select the next BSP superstep to execute. Unlike MPI, the data exchange does
not need to be explicitly programmed.

IV.2.2 X-Drop Pairwise Alignment

The comparison of biological sequences is important for a deeper understanding
of the role and function of genetic areas and protein structures, but also for
the construction of the genomic sequence itself. The genome consists of strings
of nucleotides (adenine, thymine, guanine, cytosine), which code for protein
sequences and contain additional regulatory information. Genomes cannot be
sequenced in their entire length; current sequencing technologies can only read
and output sequences that are significantly shorter than the entire genome.
Therefore, we need sequence alignment to reconstruct whole genomes. For
short-read technologies such as Illumina, the average sequence length is 100-
250 nucleotides (or base pairs, bp). In newer long-read technologies such as
Pacific Biosciences and Oxford Nanopore, the average read length can be
more than 20,000 bp and up to several megabases, enabling the generation
of highly continuous bacterial genomes [Ser+22]. Long-read technologies are
highly promising as they can further improve our understanding of genomic
structure [Nur+22]. Yet, they also present new computational challenges due to
their longer length and higher error rates.

The optimal sequence alignment between two sequences can be found in
quadratic time and linear space [Hir75; MM88] if we use the classical Smith-
Waterman or Needleman-Wunsch algorithm for local and global alignment,

136



Background

(a) (b) (c)

Figure IV.2: The red path is the optimal alignment, the gray area is calculated
values, and the white area is non-calculated values. Due to the X-Drop condition,
the white nonzeros contain a score of −∞. Panel (a) shows an iteration with
X = 10, (b) with X = 20, and (c) with X =∞.

respectively. The sequence alignment problem is defined as follows. Given two
sequences H = h1, h2, · · · , hm, V = v1, v2, · · · , vn, with |H| = m, |V| = n we
want to find the best scoring set of changes to transform sequence H into V. If
we assume that the sequences are homologous, i.e. that they are evolutionarily
related, the number of resulting changes is small. The alignment is done by
dynamic programming, where we define a dense scoring matrix S(i, j), with
i ≤ n, j ≤ m. The matrix S is filled from the upper left corner and extended to
the lower right corner. In each nonzero, we store the best score for the alignment
of each two-symbol pair (vi, hj). This score is computed based on the match of
vi and hj and the history of alignment for the previous three scores, as defined
in the following rule:

S(i, j) =


S(i− 1, j − 1) + Sim(vi, hj) if i > 0, j > 0,

S(i, j − 1) + gap if j > 0
S(i− 1, j) + gap if i > 0

In the above definition, Sim(vi, hj) is an arbitrary scoring function used to
quantify the degree of similarity between a pair. In the case of DNA, Sim(vi, hj)
is a positive value if vi and hj match (i.e., no change is required), or a negative
value if they do not, and gap is also a negative value, meaning that either vi or
hj has a symbol inserted or deleted at that position: The goal is to find a path
of changes in S that maximizes the score and is optimal for aligning H and V.
The scoring function assigns higher scores to likely biologically related sequences
and lower scores to less likely related sequences.

In real-world scenarios, we can often make a reasonable assumption about
where to find the optimal alignment on the two sequences, and this can lead to
heuristics that can significantly reduce time and space complexity.

First, in one-to-many and many-to-many sequence alignment, the number of
sequences to be compared can be reduced by first identifying common contiguous
subsequences of fixed length k (i.e., k-mers). The k-mer information reduces

137



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

the number of sequences to be compared in large-scale computation but also
gives us an indication of where in the sequences the optimal alignment might be
found. This can lead to a semi-global alignment approach, where each pairwise
alignment is divided into the left and right extension of the k-mer match.

The semi-global approach forces the alignment to start at one of the two ex-
tremities of the sequences (similar to the Needleman-Wunsch algorithm [NW70]),
but leaves the other extremity free. This is a common approach first introduced
by BLAST [Alt+90], and it can lead to shorter sequences, but it scales with
O(mn), where m and n are the lengths of the sequences involved since we still
need to compute the entire matrix S.

The second key insight is that for sequences that have some similarity, the
optimal alignment is often found on the diagonal of the S matrix, with the
antidiagonal extremities storing low (i.e., bad) scores because the number of
mismatches is high when moving away from the center of the diagonal, as shown
in Figure IV.1. A common approach is to restrict the search to a predefined band
region of S around the diagonal (left in Figure IV.1). This heuristic significantly
reduces the time and space complexity but may restrict the search space too much
and result in the failure to find the correct optimal alignment. This problem is
particularly severe for sequences generated with long-read technologies, as these
technologies are more prone to insertion and deletion of nucleotides (which can
lead to a long gap sequence that moves the optimal alignment away from the
diagonal) than to mismatches (which keep the optimal alignment mostly on the
diagonal), which was the case with short-read technologies.

This provides the motivation for the X-Drop condition. The X-Drop strategy
can be viewed as a dynamic band approach, where the search space is dynamically
bounded by the score values rather than by a predefined band width. The X-
Drop algorithm defines a threshold X that removes nonzeros (and the resulting
possible path) from the S matrix that are worse than a path with the current
best score. The assumption is that a path that is significantly worse (where
significant is defined by X) than the current best score is unlikely to lead to
the optimal alignment. Let us denote the current best score as T . The X-Drop
condition states that if S(i, j) < T −X in the current iteration of the dynamic
program, then S(i, j) = −∞.

The first iteration of the fill process for the X-Drop algorithm initiates in the
upper left corner and initializes the matrix with S(0, 0) = 0. To avoid starting
the alignment with a gap or gap sequence at a location in the matrix other than
the upper left corner (i.e., where both sequences start), we define the off- matrix
access as S(i, j) = −∞, i < 0 ∨ j < 0. This is because we want to perform a
semi-global alignment and force one side of the extremities (from the k-mer
match heuristic) to align. If X is large, the computation approaches filling the
entire dynamic programming matrix S, whereas when X is small, the non-zeros
in S are pruned as we move away from the optimal result, and these non-zeros
become −∞. In Figure IV.2 we show the impact of different X values on the
search space of the scoring matrix.

The X-Drop algorithm has been widely implemented and variants used
for commonly used long-read alignment software such as minimap2 [SK18].

138



Background

In this work, we implemented the original X-Drop algorithm as formulated
by Zhang [ZBM98; Zha+00]. Their implementation traverses the dynamic
programming matrix S in an antidiagonal fashion. They fill the non-zeros along
the antidiagonal line from the upper right corner to the lower left corner of
the dynamic programming matrix S. This sweeping anti-diagonal approach is
initiated at S(0, 0) and progresses until the lower right corner is reached. To fill
a cell in an antidiagonal of the matrix, only the scores of the adjacent cells (top,
top-left, and left) are needed. These are stored in the antidiagonals that were
filled in the previous two phases. Earlier literature [ZBM98; Zha+00] used this
insight to store only three antidiagonals: two for the previous phases and one
for the current phase. This approach is popular for SIMD parallelism because
the dependencies for input and output non-zeros are well aligned. But this is
not strictly necessary. Gotoh [Got82] stated that storing two antidiagonals is
sufficient. However, it is not often used in practice because SIMD parallelism
is difficult to achieve. Despite that, in this work, we choose to store only two
antidiagonals as the IPU is a MIMD architecture, and we aim to reduce the
memory footprint.

