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Abstract—The main contribution of this work is to increase the
coding productivity for GPU programming by using the concept
of Static Graphs. To do so, we have combined the new CUDA
Graph API with the OpenACC programming model. We use
as test cases a well-known and widely used problems in HPC
and AI: the Particle Swarm Optimization. We complement the
OpenACC functionality with the use of CUDA Graph, achieving
accelerations of more than one order of magnitude, and a
performance very close to a reference and optimized CUDA code.
Finally, we propose a new specification to incorporate the concept
of Static Graphs into the OpenACC specification.

Index Terms—Coding Productivity, Tasking, Data Dependen-
cies, Static Graph, OpenACC, Particle Swarm Optimization

I. INTRODUCTION

It is undeniable that GPU capabilities have been increasing
significantly in terms of performance and memory capacity.
However, some applications are facing problems in terms of
scalability and some algorithms seem to limit the amount of
work that one GPU can perform at a single time [1]. This is
mainly due to the assignment of hardware resources and the
occupancy of the device, which makes it difficult to benefit
from the whole GPU capacity. NVIDIA developed CUDA
Graph API, as a potential solution to improve scalability. In
CUDA Graph API, it is possible to represent the workflow as
a graph, as an alternative for submitting kernels. These graphs
are built from a series of operations that could range from
kernel invocations to memory copies, as well as host code or
calls to libraries, such as CUBLAS and CUSPARSE. Every
call inside the graph is represented as a node, and each node
is connected by dependencies.

The contribution of this work is to increase the coding
productivity of GPU programming by using Static Graphs.
As test cases, we use one very well-known and widely
used algorithm in high-performance computing (HPC) and
artificial intelligence (AI), the Particle Swarm Optimization.
By combining OpenACC and CUDA Graph we are able to
accelerate the OpenACC-only version and attain a very similar
performance to the CUDA optimized code. To the best of
our knowledge, this is the first time that CUDA Graph has
been integrated with OpenACC and effectively adapted to
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the algorithm used as test case in this work: Particle Swarm
Optimization. Finally, given the important benefits attained by
using CUDA Graph, we propose new specifications into the
OpenACC Standard, to introduce the concept of “static graph”.

The rest of this document is organized as follows: Section II
describes the OpenACC programming model and the most
important concepts about the new CUDA API to implement
Static Graphs. Section III presents a detailed analysis of the
implementations and performance attained by using CUDA
Graph in combination with OpenACC on the Particle Swarm
Optimization algorithm. In Section V, we propose a new
specification to use Static Graphs in the OpenACC Standard.
Section VI presents the most relevant state—of—the—art refer-
ences. Section VII concludes with the most important remarks
and discusses future directions.

II. BACKGROUND
A. OpenACC

OpenACC is a high-level, directive-based programming
model which supports C, C++ and Fortran. It was developed
to allow programmers to interact with heterogeneous high-
performance computing architectures without the effort that
requires to fully understand all the low-level programming de-
tails and underlying hardware features [2]. This programming
model allows developers to insert hints into their code that
help the compiler interpret how to parallelize the code. In this
way, the compiler is responsible for the transformation of the
code to parallelize it, which is completely transparent to the
programmer.

OpenACC defines a mechanism to offload programs to an
accelerator in a heterogeneous system [3]. Because OpenACC
is a directive-based programming model, the code can be
compiled serially, ignoring the directives and still produce
correct results, allowing a single code to be portable across
different platforms [4].

This simple model allows non-expert programmers to easily
develop code that benefits from accelerators [5]. Currently,
OpenACC compilers support several platforms such as x86
multicore CPUs, accelerators (GPUs, FPGAs), OpenPOWER
processors, KNLs and ARM processors.



One example that summarizes the advantages of using
OpenACC is the the work of [6], which evaluates the use
of OpenACC, OpenCL and CUDA in terms of performance,
productivity, and portability. This work concludes that Ope-
nACC is a robust programming model for accelerators while
improving programmer productivity.

B. CUDA Graph API

Performance of GPU architectures continues increasing
each generation. However, it is important to address that
each kernel launch has an associated overhead regarding the
submission of each operation to the GPU. These overheads are
becoming more and more significant and can have a negative
impact on performance [7]. Many current applications need
to perform a large number of different operations to solve a
given problem. Most the times these operations are involved in
patterns that require many iterations, so this kind of overhead
can produce significant performance degradation.

