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Abstract—High-performance computing (HPC) systems con-
sist of thousands of compute nodes, storage systems and high-
speed networks, providing multiple layers of I/O stack with
high complexity. By adjusting the diverse configuration settings
that HPC systems provide, the I/O performance of applications
can be improved. However, it is challenging to identify the
optimal configuration settings without a thorough knowledge
of the system, as each of the different I/O characteristics
of applications can be an important factor for parameter
decision. In this paper, we use multiple machine learning
approaches to perform an in-depth analysis on I/O behaviors of
HPC applications and to search for the optimal configuration
settings for jobs sharing similar I/O characteristics. Improved
by maximum 0.07 R-squared score, our results in overall show
that jobs run on the HPC systems can obtain the predicted I/O
performance for different configuration parameters with a high
accuracy, using the proposed machine learning-based prediction
models.

Index Terms—I/O characteristic, Unsupervised learning, Fea-
ture selection, Clustering, Prediction model, High performance
computing

I. INTRODUCTION

As the era of exascale computing systems approaches,
modern supercomputer systems provide HPC users with
large amounts of computational resources and parallel
storage systems interconnected via a high-speed network
interface. Scientific HPC workloads perform large-scale data
analysis using parallel processing power of computational
nodes and conducting large number of I/O operations
on back-end storage systems. However, HPC applications
often experience poor I/O performance because of several
reasons. As the massive amount of output and checkpoint
files are read or written to the storage system through
complex I/O software stacks, the bandwidth can be limited
by the contention among multiple layers of software and
hardware. In addition to bottleneck in the I/O stack, shared
resource contention can adversely affect job execution
time. Significant fluctuations in performance can occur
occasionally depending on the number of jobs and their
computational or I/O loads that are execute in parallel. The
periodic software upgrade or malfunctioning hardware can
also attribute to the I/O performance degradation [1].

One of the solutions for mitigating the problem is to
make use of system configuration settings when the users
submit their jobs. The HPC systems provide multiple tun-
able parameters that users can adjust via the resource
scheduler. The parameters include the amount of compu-
tation and storage resources that can change the degree
of parallelism in application execution. Unfortunately, the

users often suffer from lack of knowledge in figuring out
the optimal configuration setting, since each parameter has
extremely large range of values. The growing diversity of
the HPC workloads makes it more difficult to search for
the configuration setting that can be highly complementary
with the I/O characteristics of the workloads. The proper
guidance with which to help the HPC users decide the
optimal configuration setting can improve both application
performance and resource utilization in the supercomputer
systems.

There have been numerous works that make use of
configurability in the HPC environment, in order to get
the maximum performance of the applications. [2]–[4] find
the optimal configuration settings by using supervised,
semi-supervised or unsupervised learning models in HPC
environments. Specifically, [5]–[7] predict the I/O perfor-
mance of petascale file systems using various machine
learning techniques. [8]–[13] focus on characterizing the I/O
behaviors of the HPC workloads in order to provide better
insights on the performance. Similar to that of previous
works, our goal is to get a better insight into understanding
the I/O characteristics of the HPC applications and to figure
out the configurations that can result in the improved
performance. We leverage the unsupervised learning model
to reveal complex I/O patterns and relationships that the
HPC applications have on performance. By building predic-
tion models based on the clustering results, the predicted
I/O performance with various configuration settings on
different jobs can be obtained with improved prediction ac-
curacy. The key contributions of this paper are summarized
as follows:

• We collect the I/O related information from the real-
world log dataset and group the jobs having similar
I/O characteristics with low computational cost and
improved efficiency (Section III).

• We construct prediction models based on the clustered
datasets, which enables improved prediction perfor-
mance (Section IV).

• We present our observation on searching for the op-
timal system configuration settings, using the con-
structed prediction models (Section V)

II. MOTIVATION

The Cori Supercomputer system at the National Energy
Research Scientific Computing Center (NERSC) is one of the
most powerful HPC systems in the world. HPC users can



Fig. 1. The distribution of user-configurable parameters on the top five
applications that have large amounts of I/O during the job execution time.
The applications have different colors in the graph

run their applications on the Cori system by submitting
a job script to the Slurm workload manager. The term
job refers to a computational task that a user requests to
run via the Slurm scheduler, while application refers to an
executable program. Users can specify configurations on the
job script, such as the amount of computational resource,
the type of cores in the compute node to use, or the number
of MPI processes with which to run the job. The limit of
execution time and the storage system-related parameters
can also be included in the script. Using the information
that the user defined on the job script, the Slurm workload
manager allocates the available resources to the users so
that the jobs can be run accordingly.