IV.2.3 ELBA

ELBA is a long-read assembler implemented for distributed-memory parallelism
that uses sparse matrices as the main data structures, mapping the de novo
assembly process onto sparse matrix computation [Gui+22]. ELBA is composed
of five main stages which comply with the Overlap-Layout-Consensus paradigm
for assembling long-read sequencing data. In the first step, k-mer counting, the
input sequences are parsed to extract subsequences of fixed length k and count
their frequency. This produces a 1D distributed hash table of the k-mers and
their frequencies and sequences of origin. This hash table is then transformed
into a 2D |k − mers|-by-|sequences| sparse matrix that we call AT. In the
second step, called overlap detection, ELBA multiplies A by its transpose AT

to detect overlapping k-mer matches between input sequences. In this way, a
|sequences|-by-|sequences| matrix C is obtained in which the non-zeros represent
such matches and their position on the sequences. Then, for each non-zero of C,
the X-Drop pairwise alignment algorithm is run, starting from the k-mer march
position, to obtain similarity values and remove false matches from the matrix.
In the fourth and fifth stages, ELBA simplifies the matrix, that is the assembly
graph, to extract contiguous areas of the genomes (i.e., contigs), which are the
result of the assembly process.

IV.2.4 PASTIS

PASTIS [Sel+20] similar to ELBA computes protein homology searches as a
distributed sparse matrix multiplication. PASTIS computes the k-mer count and
AAT, but then must perform additional matrix multiplication with the matrix S
to produce the output |sequences|-by-|sequences| matrix. The S matrix is called
the substitution matrix and is used to find quasi-exact k-mer matches because

139



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

iteration

Standard

    worklen
antidiaglen

Memory-Restricted Memory View

Figure IV.3: The antidiagonal length is δ = min(|H|, |V|). The memory-
restricted version allocates work memory of maxk |Uk − Lk| ≤ δb ≤ δ. The left
panel illustrates the standard algorithm (3δ memory). The middle one illustrates
our algorithm (2δb memory), while the right one is the pattern of our memory
usage over time.

it has been shown that strictly enforcing exact matches in protein homology
searches can lead to a significant loss of accuracy. Thus, the overlap detection
phase has the form of ASAT. Once the output matrix is formed, PASTIS
computes an alignment step on each non-zero, similar to ELBA. PASTIS has two
alignment modes: seed-and-extend with X-Drop and Smith-Waterman alignment.
Using X-Drop, PASTIS initiates the alignment from the k-mer match.

Both PASTIS and ELBA defer implementation of X-Drop to the Library
for Sequence Analysis (SeqAn) C++ library for CPU [Rei+17]. ELBA also
provides support for the GPU-based X-Drop alignment called LOGAN [Zen+20].
LOGAN does not support protein alignment.

IV.3 Algorithm

In this section, we describe the algorithm we implemented on the Graphcore IPU
and the algorithmic changes we made to make the computation more suitable
for the IPU.

One of the major challenges in implementing sequence alignment on
specialized hardware is the memory requirement since storing the entire dynamic
matrix can exceed the available memory. In Section IV.2.2, we described how it
is possible to reduce the memory footprint of the scoring matrix S by storing
only three antidiagonal phases (the previous two phases and the current phase
k) to traverse S, instead of storing the entire matrix. It can be observed that an
antidiagonal can never become larger than δ = min(|H|, |V|), where H and V
are the sequences involved in the alignment. To limit the workload, it is common
to use a lower Lk and an upper bound Uk for the antidiagonal, where |Uk − Lk|
is the length of the antidiagonal in iteration k. These boundaries are derived
from the number of scores in S that are not yet −∞ (i.e., scores that have not

140



Implementation

triggered the X-Drop termination condition).
To store three antidiagonal phases, we need 3δ of memory for each alignment

run. This memory requirement is too high for the IPU. Therefore, we address
this problem with a two-step approach. First, we reformulate the algorithm
using the technique found in [Got82] to store only two antidiagonal phases. This
is possible by using a temporary variable since the values in the antidiagonal k
and k − 2 are one iteration offset accessed and written. In addition, we propose
to use a band in the iteration, which is different from the classical banded
algorithm shown in Figure IV.1 on the left, because the band is not static in
space (i.e., it does not remain fixed around the diagonal), but is constantly
realigned to the active iteration position that stores the best score. It is possible
to observe that even though the antidiagonal is fully allocated (δ), only a small
part of it is accessed during each phase k, since |Uk −Lk| ≤ δ. Therefore, in our
implementation, we assume a bound length δb, which is the total working length
w = maxk |Uk − Lk| of the antidiagonal to keep w ≤ δb ≤ δ. Thus, we use the
restricted δb to constrain the algorithm in memory by placing antidiagonals in
the active working area of the algorithm, resulting in a memory allocation of
2δb. Figure IV.3 on the left illustrates the antidiagonal length (black dashed
line) for the original algorithm, while the middle one illustrates the antidiagonal
length for our proposed memory-restricted version. The gray area is part of the
scoring matrix S filled by the X-Drop algorithm. The right panel in Figure IV.3
illustrates a reinterpretation of the iteration space of the working memory region.
The choice of an appropriate δb value is related to the error rate of the sequence
and the X-Drop factor. Both high error rates and large X increase the working
length w, as shown in Section IV.6.1.

Algorithm 3 describes our memory-restricted algorithm using only two
antidiagonals A1, A2 of length δb. T is the best score found by the algorithm,
while L, U are the lower and upper iteration boundaries, respectively. It is worth
remembering that the algorithm for aligning X-Drop is semi-global; one side
of the extremities of the two sequences is forced to align while the other side
is left free. This is the case because each alignment results from splitting two
sequences into four sequences (i.e., two for the left extension and two for the right
extension) using the k-mer seed match information. To perform the forward
alignment (right extension), we can access the sequences in a natural access
pattern from left to right. For the backward alignment (left extension), we use
an index transformation op(·) that produces either forward or backward accesses
to H and V. This way, we do not have to completely reverse the sequences to
perform the alignment with the left extension. The current diagonal iteration
is given by k. The algorithm terminates when L and U converge, i.e., when no
values greater than −∞ remain in the working set of the algorithm.

IV.4 Implementation

In this section, we describe the implementation of the memory-restricted X-Drop
algorithm on the Graphcore IPU accelerator.

141



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

Algorithm 3 The memory-restricted X-Drop algorithm.
1: L, U, T ′, T, k ← 0
2: L1inc, L2inc ← 0
3: A1, A2 ← {−∞, . . . ,−∞}
4: A1[0]← 0
5: while L ≤ U + 1 increase k by 1 and do
6: W2 ← A2 + (−L + L2inc) ▷ C-style array offsetting
7: W1 ← A1 + (−L + L2inc + L1inc)
8: W ′

1 ← A1 + (−L)
9: wlast ←W1[L− 1] ▷ Instead of a third anti-diagonal

10: while i ∈ (L, . . . , U + 1) do
11: j ← k − i− 1
12: wnew ←W1[i]

13: score← max

 W2[i]− gap
W2[i− 1]− gap

wlast + sim(H[op(i)],V[op(j)]))


14: wlast ← wnew

15: if score < T −X then
16: score← −−∞
17: end if
18: W ′

1[i]← score
19: T ′ ← max{T ′, score}
20: end while
21: Lprev ← L ▷ zero t1 shifted values
22: L← max(k + 1−N, argmin(W ′

1 ̸= −∞))
23: U ← min(|H| − 1, argmax(W ′

1 ̸= −∞) + 1)
24: L1inc ← L− Lprev

25: T ← T ′

26: swap(A1, A2)
27: swap(L1inc, L2inc)
28: end while

Our implementation focuses on large sequences (both protein and DNA)
whose length is in the range of 1K to 25K. This raises two challenges that we
address in this work. First, the memory requirement for each alignment is large,
given that a single pairwise alignment is executed on a single tile of the IPU,
where that tile has 624 KB of addressable memory and six threads, each of
which requires space for the algorithm. So we need to be able to allocate 6×
the amount of working memory during the alignment on one tile. Second, due
to the IPU’s BSP (bulk synchronous parallel) architecture, we need to create
a load-balanced problem (i.e., with equal runtime for each tile) to use all tiles
equally. If a single tile takes more time, all other tiles must wait, resulting in
poor utilization of hardware resources.