To address this issue, since CUDA 10.0, it is possible to
represent the workflow as a graph. A graph consists of a series
of operations such as memory copies and kernel launches,
which are connected by dependencies. This feature allows
developers to represent the work as a graph of nodes and create
a static structure that may be launched at any time and be
executed as many times as needed. The CUDA Graph API has
two main advantages: First, the overhead of launching GPU
operations, such as memory transfers or kernel executions, has
no impact on performance, since the static structure which
defines the graph, is submitted only once to the GPU. Second,
we have the freedom to create the workflow to be submitted
to the GPU. There may be operations which are completely
independent from each other, so depending on the hardware
capabilities, it is possible to overlap the execution of different
nodes of the graph.

III. PARTICLE SWARM OPTIMIZATION
A. Algorithm

Particle Swarm Optimization (PSO) is an evolutionary com-
putational technique originally developed by Kennedy and
Eberhart [8]. The algorithm was developed as a simulation
of a simplified social system, with the objective to simulate
the behavior of bird flocks. This algorithm is also considered
as an optimizer. This technique shares some similarities with
genetic algorithms. For instance, the system is initialized with
a random population that evaluates different sets of solutions.
Every potential solution is considered as a particle within the
search space of the problem. This means that each particle has
its own set of parameters such as velocity, speed, acceleration,
position and learning factors. Each particle keeps track of
the values which are associated with the best solution, also
known as fitness. This is an iterative algorithm, where in every
iteration, the values (speed, position, etc.) of all the particles
are evaluated and updated, with the target of moving each
particle to locations that potentially have a better solution.

PSO is used by many applications; for instance, those
problems that involve maximization or minimization [9], [10].

Listing 1. OpenACC PSO code
void main (){
//Initialization
initParticle ();
calculateFitness ();
updatePopulationBest ();
// Computation
while (i <ITERATIONS){
// findBestParticle kernel
#pragma acc kernels deviceptr(inputData)
for (int i=0; i<POPULATION; i++){
findBestParticle (inputData ... ,);

//updateParticlePosition kernel

#pragma acc kernels deviceptr(inputData)

for (int i=0; i<POPULATION; i++){
updateParticlePosition (inputData ... ,);

//calculateFitness kernel

#pragma acc kernels deviceptr(inputData)

for (int i=0; i<POPULATION; i++){
calculateFitness (inputData ... ,);

}

//updateBestPopulation kernel

#pragma acc kernels deviceptr(inputData)

for (int i=0; i<POPULATION; i++){
updateBestPopulation (inputData ... ,);

}

}
}

PSO is robust enough to work with functions in a continuous,
discrete or mixed search space, as well as multi-objective
problems [11].

In this work we use PSO as case of study to test the impact
of integrating static graphs on directive-based programming
models. Due to the iterative design of the algorithm and its
potential to parallelize several areas of the code, it is an
extraordinary test bed to study and analyze the impact of the
use of GPU static graphs.

It is important to mention that the target of this work is
not to improve the PSO algorithm itself, but to study the
impact of combining the different target programming models
(OpenACC and CUDA Graph) in an application.

To measure the impact of the different approaches, we de-
veloped several versions of PSO. First, we studied a sequential
version of the algorithm, which we use as a baseline. The code
that we tested is shown in Listing 1.

We implemented the original version of the code based on
the work of Kennedy et al. [9]. In the first step we initialize
all particles by defining their position and velocities within the
boundaries of the search space. Then, each particle evaluates
the solution determined by its position to calculate its fitness.
Next, we find the best fitness of the population and store its
value. The following steps are computed in each iteration: i)
calculate the position of the particle that has the best fitness, ii)
compute the next position and iii) update each particle speed in
the x, y and z axes. Afterwards, we calculate the fitness of the
particles in their new position and finally we update the value



of the best particle. We repeat these steps as many iterations as
needed, and finally the particle with the best fitness is selected
as the best possible solution of the problem.