We perform our analysis using the real-world user log
data from Cori system from January to June, 2019 (PDT).
In order to collect the HPC log data, we use the Darshan
I/O profiling tool [9]. The Darshan module is a lightweight
I/O instrumentation library that can capture various I/O
behaviors, including application access patterns, number
of I/O operations, or access sizes using multiple interfaces.
Since we have to get the aggregated database of the logs to
apply the machine learning models, we use the python3-
based parser developed by Kim et al [14]. The parser
can extract I/O-related data not only from the logs that
the Darshan module provides, but also from the Slurm
workload manager and Lustre Monitoring Tool. By utilizing
both application-level, file system-level, and scheduler-level
statistics, a total of 112 I/O related features are collected
from 134,069 jobs in the analysis period.

Among the features given by the parser, there are
five features that are user-configurable. The number
of compute nodes(numNode), CPUs(numCPU), and pro-
cesses(numProc) are the features that control the amount
of computational resource, while the stripe count(numOST)
and the stripe size(stripeSize) are the ones used to configure
the file striping settings in the Lustre file system. Figure 1
shows the distribution of the user-configurable features on
the jobs from the top five applications that issue the largest

amount of I/O operations. The graph shows that all the jobs
do not change stripe size setting in the Lustre file system,
although they have a chance to improve the performance by
changing the parameter. Also, only one application (marked
as purple) out of five changes the stripe count dynamically,
while another four use a relatively fixed number of OSTs.
Another thing to notice is that 93.42% of jobs run from the
other application (green) use the same configuration setting
while I/O throughput varies from 14.3 to 215.6GB/s, which
is approximately 15 times higher performance.

Our observations show that most of the users choose
to use fixed amounts of resources to run the jobs and
there are multiple factors affecting I/O performance in the
HPC environment, other than the amount of resources the
jobs use. When the job increases the I/O parallelism by
configuring the Lustre file system to use multiple OSTs,
it also increases the shared resource contention on the
network and file system layer. The performance can even
change due to the input parameters that are used to run
the job, the information of which the profiling tools cannot
capture. It is an exhaustive work to manually figure out the
exact I/O related features that lead to poor performance.
In order to ease the computational complexities, we use
multiple machine learning models together to find the
factors having a large impact on I/O performance.

III. APPLICATION OF SCALABLE CLUSTERING MODEL

A. Dataset Preprocessing

The log data from multiple profiling tools has to be
refined using several data preprocessing steps before ap-
plying machine learning models. We use the jobs that issue
more than 1GB I/O operations, in order to focus on the
data that have enough I/O related information. Also, only
the applications that have been executed more than 100
times during the analysis period are included in the dataset.
To overcome the data imbalance, we sample the data to
make the number of job executions of the applications
to be the same by performing random over-sampling and
under-sampling [15]. After the data preprocessing steps are
completed, the dataset includes a total of 122,640 jobs from
84 different applications, each with the same 1,460 jobs.
There are 35 features remaining in the dataset, and the
target feature of clustering and prediction models is the
sum of the read and write I/O throughput, also termed
IORateTotal.

B. Feature Selection and Clustering Models

A clustering method can reveal hidden information in
I/O behaviors in the HPC system and yield a better under-
standing of the I/O workload characteristics. The clustering
algorithm calculates the similarity of the features for each
data point, in order to group the jobs together. Since there
are too many features that are related to I/O characteristics,
it is necessary first to eliminate the irrelevant features for
dimensional reduction before clustering the jobs. We seek
the best feature subset that includes features having the



most dominant impact on the target feature in two steps:
the Min-max mutual information feature selection, and the
SBS process combined with clustering algorithm.

In order to select the features that can best represent
the I/O characteristics of the data, we implement a new
feature selection algorithm that chooses the features based
on the correlation coefficient value. The new method,
named Min-max mutual information feature selection, first
selects the feature that is most strongly correlated with the
IORateTotal, which is the target feature. Then, the second
feature is selected from among the top ten least correlated
features with the previously selected one, having the highest
correlation value with the IORateTotal. In this way, not only
the features that have a strong relationship with the target
feature can be selected, but also the redundancy among the
selected features is minimized. The process of selecting the
features iterates until the desired number of features are
selected.

The top ten features selected from the Min-max mu-
tual information algorithm in our dataset are as fol-
lows: runTime, OpenReqSTDIO, mdsOPSMin, writeLess1k,
ossWriteLargestUsed, slowWriteTimePOSIX, numOST, total-
FileSTDIO, writeMore1m and readLess1k. Among the ten
features that are selected via the Min-max mutual infor-
mation algorithm, naively selecting some of the features
correlated to I/O performance on clustering may not group
data with similar I/O characteristics. It is also important
to determine the best number of features to select for
efficient clustering. To find the best feature subset that can
give the highest clustering performance, we use the parallel
Sequential Backward Selection (SBS) algorithm [16] , which
can reduce the computational cost by searching for the best
feature set in parallel.