142



Implementation

Table IV.1: Optimizations implemented and described throughout Section IV.4.4.

Optimization Time [ms] GCUPS To Prev. Total

15
%

er
ro

r

Single tile 493907 5.00
Scale to 1472 tiles 414 6034 1194× 1193.8×
Use 6 threads 87 28705 4.76× 5679.4×
LR splitting 85 29163 1.02× 5768.0×
Work-stealing 85 29084 1.00× 5765.8×
Dual issue 65 37933 1.30× 7504.9×

EL
BA

Ec
ol

i Single tile 4180499 14.52
Scale to 1472 tiles 6939 7302 602× 602.4×
Use 6 threads 2707 14860 2.56× 1543.9×
LR splitting 2470 16828 1.10× 1692.3×
Work-stealing 1713 21935 1.44× 2440.4×
Dual issue 1268 28587 1.35× 3296.8×

IV.4.1 Kernel Architecture

The X-Drop kernel was written as a Poplar vertex (codelet) in C++, where Poplar
is the equivalent of CUDA for IPUs. Our implementation focuses on using the six
hardware threads of each IPU tile. In the absence of synchronization instructions
such as atomics or mutexes, we implemented a data-parallel implementation
with throughput in mind. It is possible to perform tile-local coarse-grained
synchronization by combining the hardware threads into a single supervised
thread, which can use the entire set of six threads on a single alignment. However,
this would result in context switches for each synchronized part of the algorithm,
which would degrade performance. Therefore, we choose to have each thread
perform a single performance alignment, and for this reason we have a sixfold
memory footprint on each tile.

The IPUs inability for random external memory access and the limitation of
a single tile to 624 KB of local memory forces us to choose a memory minimizing
algorithm that enables many input sequences to be stored on a tile in order to
maximize the number and size of sequences that can be processed on a single
tile. To optimize the use of limited local memory, our tile architecture employs
several techniques that allow all six threads to be used during the execution of
the X-Drop algorithm. By reducing the amount of memory needed to implement
the memory-restricted algorithm and efficiently using the available processing
resources, we can achieve better performance and efficiency in sequence alignment
on the IPU. The optimizations we implemented and their relative improvement
are summarized in Table IV.1, measured for real-world and synthetic data.

IV.4.1.1 Tile Data Structures

The tile receives as input a set of sequences seqs and a list of seeds for these
sequences to be computed. The seed matches are tuples containing a pointer to

143



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

set<Sequence>() list<Comparison>()

(seqH*, seqV*, seedBegH, seedBegV) L R

L

↺ ↺↺ ↺ ↺↺

R

L R

L R

(seqH*, seqV*, seedBegH, seedBegV)

(seqH*, seqV*, seedBegH, seedBegV)

(seqH*, seqV*, seedBegH, seedBegV)

(seqH*, seqV*, seedBegH, seedBegV)

results L/R

work stealing

Figure IV.4: Tile structure with six worker threads filling in the output for left
and right seed extension, using work stealing. The input is sequences and a list
of seed extension information.

two sequences in seqs, and the position of the seeds on them to avoid having to
split the sequences on the host, as shown in Figure IV.4. The output array stores
a list of tuples for each left and right extension of a seed. Our representation
has many advantages over state-of-the-art seed extension representation, as no
preprocessing has to be done on the host device. Our algorithm can operate in
reverse on continuous memory by providing a suitable op function for Algorithm 3.
Furthermore, in real-world pipelines, a pair of sequences often must be aligned
considering multiple seed matches, which would lead to the retransmission of
the same sequences, negatively affecting performance. Thanks to the detached
structure for sequences and seed alignment information we introduced, we can
transfer multiple seed matches and sequences at once. This optimization saves
O(#seeds) in data transfer from the host to the device. The use of the op
function is useful because the sequences can be truncated at different positions
for the left and right extension, creating #matches×4HL,HR,VL,VR individual
sequences.

IV.4.1.2 Left and Right (LR) Extension Splitting

Scaling from one thread to six threads per tile, we expect a speedup of 6×.
However, the observed speedup is only 4.7×. This is because only 5 comparisons
with 10 unique sequences have the memory to accommodate large sequences of
length 10, 000 bp on a single tile, leaving one of six threads without work. To
use all threads, we introduce a finer distribution of work by having threads work
individually on the left and right extensions of the seed matches rather than
assigning both extensions to the same thread. This doubles the number of work
units to be distributed so that each thread is used for large sequences instead of

144



Implementation

Table IV.2: Data sets for comparisons with CPU and GPU implementations
with distribution for the left and right extensions.

Name Cmp Count Seqlen Avg Seqlen P10 L Seqlen Avg L Seqlen P90 L
simulated85 40 000 9 992 9 992 9 992 9 992
ecoli 568 208 7 319 832 7 322 13 684
ecoli100 15 611 769 3 631 431 3 705 8 319
elegans 16 794 715 7 346 1 184 7 347 13 375
Name Complexity Avg Seqlen P10 R Seqlen Avg R Seqlen P90 R
simulated85 99 830 072 9 991 9 991 9 991
ecoli 45 870 449 823 7 317 13 675
ecoli100 12 524 999 388 3 557 8 087
elegans 52 763 834 1 179 7 345 13 380

leaving one thread idle. Our synthetic data, whose sequences are generated to
be of equal length, does not benefit from this optimization because if we have 5
uniform workloads (i.e., sequence comparisons), they are split into 10 uniform
workload units. This leaves four threads with two workload units, as is the case
even without this optimization since we rely on BSP synchronization, which
does not benefit from an unbalanced workload since the bottleneck is caused
by the longest-running process. Nevertheless, this optimization can lead to a
significant improvement in real-world workload due to a larger variance in seed
position and sequence length.

IV.4.1.3 Eventual Work Stealing

Despite the LR optimization to increase workload granularity, we can still
observe a large variance in thread runtime due to sequence length variance in
real data. Using a simple round-robin workload allocation will leave one or more
threads without work, resulting in load imbalance. Since synchronization is not
possible on the IPU tiles, except for coarse thread joining, we initially resorted
to statically assigning work to individual threads. However, since a single-seed
extension has a relatively high runtime, we decided to implement Eventual Work
Stealing. A work-stealing approach makes it possible for an idle thread to take
a unit of work from the globally stored list of seed extensions and work on it
locally. Since no mutexes were available to ensure that only one thread at a
time could access the seed structure, we resorted to globally swapping a value.
This does not avoid race conditions, but in this case, we would only compute a
seed extension multiple times and not skip over it. Since instruction latencies
are deterministic, two threads stealing the same unit of work will perpetually
continue to do so. We introduced a small thread-unique busy wait loop to create
variance, eventually avoiding this race condition and a possible perpetual joint
execution. This loop reduces the race conditions from 16K to 18 for a total
number of 1.13M alignments performed.