Given the stochastic nature of the problem, it is not guaran-
teed to find the optimum value all the times. However, some-
times an approximation is sufficient and it has the advantage
of being much faster than a brute force search.

B. OpenACC and CUDA Graph Implementations

To attain additional acceleration, we involved the GPU for
computing the most computationally intensive tasks in the
algorithm, as well as avoiding having many small tasks that
are constantly switching context and awaiting for some of
them to finish. We use OpenACC for GPU parallelization (see
Listing 1).

The modifications on the code from the CPU to the GPU
architecture are minimum. However, there are important con-
siderations that significantly impact the behavior of the code.
The main difference is in the distribution of the work. Other
significant factor is the use of Unified Memory. Managing
memory between CPU and GPU is an important challenge.
There are significant limitations, particularly concerning mem-
ory bandwidth, latency and GPU utilization [12]. To mitigate
this issue, since CUDA 6.0 it is possible to use Unified Mem-
ory access. This provides a mechanism to simplify the GPU
memory communication with the host while providing high
bandwidth for data transfers at run-time. We also use Unified
Memory for more readable code and coding productivity [13].
Doing this, the GPU and CPU memory communications can
be kept hidden from the developer, so the programmer does
not have to deal with the issues that arise from moving data,
further enhancing coding productivity.

The OpenACC version can be efficiently integrated with
CUDA Graph to minimize the overhead of creating and
launching multiple kernels in every iteration. Although this
overhead is measured at the scale of microseconds, this can
degrade the performance considerably on long runs. Using
CUDA Graph we can create a high-level representation of the
workflow; in other words, we determine the topology of the
graph by determining the order of the tasks that need to be
executed in every iteration. We still use the OpenACC kernels
as a node of the graph. The code presented in Listing 2 shows
the changes that were made in order to combine both models,
OpenACC and CUDA Graph.

CUDA Graph allows us to store the set of kernels to be
computed (workflow) before being launched. In that way, it is
possible to know in advance the amount of work that needs
to be submitted to the GPU.

To attain that, we use
acc_get_cuda_stream(acc_async_sync) and
acc_set_cuda_stream (0, stream1). In that way, we ensure that
CUDA Graph recognizes the streams used by OpenACC.
Finally, this stream must be also known by the OpenACC
async clause.

Using OpenACC and CUDA Graph, the stream creations
are more efficient and execution is faster. This is due to the

Listing 2. OpenACC and CUDA Graph PSO code

int main (int argc, char =argv[]){
cudaStream_t streaml , stream2, streamForGraph;
cudaEvent_t eventl , event2;
cudaGraph_t graph;
//Initialization
initParticle ();
calculateFitness ();
updatePopulationBest ();
// Graph definition
cudaStreamCreate(&streaml );
cudaStreamCreate(&stream?2 ) ;
cudaStreamCreate(&streamForGraph );
void* stream = acc_get_
cuda_stream (acc_async_sync);
acc_set_cuda_stream (0, streaml );
cudaStreamBeginCapture (streaml ,
cudaStreamCaptureModeGlobal );
//OpenACC Kernels
findBestParticle (...,
// Fork
cudaEventRecord(eventl , streaml);
updateParticlePosition (..., streaml);
calculateFitness (..., stream2);
// Join
cudaEventRecord (event2 , stream?2);
cudaStreamWaitEvent (streaml , event2);
updateBestPopulation (..., streaml);
cudaStreamEndCapture (streaml , &graph);
cudaGraphExec_t graphExec;

streaml );

cudaGraphlnstantiate(&graphExec, graph,
NULL, NULL, 0);

// Computation

for (int i = 0; i < ITERATIONS; i++) {

cudaGraphLaunch (graphExec, streamForGraph);

cudaStreamSynchronize (streamForGraph);

way that CUDA Graph launches the kernels to the GPU. All
the kernels are treated as a whole instead of processing each
of them individually. This reduces considerably the overhead
when submitting multiple kernels to the GPU.

Finally, we also exploit the potential overlapping of those
parts of the application that are independent and can be
executed in parallel. These are the functions updateParticle-
Position and calculateFitness. To do that, we need to use
cudaEventRecord and cudaStreamWaitEvent.