145



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

IV.4.1.4 Dual Instruction Issuing

The tiles implement a Very Long Instruction Word (VLIW) ISA with dual
instruction issuance on two lock-synchronous pipelines, one integer and one
floating point. The instructions require a single cycle to retire, except for certain
floating-point operations such as exp, log, sqrt, which are not used in our
code. Thus, we are not concerned with lock synchronicity. The integer pipeline
is responsible for memory and branching operations, while the floating point
pipeline is only responsible for floating point arithmetic.

We analyzed the generated assembly and found that registers in the
integer pipeline in the inner loop of the X-Drop algorithm spilled when
traversing the antidiagonal. Therefore, we reformulated our similarity function
Sim (Section IV.2) to return floating-point values, forcing a floating-point
representation of our scores to make use of additional floating-point registers.
In addition, we used a compiler hint to use the built-in floating-point max
instruction.

IV.4.2 Batching

Before the kernel is executed, the sequences (in pairs) must be distributed among
the individual tiles. This distribution can be modeled as a k-partitioning problem,
where each comparison task is assigned to a particular tile, and the total number
of tiles is k. The size of each comparison is equal to the sum of the lengths of the
two sequences involved. Given the BSP pattern of the IPU, it is important to
minimize the longest-running tile runtime, which may cause other tiles to wait.

Estimating computational complexity is difficult because perfectly matched
sequences have a smaller search space (they do not deviate too much from the
diagonal) than sequences with higher mismatch rates. However, completely
mismatching sequences run faster because the computation terminates early due
to the X-Drop condition triggered by rapidly increasing bad scores. Therefore,
we use the maximum running time, which is quadratic to the lengths of the
sequences involved, for each comparison as an estimate of the computation time.

IV.4.3 Graph Based Sequence Partitioning

A single seed extension ec with comparison index c for two sequences H,V ∈ Ω,
where Ω is the total set of input sequences Ω, contains the information of
ec := (Hi,Vj ,Hs,Vs)c,∈ C for a seed of given length and two seed initial
positions Hs,Vs for H,V, respectively. In previous work, the relationship of
pairs of sequences to each other was not considered (e.g., when two identical
sequences have multiple k-mer matches), but these c-tuples were considered as
single sequence extensions to be computed.

In this work, we propose to interpret the set of seed extensions as a graph
partitioning problem to reduce the number of data transfers. The idea is to
reduce the transmission of the same sequence from Ω, which is shared between
multiple ec used in the same batch sent to the IPU. As memory is not shared

146



Implementation

between tiles and communication has to be determined at compile time, we
are limited to reusing sequences on a single tile. Dynamically compiling IPU
exchanges at runtime takes too much time. Therefore, we can not create dynamic
sequence exchanges, keeping Ω entirely on the IPU.

Many-to-many sequences reuse is enabled through our tile data structures
storing the tile’s local set of sequences ωi ⊂ Ω detached from the set of seed
extensions in a tile with index i. The set of seed extensions only keeps a reference
to sequences in ωi.

Real-world bioinformatic pipelines that rely on many-to-many sequence
comparisons store the information of which sequences need to be aligned against
each other, which our optimization can use. Both ELBA and PASTIS offer
this information in sparse matrix representation containing planned sequence
alignments.

We propose a simple graph partitioning algorithm to increase data reuse.
Given a graph G(V, E), with V ⊆ Ω, V the set of vertices, we want to distribute
the set of edges ej ∈ E, which is representative of the seed extensions C. The
graph has an edge between two vertices where a comparison uses the sequences
represented in V . We distribute our graph in partitions pi containing a set of
edges and its set of sequences unique to the tile. The partitions are constrained
to hold sequences of total size less or equal to available tile memory.

To avoid spending lots of time in this immediate optimization step, we
partition the graph using a greedy strategy to stay within a thigh time regime,
of usually less than a second for our tested data sets. The greedy strategy is
given as follows: Take a vertex in the graph and linearly walk through the edge
list. Add the start vertex to the partition and the adjacent vertex of the edge.
Continue to walk through the edges, adding the adjacent vertex to the partition,
until adding a new vertex would create exceed the partitions memory constraint;
start a new partition. For simplicity, we leave the batching of our partitions to
our batching algorithm.

Given equal-length sequences, this optimization approaches a sequence reuse
effectiveness of 2×, as for each new comparison on a tile, only one new sequence
needs to be transmitted, as the other is already ωi. However, real-world sequence
lengths are more inhomogeneous in size. Thus we observed for E coli and
C elegans, that we could pack up to 41 smaller sequences into a single large
sequence, drastically improving the transmission performance.

IV.4.4 Multi-IPU Support

The utilization of multiple IPUs is a crucial consideration in achieving optimal
performance for many computational tasks. We are presented with multiple
options for scaling up our algorithm. One such option is the combined multi-
device approach, which exposes a virtual, seemingly homogenously extended
IPU with a greater number of tiles. However, it should be noted that using this
approach may result in global synchronization and necessitate larger batches,
leading to suboptimal parallelization efficiency. Therefore, we have opted for a
different approach that employs multiple single IPU devices.

147



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

Using our load-balancing driver, we can effectively manage load balancing and
scheduling comparisons across connected single devices. It is worth noting that
the individual devices remain hidden from the user. Such a methodology can help
us achieve improved performance while ensuring optimal resource utilization.

Our wrapping driver class manages the Poplar graph and enables execution
on multiple IPUs. The driver class wraps the submission of batches and handles
internal work distribution across IPUs and their respective tiles. Batches are
submitted to a work queue shared between all IPU instances. The shared queue
is connected to the input stream of each IPU, which allows for prefetching by
the IPU, as all submitted batches are fully preprocessed. Prefetching on the IPU
allows for interleaving data transmission with computation allowing us to hide
transmission time to an extent.

IV.5 Experimental Setup

Our test setups were run on three large systems. Firstly, we used the Perlmutter
supercomputer equipped with a single-socket AMD EPYC 7763 CPU and 256 GB
RAM. Furthermore, for running GPU experiments, each node has four NVIDIA
A100 (Ampere) GPUs attached to each node. Secondly, the IPU results for the
Mk2 IPUs were acquired on the ex3 supercomputer, which has a dual-socket
Intel Xeon Platinum 8168 CPU connected to 16 Mk2 blades, containing four IPU
GC200 each. Thirdly, our IPU BOW results were collected using a Paperspace
cloud instance using a dual-socket AMD EPYC 7742 CPU and 425 GB RAM,
connected to 16 BOW IPUS in two blades. All experiments were compiled with
native optimizations, and AVX2 was explicitly enabled using GCC 11.2.0.

IV.5.1 Comparison to State-of-the-Art

We compared our implementation to CPU-based implementations Se-
qAn [Rah+18; Rei+17], ksw2 [Li18; SK18], libgaba [SK18] and genome-
tools [GSK13]. All implementations were integrated into our benchmark
runner program, which implements parallel processing of alignments using
OpenMP [DM98]. Multiple data sets (Table IV.2) extracted from ELBA and a
synthetic data set were tested with X ∈ {5, 10, 15, 20}.

For our performance measurements, we define Giga cell updates per second
(GCUPS) as a metric for assessing the performance of aligner data sets on
a given data set. Cells are defined as the number of fields in the dynamic
programming matrix S, corresponding to the theoretical number of cells. The
time of performing a full alignment by computing S is measured with the total
time t. Heuristics, such as a X factor or banding, reduce the number of actually
computed cells. We define our metric as: GCUPS = |H|×|V|

t . Execution time
was measured for our IPU implementation based on the cycle count necessary
for the computation of the alignment on the device. The number of cycles for
the execution of a given program is deterministic, given identical inputs and
configuration parameters. Using the tile’s frequency f = 1.33× 109 for the IPU

148



Experimental Setup

Mk2 and f = 1.85× 109 for the IPU Bow, the total on-device execution time
can be derived by t = cycles/f. On the GPU, on-device execution performance
was measured by timing kernel execution time without data transfer in LOGAN.
On the CPU, the execution time for the alignments is measured without the
preparation time necessary for loading sequences and comparison metadata.

IV.5.1.1 Strong Scaling

Using E coli 100x and C elegans data defined in Table IV.2, we investigated
the strong scaling performance of our approach, scaling a single BOW IPU to
32 IPUs in exponential steps. Each scaling experiment was performed with
graph-based partitioning (Section IV.4.3) enabled and disabled. Total execution
time was measured after the alignments were generated, excluding sequence load
times.

IV.5.2 Data Set

For the standalone experiments, we generated synthetic data and extracted
realistic data from the ELBA pipeline to evaluate the performance of our own
implementation as a function of certain properties of the data sets. All data
sets, including distribution characteristics, used to compare the different X-Drop
implementations are listed in Table IV.2.

The distribution of our data indicates a lower sequence length of 5 kb for E
coli 100x in comparison to 15 kb for E coli, and C elegans. The seed position
is equally distributed across sequences throughout all data sets but with a
higher skew towards the center and edges in the E coli and C elegans data
sets. For E coli 100x we observed that left and right extensions are skewed
towards lower complexity alignments. The synthetic data sets were generated
with equal sequence length and fixed read similarity. Mismatches were generated
by uniform-randomly mutating individual bases outside the seed position. ELBA
data sets were based on alignments generated during processing of PacBio SMRT
HiFi read data from E coli (29x and 291x) and C elegans (40x) [Zen+20] in the
alignment step of the pipeline with a seed length of 17 in all data sets.

IV.5.3 Real-World Application

For the two real pipelines PASTIS (Section IV.2.4) and ELBA (Section IV.2.3), we
perform the IPU experiments on the IPU BOW system. Scaling to multiple IPUs
was transparently enabled by setting our library’s NUMBER_IPUS parameter.
Therefore, no further code optimization was required in either pipeline.

Both pipelines create sparse overlap matrices to determine the sequences to
be compared. We interpret these matrices as adjacency matrices for our graph
partitioning scheme presented in Section IV.4.3.

To compare the system performance of our systems, we focus only on the
alignment step since the other nodes are not equipped with equivalent hardware.
The remaining and leading times of the pipelines are unaffected by the device on

149



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

which the alignment step is performed. Any speedup that one method provides
over the other contributes to the speedup of the entire pipeline in proportion to
the percentage of time that the alignment step originally took.

simulated85 ecoli ecoli100 celegans
0

2×104

4×104

6×104

8×104

1×105

1.2×105

 

3.1×

4.7×

3.0×

2.1×

Xdrop = 5

simulated85 ecoli ecoli100 celegans

3.1×

2.5×
2.3×

1.6×

Xdrop = 10

simulated85 ecoli ecoli100 celegans

2.5×

1.6× 1.9× 1.6×

Xdrop = 15

simulated85 ecoli ecoli100 celegans

2.3×

1.3× 1.7× 1.7×

Xdrop = 20
logan
seqan

ksw2
ours

G
C

U
PS

Figure IV.5: Normalized performance of our IPU implementation on 4 data
sets (Table IV.2) in comparison to CPU implementations SeqAn, ksw2 and
GPU implementation LOGAN. The relative speedup to the second fasted
implementation SeqAn is given.

IV.5.3.1 PASTIS

Our integration is based on git-commit fced0f2, in which we replaced the SeqAn
library X-Drop alignment algorithm with our own implementation of X-Drop.
PASTIS does not provide a X-Drop GPU algorithm because, to our knowledge,
no GPU X-Drop algorithm supports protein alignment. For PASTIS, the largest
data set we could run was a uniformly subsampled protein database from the
metaclust [SS18] data set, containing 500 k protein sequences. We used an
X-Drop factor of X = 49 and a gap penalty of −2 and used BLOSUM62 [HH92]
as our similarity matrix, as described by Selvitopi et al. [Sel+20]. Further, we
choose a k-mer length of 6, with two required seeds per overlap.

IV.5.3.2 ELBA

The results are based on the GPU branch’s git-commit 40c1b3a. We used the
same input data provided by Guidi et al. [Gui+22] to measure performance. The
comparisons were made using the E coli, C elegans data sets. We compared
the runtime of the alignment kernel in the ELBA bioinformatics pipeline. All
experiments were run with X-Drop factors of {10, 15, 20} and a k-mer length of
31, with two required seeds per overlap.

IV.6 Experimental Results

IV.6.1 Selection of δb

To evaluate the validity of our algorithm’s assumption that δw is significantly
smaller than δ, we conducted experiments on various synthetic data sets with
decreasing similarity rates from 100% down to 0% (Figure IV.6) on sequence
lengths of 20000 base pairs. We observed that the working band δw is smallest for
perfectly matching sequences, except for sequences that are entirely mismatched

150



Experimental Results

0% 10% 20% 30%
0

50

100

150

200

m
ax

im
um

 w

X=5
X=20
X=100

X=10
X=30

X=15
X=50

40% 50% 60% 70% 80% 90% 100%
0

200

400

600

800

1000

1200

Figure IV.6: Find the maximum spread of the upper and lower pointers of the
anti-diagonal δw for error rates ranging from 0% to 100% symbol mismatches
with varying X-Drop factors.

16 324422 8 3211 1684 16 3242211 88 3216
 

101

102

103

 

Xdrop = 5
Multicomparison
Singlecomparison

ecoli100
celegans

162 4 168 324 811 2 32162 8411 168 3242 32
 

Xdrop = 10
IPU Mk2 IPU Bow

322 8 32411 16842 162 3211 4 8 324 1682 16
 

Xdrop = 15

11 84 32322 162 16844 8 322 32211 164 8 16
 

Xdrop = 20

84 1611 2 162 3284 32164 82 16 322 4 811 32
 

Xdrop = 50

Number of IPU devices

Ex
ec

ut
io

n 
tim

e 
s

Figure IV.7: Scaling performance measured in alignment execution time on the E
coli 100x and the C elegans data sets using 1 to 32 IPU devices. Multicomparison
enables the usage of graph-based partitioning of comparisons, which allows for
sequence reuse.

at 0% similarity. For perfectly matching sequences, the computed band is small.
The highest score is always located on the diagonal, and the search is aborted
close to the diagonal based on X.

When the similarity decreases to 80%, the working band doubles for small
X and only increases 13% for X = 100. All investigated X-Drop values
reach a maximum bandwidth when the sequence mismatch is around 70%.
Further decreasing similarity, the bandwidth decreases again as the computation
terminates early due to the X-Drop condition. For fully mismatched sequences
of similarity 0%, the area of computed cells is restricted by X to a distance to
the start of both sequences depending on mismatch and gap penalties.