IV. PERFORMANCE ANALYSIS

We conduct the performance evaluation by using the follow-
ing heterogeneous system: 2 x IBM POWERY 8335-GTH at
2.4GHz, 32GB RAM memory, and an NVIDIA V100 (Volta)
GPU with 16GB HBM2 and NVLink2 for high-bandwidth
communication between CPU and GPU. This architecture is
similar to that used in the current top-2 (Summit at ORNL) and
top-3 (Sierra at LLNL) fastest supercomputers in the TOP500
list today.

Table I shows the details of the seven functions used in
our analysis. These are considered as standard benchmarks
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Fig. 1. Execution time (us in logarithmic scale) comparison between sequen-
tial, OpenACC, OpenACC and CUDA Graph and CUDA implementations of
the PSO algorithm.

for PSO. For the sake of simplicity, these formulas are
simplified for 1D space; however, all the functions used in
our experiments were implemented for a 3D space.

For the experiments, we use all the functions described
in Table I on a simulated population of 1,000 particles. We
execute all the simulations during 10,000 iterations.

Figure 1 illustrates the wall time (us) of our test bed.
As expected, the sequential version is the slowest. We see
a much better performance by using the native OpenACC
implementation. However, the hardware is used in a more
efficient way with the combination of both programming
models, OpenACC and CUDA Graph. This approach is able
to attain an important reduction in the execution time (even
more than one order of magnitude in some cases). In average,
the speedup is ranged from 2x to 4x.

It is important to highlight that our approach based on GPU
static graphs (OpenACC and CUDA Graph) is very close to the
optimized CUDA performance. The maximum performance
difference between the optimized CUDA implementation and
the OpenACC and the CUDA Graph counterpart is about 10%.

From this point on, we focus on the comparison between the
OpenACC implementation and the use of GPU static graphs
(CUDA Graph) as part of the OpenACC specification. The
behavior illustrated in Figure 1 remains true in these new
results, i.e., the sequential version continues being the slowest
approach and the use of OpenACC and CUDA Graph is not
farther away than 10% from the performance attained by
the optimized CUDA code. We use the Schaffer 2 function
(Table I) to test how the use of different settings may affect
the behavior of our proposed model (GPU static graph). We
decided to use this function because it is the most computa-
tionally expensive.

First, we analyze the impact of increasing the size of the
population (number of particles). In the PSO algorithm, the
larger the population, the larger the kernels (more threads
are necessary). Figure 2 illustrates the impact of increasing
the number of particles on execution time. In these tests,
the number of iterations is 100. The use of OpenACC and
CUDA Graph is able to achieve an acceleration of up to 3.5x.
However, the larger the population, the lower the acceleration.
This is expected because the chance to execute more than
one kernel in parallel in the GPU is reduced by increasing
the number of particles. When running larger kernels, the
acceleration reached is about 1.2 — 1.3x.

Next, we analyze the impact on performance of increasing
the number of iterations. In PSO, the larger the number of
iterations, the more kernels need to be executed to finish the
simulation. In the experiments, we use a population equal to
1,024 particles. The speedup reached in the previous exper-
iments when using this size of population is equal to 1.7x.
Figure 3 illustrates the execution time for different test cases
using different number of iterations while keeping constant the
size of the population. The use of CUDA Graph and OpenACC
is able to keep the speedup (about 1.4—1.7x) for a population
size equal to 1,024. A similar trend is reached when using
different population sizes.

As we have seen along this section, it is possible to obtain an
important acceleration by combining OpenACC with CUDA
Graph, at the expense of a small losing of coding produc-
tivity, which is against the motivation behind the OpenACC
Standard. To mitigate this limitation, in the next section we
present a proposal to integrate the concept of static graph into
the OpenACC syntax.

V. DIRECTIVE-BASED GPU STATIC GRAPH API
PROPOSAL

In the previous sections, we were able to prove the efficiency
of using GPU Static Graph (CUDA Graph) with CUDA
and OpenACC. Although the performance was satisfactory,
the integration of both programming models is not easy,
harnessing OpenACC programming productivity.

It is important to highlight that the time to develop parallel
solutions is a valuable factor to be considered along with
portability. That is why it is so important to provide an
efficient way to easily implement GPU codes while hiding
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low-level hardware/software details, which are usually highly
time-consuming.