For real-world E coli data δw values were {176, 339, 656} for realistic values
of X of {10, 15, 30}, respectively. Compared to the longest sequence length
required for δ, we can choose a δb ≥ δw, saving up to 98.2% of memory for a
realistic X value of 15.

151



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

IV.6.2 Comparison to State-of-the-Art

On all data sets and X, the IPU implementation shows better performance,
while the smallest difference was observed with E coli and X = 20. Single IPU
on-device performance reaches 102 844 GCUPS using C elegans with X = 5,
that is 2.05× faster compared to SeqAn’s (50 084 GCUPS) and 10.54× faster
than LOGAN (9761 GCUPS) on a single GPU. With a higher X = 20 the IPU
implementation is 1.68× faster than SeqAn and 2.55× faster than LOGAN.

Of the CPU implementations, the SeqAn X-Drop implementation consistently
outperforms ksw2 because ksw2 [Li18] penalizes long gaps less, leading to a
larger search space. Further, tests on an Intel Xeon Platinum 8360Y showed
consistently worse performance than the AMD EPYC 7763; thus, we omitted
the results here. We observed that LOGAN does not perform well on HiFi data
sets. We attribute this to the higher sequence similarity and more unbalanced
search lengths under smaller values of X. For our implementation, we note that
larger X values expand computational work on similar sequences while dissimilar
sequences still terminate early. This leads to faster-decreasing performance on
more dissimilar inputs. In comparison, LOGAN’s SIMT implementation gains
performance over other hardware through a larger search space.

Strong scaling from 1 up to 32 IPU devices for X ∈ {5, 10, 15, 20, 50} on the
E coli 100x and C elegans data sets showed near linear scaling behavior for up to
16 IPUs on larger X ≥ 15 (Figure IV.7) with up to 15× speedup on 16 devices on
the C elegans data set (X = 50). Aside from a constant factor speed-up provided
by the higher clock frequency of the IPU Bow, scaling properties do not strongly
differ between the tested IPU Bow and IPU Mk2 systems. If not otherwise
specified, scaling results refer to the IPU Mk2 system. Graph partitioning of
comparisons allows for the reuse of sequences for multiple comparisons. This
decreases the amount of sequence data that needs to be transferred to the IPU
and increases the number of comparisons that can be performed on a single IPU
tile. On the E coli 100x data set, the number of batches is reduced by −52%
(816 to 387) and on the C elegans data set by −44% (1723 to 972). On both data
sets, this increases performance. Using X = 10, for E coli 100x 1.46× on a single
device and up to 3.59× using 32 devices and on the C elegans data set 1.29×
on a single device and 1.83× on 32 devices. For higher X = 20 and X = 50,
scaling is linear up to 16 and 32 devices both using single- or multi-comparisons.
For X = 50 using multi-comparisons is 1.18× faster on the E coli 100x data
set using 1 device and 1.55× faster using 32 devices. This suggests a higher
computational load per batch, allowing for the full utilization of more IPUs
before the interconnect to the IPUs is saturated.

IV.6.3 Real World Pipelines

The CPU and GPU results were collected on AMD EPYC 7763 nodes, while the
IPU results were collected on the IPU BOW system with an AMD EPYC 7742.

152



Related Work

IV.6.3.1 ELBA

For E coli, we measured 7.4 s in the alignment phase with X = 15 using a single
IPU. We observed good scaling up to 8 IPUs which took the alignment time
down to 2.2 s. The CPU system took 11.61 seconds, using a single node, while
the GPU code was run with up to 4 GPUs spending 52.14 s in the alignment
phase.

We used the C elegans data set, the largest data set we could run, which
occupied around 400 Gb of the host system’s DRAM. As the EPYC 7763 nodes
have less memory, we had to compare the IPU results against four nodes for CPU
and GPU comparisons. For a four-node CPU setup, we attained 227.5, 340.7 s
for X of {15, 20}, respectively. The GPU results were measured with a total of
16 GPUs resulting in 1068 s for X = 15. Compared to four CPUs and 16 GPUs
the IPUs alignment phase took 255.6 and 401.9 s for X of {15, 20}, respectively.
On X ≥ 15, we observed scaling up to 16 IPUs. The total alignment runtime was
brought down to 46.5 s for X = 15, which is equivalent to a speedup of 22.3× to
a cluster with 16 GPUs and a 4.7× speedup to a four-node CPU cluster.

IV.6.3.2 PASTIS

We measured 44.9 s for the alignment step on the CPU, while the IPU took
9.6 s, which is equivalent to a 4.7× speedup over the CPU. For larger inputs
with more than 500 k sequences, experienced segmentation faults, which made
larger scale experiments not possible.

IV.7 Related Work

A large number of works have focused on accelerating the Smith-Waterman
and Needleman-Wunsch algorithm for sequence alignment [Awa+20; Fen+19;
LWS13; Mül+22], which without additional heuristics computes the entire
dynamic programming matrix for the alignment. Other work has focused on
accelerating specific tools and applications, including BLAST [LB10; VS11;
Ye+17] and BWA [Liu+12], both of which implement heuristic alignment
strategies. The data intensive computations patterns in sequence alignment have
lead to the development of memory-centric processor architectures including
processing in memory (PIM) [Gup+19; Mut+22; Xu+23; ZZJ18] and near-
memory computing [Sin+21] systems. Edit-distance algorithms consider only
the number of changes necessary to transform one sequence into another, with
each modification, either a insertion, deletion or substitution having the same
cost. This considerably more constrained formulation of an alignment problem
has similar complexity properties of O(nm). The Bitap-Algorithm [Döm64] uses
a bitmask and bitwise operations on a constrained alphabet to compute the
edit distance between a pattern and a queried string. It has been adapted with
a greedy windowing heuristic for long sequences and parallelized execution in
GenASM and Scrooge [Cal+20; Lin+23], reducing the alignment complexity to
O(n + m), while allowing for non-optimal alignment results.

153



IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

The X-Drop alignment algorithm has rarely been the target of hardware accel-
eration work. Recent efforts have included GPU [Zen+20] and FPGA [Zen+21],
which outperformed then state-of-the-art CPU implementations.

IV.8 Conclusion

The processing power of modern CPUs has far outpaced the speed improvement
of persistent and random access memory (DRAM), widening the gap between
memory and processor performance. This discrepancy is masked by a highly
hierarchical cache system in traditional CPUs. The Graphcore IPU’s single level
of large, low-latency SRAM reflects the recent trend toward shifting computation
to memory, in both PIM and near-memory computing approaches.

In this work, we implement the X-Drop sequence alignment algorithm on
the Graphcore IPU. A massively parallel MIMD AI accelerator with a single
level of low latency SRAM for storage. Our contributions include algorithmic
updates to the X-Drop algorithm to adapt it to the memory-constrained IPU
architecture. Our dynamic band restriction algorithm reduces memory usage
without compromising alignment computation with real data. Our formulation
of graph-based sequence partitioning enables the reuse of sequences in many-
to-many sequence alignment settings common in genome assembly and protein
cluster pipelines.

Our implementation of X-Drop sequence alignment outperforms current
state-of-the-art implementations on CPU and GPU for both DNA and protein
alignment for realistic X values. Furthermore, we demonstrate near-linear
strong scaling properties on common IPU host configurations. In two real-world
pipelines, ELBA and PASTIS, we demonstrate significant speedup using our
IPU implementation as the algorithm for the X-Drop aligner.

Finally, we note that the low bandwidth of host-device communication and
the rigidity of the BSP paradigm, as well as the lack of atomic operators for
thread-level cooperative multitasking, are the major limitations of the Graphcore
IPU system. Our implementation mitigates these issues, but future SRAM-based
architecture should be improved to enable the widespread use of SRAM-based
computing for more data-intensive computation.

In summary, the IPU has significant potential for accelerating irregular
computations where low-level parallelism is difficult to exploit on highly
instruction-parallel architectures, such as GPUs.

References

[AG98] Apostolico, A. and Giancarlo, R. “Sequence Alignment in Molecular
Biology”. In: Journal of Computational Biology vol. 5, no. 2 (Jan.
1998), pp. 173–196.

[Als+21] Alser, M. et al. “Technology Dictates Algorithms: Recent Develop-
ments in Read Alignment”. In: Genome Biology vol. 22, no. 1 (Aug.
2021), p. 249.

154



References

[Alt+90] Altschul, S. F. et al. “Basic Local Alignment Search Tool”. In:
Journal of Molecular Biology vol. 215, no. 3 (Oct. 1990), pp. 403–
410.

[Ama+20] Amarasinghe, S. L. et al. “Opportunities and Challenges in Long-
Read Sequencing Data Analysis”. In: Genome Biology vol. 21, no. 1
(Feb. 2020), p. 30.

[Awa+20] Awan, M. G. et al. “ADEPT: A Domain Independent Sequence
Alignment Strategy for Gpu Architectures”. In: BMC Bioinformatics
vol. 21, no. 1 (Sept. 2020), p. 406.

[Bur+21] Burchard, L. et al. “iPUG: Accelerating Breadth-First Graph
Traversals Using Manycore Graphcore IPUs”. In: International
Conference on High Performance Computing. Springer. 2021,
pp. 291–309.

[Bur+23] Burchard, L. et al. “Enabling Unstructured-Mesh Computation on
Massively Tiled AI-Processors: An Example of Accelerating In-Silico
Cardiac Simulation”. In: Frontiers in Physics vol. 11 (2023), p. 105.

[Cal+20] Cali, D. S. et al. GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework for Genome
Sequence Analysis. Sept. 2020. arXiv: arXiv:2009.07692.

[DM98] Dagum, L. and Menon, R. “OpenMP: An Industry Standard API for
Shared-Memory Programming”. In: IEEE Computational Science
and Engineering vol. 5, no. 1 (Jan. 1998), pp. 46–55.

[Döm64] Dömölki, B. “An Algorithm for Syntactical Analysis”. In: Compu-
tational Linguistics vol. 3, no. 29-46 (1964), p. 151.

[Fen+19] Feng, Z. et al. “Accelerating Long Read Alignment on Three
Processors”. In: Proceedings of the 48th International Conference
on Parallel Processing. Kyoto Japan: ACM, Aug. 2019, pp. 1–10.

[Got82] Gotoh, O. “An Improved Algorithm for Matching Biological
Sequences”. In: Journal of Molecular Biology vol. 162, no. 3 (Dec.
1982), pp. 705–708.

[GSK13] Gremme, G., Steinbiss, S., and Kurtz, S. “GenomeTools: A Com-
prehensive Software Library for Efficient Processing of Structured
Genome Annotations”. In: IEEE/ACM transactions on computa-
tional biology and bioinformatics vol. 10, no. 3 (2013), pp. 645–
656.

[Gui+20] Guidi, G. et al. Parallel String Graph Construction and Transitive
Reduction for De Novo Genome Assembly. Oct. 2020. arXiv: arXiv:
2010.10055.

[Gui+22] Guidi, G. et al. “Distributed-Memory Parallel Contig Generation for
De Novo Long-Read Genome Assembly”. In: Proceedings of the 51st
International Conference on Parallel Processing. 2022, pp. 1–11.

155

https://arxiv.org/abs/arXiv:2009.07692
https://arxiv.org/abs/arXiv:2010.10055
https://arxiv.org/abs/arXiv:2010.10055


IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

[Gup+19] Gupta, S. et al. “RAPID: A ReRAM Processing in-Memory
Architecture for DNA Sequence Alignment”. In: 2019 IEEE/ACM
International Symposium on Low Power Electronics and Design
(ISLPED). July 2019, pp. 1–6.

[HH92] Henikoff, S. and Henikoff, J. G. “Amino Acid Substitution Matrices
from Protein Blocks”. In: Proceedings of the National Academy of
Sciences of the United States of America vol. 89, no. 22 (Nov. 1992),
pp. 10915–10919.

[Hir75] Hirschberg, D. S. “A Linear Space Algorithm for Computing
Maximal Common Subsequences”. In: Communications of the ACM
vol. 18, no. 6 (June 1975), pp. 341–343.

[Jia+19] Jia, Z. et al. “Dissecting the Graphcore IPU architecture via
microbenchmarking”. In: arXiv preprint arXiv:1912.03413 (2019).

[Lau21] Lauterbach, G. “The Path to Successful Wafer-Scale Integration:
The Cerebras Story”. In: IEEE Micro vol. 41, no. 6 (Nov. 2021),
pp. 52–57.

[LB10] Ling, C. and Benkrid, K. “Design and Implementation of a CUDA-
compatible GPU-based Core for Gapped BLAST Algorithm”. In:
Procedia Computer Science. ICCS 2010 vol. 1, no. 1 (May 2010),
pp. 495–504.

[Lee+10] Lee, V. W. et al. “Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU”.
In: Proceedings of the 37th Annual International Symposium on
Computer Architecture. ISCA ’10. New York, NY, USA: Association
for Computing Machinery, June 2010, pp. 451–460.

[Li18] Li, H. “Minimap2: Pairwise Alignment for Nucleotide Sequences”.
In: Bioinformatics vol. 34, no. 18 (Sept. 2018), pp. 3094–3100.

[Lin+23] Lindegger, J. et al. “Scrooge: A Fast and Memory-Frugal Genomic
Sequence Aligner for CPUs, GPUs, and ASICs”. In: Bioinformatics
(Mar. 2023), btad151. arXiv: 2208.09985 [cs, q-bio].

[Liu+12] Liu, C.-M. et al. “SOAP3: Ultra-Fast GPU-based Parallel Alignment
Tool for Short Reads”. In: Bioinformatics (Oxford, England) vol. 28,
no. 6 (Mar. 2012), pp. 878–879.

[LM21] Louw, T. and McIntosh-Smith, S. Using the Graphcore IPU for
traditional HPC applications. Tech. rep. EasyChair, 2021.

[LWS13] Liu, Y., Wirawan, A., and Schmidt, B. “CUDASW++ 3.0:
Accelerating Smith-Waterman Protein Database Search by Coupling
CPU and GPU SIMD Instructions”. In: BMC Bioinformatics vol. 14,
no. 1 (Apr. 2013), p. 117.

[Meu+01] Meuer, H. et al. Top500 supercomputer sites. 2001.

156

https://arxiv.org/abs/2208.09985


References

[Mit+21] Mittal, S. et al. “A Survey of SRAM-based in-Memory Computing
Techniques and Applications”. In: Journal of Systems Architecture
vol. 119 (Oct. 2021), p. 102276.

[MM88] Myers, E. W. and Miller, W. “Optimal Alignments in Linear Space”.
In: Bioinformatics vol. 4, no. 1 (Mar. 1988), pp. 11–17.

[Mut+22] Mutlu, O. et al. A Modern Primer on Processing in Memory. Aug.
2022. arXiv: arXiv:2012.03112.