In this section, we propose an new approach for developers
to use static graphs within OpenACC. Our motivation is to
provide a simple and easy to use directive which can annotate
and define a workflow as a static graph. Listing 3 shows an
example of the code we propose using staticgraph pragma for
the PSO implementation.

The staticgraph clause is interpreted by the compiler
to create a static graph which treats every OpenACC kernel
as a CUDA Graph node. The topology of the workflow is
recorded using CUDA Graph and an instance of this can
be run for as many iterations as necessary (accGraph_t).
This poses an important reduction in the number of lines
of code and a substantial increase in terms of programming
productivity, in comparison with the original CUDA Graph
and OpenACC code (see Listing 2). We use Unified Memory
to further simplify the code, and avoid complex transfers of
data between device and host.

To exploit the potential overlapping among those parts of
the application that can be executed in parallel, we need to
use OpenACC Queues and the async clause, hence preventing
the explicit handling of any CUDA constructs such as CUDA

Streams.

These modifications proposed for the OpenACC specifica-
tion provide developers with a robust and strong mechanism
to easily translate iterative algorithms into static graphs. These
graphs can be recorded prior to execution, which allows the
runtime to be aware of the dependencies and the order of the
execution. Once the topology is defined, then all the GPU work
is handled as one single GPU launch by the driver, avoiding the
overhead associated to deal with each of the kernels separately.
As shown in previous sections, this yields significant benefits
both in terms of performance and coding productivity.

VI. RELATED WORK

Although GPU capacity has increased significantly, the
scalability of algorithms and applications still faces important
challenges [1]. One important problem regarding scalability is
the hardware resource assignment. Some applications are lim-
ited to execute a single kernel in the GPU without benefiting
from the whole capability of the device [14]-[16].

Other interesting examples are the task-based programming
models using GPUs, such as StarPU [17] and OmpSs [18].
Both programming models propose a task-based API which
allows tasks to be executed on GPUs and tune scheduling



Listing 3. OpenACC staticgraph model with kernels overlapping

int main (int argc, char =argv[]){
accGraph_t graph;

#pragma acc staticgraph (graph) \
deviceptr(inputData) {
// Enqueue
#pragma acc kernels deviceptr(inputData) \
async (1)
findBestParticle (inputData ...);
// Fork & Enqueue
#pragma acc kernels deviceptr(inputData) \
async (1)
updateParticlePosition (inputData ...);
#pragma acc kernels deviceptr(inputData) \
async (2)
fitnessBestParticle (inputData ...);
//Join & Enqueue
#pragma acc kernels deviceptr(inputData) \
async (1)
updateBestPopulation (inputData ...);
} //End pragma
for (int i = 0; i < ITERATIONS; i++) {
#pragma acc launchstaticgraph (graph) \
deviceptr(inputData)

algorithms. The work of Kato et al. [19] proposes a GPU
scheduler to provide prioritization and isolation capabilities for
GPU applications in real-time and multi-tasking environments.
CUDA graphs were explored under OpenMP as a compile-
time implementation strategy [20], abstracting the concept of
static graphs from users.

In contrast, the focus of our work is twofold: i) analyze
the potential of using CUDA graph for a better programming
productivity, performance and scalability of applications; and
ii) propose a new specification for a better integration of
OpenACC with CUDA Graph.

VII. CONCLUSIONS

In this work, we present how CUDA Graph can be effi-
ciently and successfully used on GPUs in a way that ap-
plications are no longer limited to execute a single kernel.
We evaluated the use of static graphs and the OpenACC
programming model, using the PSO algorithm as a test case.
Several advantages arise from the use of OpenACC and
CUDA Graph: i) we provide a mechanism to easily benefit
from using static graphs on GPUs, without compromising
the performance; ii) in most cases we are close to peak
performance while comparing the results with a pure and
optimized CUDA code; and iii) by using OpenACC we enable
programmers to write and offload parallel code into the GPU
in an easy and transparent way. Finally, we propose a new
pragma-based clause to integrate the use of static graphs as
part of the OpenACC specification, which provides a simpler
and more transparent way to implement static graphs from this
programming model.
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