[Mül+22] Müller, A. et al. “AnySeq/GPU: A Novel Approach for Faster
Sequence Alignment on GPUs”. In: Proceedings of the 36th ACM
International Conference on Supercomputing. ICS ’22. New York,
NY, USA: Association for Computing Machinery, June 2022, pp. 1–
11.

[Nur+22] Nurk, S. et al. “The Complete Sequence of a Human Genome”. In:
Science vol. 376, no. 6588 (Apr. 2022), pp. 44–53.

[NW70] Needleman, S. B. and Wunsch, C. D. “A General Method Applicable
to the Search for Similarities in the Amino Acid Sequence of Two
Proteins”. In: Journal of Molecular Biology vol. 48, no. 3 (Mar.
1970), pp. 443–453.

[Rah+18] Rahn, R. et al. “Generic Accelerated Sequence Alignment in SeqAn
Using Vectorization and Multi-Threading”. In: Bioinformatics
vol. 34, no. 20 (Oct. 2018), pp. 3437–3445.

[Rei+17] Reinert, K. et al. “The SeqAn C++ Template Library for Efficient
Sequence Analysis: A Resource for Programmers”. In: Journal of
Biotechnology. Bioinformatics Solutions for Big Data Analysis in
Life Sciences Presented by the German Network for Bioinformatics
Infrastructure vol. 261 (Nov. 2017), pp. 157–168.

[Sel+20] Selvitopi, O. et al. “Distributed many-to-many protein sequence
alignment using sparse matrices”. In: SC20: International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis. IEEE. 2020, pp. 1–14.

[Ser+22] Sereika, M. et al. “Oxford Nanopore R10.4 Long-Read Sequencing
Enables the Generation of near-Finished Bacterial Genomes from
Pure Cultures and Metagenomes without Short-Read or Reference
Polishing”. In: Nature Methods vol. 19, no. 7 (July 2022), pp. 823–
826.

[Sin+21] Singh, G. et al. “FPGA-Based Near-Memory Acceleration of Modern
Data-Intensive Applications”. In: IEEE Micro vol. 41, no. 4 (July
2021), pp. 39–48.

[SK18] Suzuki, H. and Kasahara, M. “Introducing Difference Recurrence
Relations for Faster Semi-Global Alignment of Long Sequences”. In:
BMC Bioinformatics vol. 19, no. 1 (Feb. 2018), p. 45.

157

https://arxiv.org/abs/arXiv:2012.03112


IV. Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop
on the Graphcore IPU

[SS18] Steinegger, M. and Söding, J. “Clustering huge protein sequence
sets in linear time”. In: Nature communications vol. 9, no. 1 (2018),
p. 2542.

[Val90] Valiant, L. G. “A bridging model for parallel computation”. In:
Communications of the ACM vol. 33, no. 8 (1990), pp. 103–111.

[VN14] Véstias, M. and Neto, H. “Trends of CPU, GPU and FPGA for High-
Performance Computing”. In: 2014 24th International Conference
on Field Programmable Logic and Applications (FPL). Sept. 2014,
pp. 1–6.

[VS11] Vouzis, P. D. and Sahinidis, N. V. “GPU-BLAST: Using Graphics
Processors to Accelerate Protein Sequence Alignment”. In: Bioin-
formatics (Oxford, England) vol. 27, no. 2 (Jan. 2011), pp. 182–
188.

[Xu+23] Xu, W. et al. “RAPIDx: High-performance ReRAM Processing
in-Memory Accelerator for Sequence Alignment”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
(2023), pp. 1–1. arXiv: 2211.05733 [cs].

[Ye+17] Ye, W. et al. “H-BLAST: A Fast Protein Sequence Alignment
Toolkit on Heterogeneous Computers with GPUs”. In: Bioinformat-
ics vol. 33, no. 8 (Apr. 2017), pp. 1130–1138.

[ZBM98] Zhang, Z., Berman, P., and Miller, W. “Alignments Without Low-
Scoring Regions”. In: Journal of Computational Biology vol. 5, no. 2
(Jan. 1998), pp. 197–210.

[Zen+20] Zeni, A. et al. “LOGAN: High-Performance GPU-Based X-Drop
Long-Read Alignment”. In: 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). New Orleans, LA, USA:
IEEE, May 2020, pp. 462–471.

[Zen+21] Zeni, A. et al. “The Importance of Being X-Drop: High Performance
Genome Alignment on Reconfigurable Hardware”. In: 2021 IEEE
29th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). May 2021, pp. 133–141.

[Zha+00] Zhang, Z. et al. “A Greedy Algorithm for Aligning DNA Sequences”.
In: Journal of Computational Biology vol. 7, no. 1-2 (Feb. 2000),
pp. 203–214.

[ZZJ18] Zokaee, F., Zarandi, H. R., and Jiang, L. “AligneR: A Process-
in-Memory Architecture for Short Read Alignment in ReRAMs”.
In: IEEE Computer Architecture Letters vol. 17, no. 2 (July 2018),
pp. 237–240.

Authors’ addresses

158

https://arxiv.org/abs/2211.05733


References

Luk Burchard Simula Research Laboratory, Kristian Augusts gate 23, 0164
Oslo, Norway, luk@simula.no

Max Xiaohang Zhao Institut für Medizinische Genetik und Human-
genetik, Charité, Augustenburger Pl. 1, 13353 Berlin, Germany,
max.zhao@charite.de

Johannes Langguth Simula Research Laboratory, Kristian Augusts gate 23,
0164 Oslo, Norway; University of Bergen, Department of Computer Science,
Postbox 7803, NO-5020 Bergen, Norway, langguth@simula.no

Aydın Buluç Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley,
CA 94720, USA, abuluc@lbl.gov

Giulia Guidi Cornell University, 107 Hoy Rd, City of Ithaca, Tompkins, NY
14853, USA, gg434@cornell.edu

159

mailto:luk@simula.no
mailto:max.zhao@charite.de
mailto:langguth@simula.no
mailto:abuluc@lbl.gov
mailto:gg434@cornell.edu

	Abstract
	Oppsummering
	Preface
	Acknowledgements
	List of Papers
	Contents
	List of Figures
	List of Tables
	Introduction
	Outline
	Background
	Research Questions
	Summary of Papers
	Conclusion
	References

	Papers
	iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of Parallel Breadth-First Search
	Introduction
	IPU Hardware
	Implementation
	Experiments
	Related Work
	Conclusion
	References

	Enabling Unstructured-Mesh Computation on Massively Tiled AI-Processors: An Example of Accelerating In-Silico Cardiac Simulation
	Introduction
	Monodomain Model of Cardiac Electrophysiology
	Numerical Strategy and Distributed-Memory Parallelization
	Porting to Graphcore IPU
	Math Accuracy
	Niederer Benchmark
	Experiments
	Conclusion
	References
	Algorithmic Description of Three Separator Partitioning Methods
	Technical Information of Graphcore IPUs

	iPuma: High-throughput Sequence Alignment for MIMD AI Accelerators
	Contents
	Background
	Implementation
	Results
	Discussion
	Conclusion
	Availability and requirements
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Competing interests
	Funding
	Author's contributions
	Acknowledgments

	Space Efficient Sequence Alignment for SRAM-Based Computing: X-Drop on the Graphcore IPU
	Introduction
	Background
	Algorithm
	Implementation
	Experimental Setup
	Experimental Results
	Related Work
	Conclusion
	References