The SBS algorithm works along with the KMeans cluster-
ing algorithm and two cluster evaluation metrics. Starting
from a set of ten features, one feature at a time is removed,
making ten feature subsets, each consisting of nine features.
Then, the KMeans clustering algorithm is performed on
each of the ten feature subsets in parallel, and the clus-
tering result is evaluated using the Silhouette coefficient
[17] and the Davies-Bouldin index (DBI) [18] metrics. The
two validity metrics evaluate the cluster performance by
calculating the inter-cluster variance and the inner-cluster
variance. When the Silhouette coefficient score is high and
the DBI score is low, the two scores indicate that the inter-
cluster distance is short and the nearest-cluster distance
is long, which can also be regarded as the quality of the
clustering result is good. In order to combine the two
validity metrics into one, we make use of the Combined
Score validity metric, which is calculated by dividing the
Silhouette score by the DBI score.

After the ten different clustering results from the ten
different feature subsets are evaluated in parallel, the subset
with the highest Combined Score is selected and becomes
the starting feature set in the next iteration. The SBS process
continues until three features are left in the feature set.
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Fig. 2. Three-dimensional feature space diagram of four clusters

Since the clustering algorithm is executed and evaluated in
parallel, the computation cost of searching for the optimal
result with the best feature set can be reduced dramatically.
The KMeans clustering algorithm runs using each feature
subset and the results are evaluated on the dedicated
compute nodes in parallel, reducing the computation time
by approximately 82%, compared to the time taken in a
serial search process.

Regardless of the number of clusters, the Combined Score
increases as the feature set size decreases, which indicates
that the SBS process eliminates the feature that is most
irrelevant to I/O performance and has a negative impact
on the cluster performance in every iteration. Since the
objective of the clustering is to group the applications with
similar I/O characteristics together and build the prediction
model on each of the clustered datasets, clusters need to
have a sufficient number of jobs. Considering both the
Combined Score and the size of each clusters, we select the
clustering result of four clusters by automatically calculates
the cluster size variability, in the case when every cluster
consists of at least 10,000 jobs.

The KMeans clustering algorithm clusters the jobs
based on three features, OpenReqSTDIO, writeLess1k, and
slowWriteTimePOSIX, which are considered to be the most
relevant variables to I/O performance and can provide the
best clustering performance. Figure 2 shows the three-
dimensional diagram of the clustering results, with Open-
ReqSTDIO and slowWriteTimePOSIX being in logarithmic
format. slowWriteTimePOSIX represents the time taken by
the slowest POSIX write operation, while writeLess1k is
the percentage of the number of write operations with an
access size less than 1KB to the total number of write
operations. OpenReqSTDIO represents the number of open
requests using the STDIO interface. The diagram shows
that jobs are grouped mainly based on writeLess1k, which
represents that writeLess1k value highly influences the I/O
performance of the job.

IV. PERFORMANCE PREDICTION WITH REGRESSION MODEL

A. Clustered Datasets

Previously, we clustered jobs based on the features highly
correlated to I/O performance, from which we obtained



four clusters, each with similar I/O characteristics. Our
next step is to train the prediction models using each of
the clustered datasets, and evaluate the prediction perfor-
mance. Since multiple prediction models are trained from
each of the clusters, which model to use can be identified
by the application name of the job. However, the internal
I/O behaviors of two jobs from the same application can
be completely different in some cases. Assuming that the
parallel I/O benchmark is run on the system, depending on
the command line options the users specify, one job may
perform the random write operations with a 4KB block size,
while another job may perform sequential read operations
with a 4GB block size. Then, the profiling logs would show
completely different I/O patterns, even though the two
jobs are run using the same application. Therefore, the
clustering algorithm would certainly place the two jobs in
different clusters, considering that they have opposite I/O
behaviors from each other. In this case, I/O performance
cannot be predicted for the same I/O benchmark job, since
it is impossible to know into which cluster the job will be
grouped, and thus the appropriate prediction model cannot
be distinguished.

In order to identify the proper prediction model from
the application name, we restrict the clustered dataset to
include applications that show similar I/O behaviors across
multiple runs. For example, when 80% of the jobs from
application A belong to Cluster 1 and the rest of the jobs
belong to Cluster 2, we consider every future job from the
application A would belong to Cluster 1. Interestingly, the
clustering result shows that 66 out of 84 applications have
more than 80% of the jobs grouped into the same cluster.
This indicates that most of the HPC applications are run
repeatedly with similar I/O characteristics, which is in line
with previous works [14], [19].

B. Prediction Models

We use the KNN prediction algorithm, which is one of
the most commonly used regression methods, to train the
prediction models. KNN calculates the similarity between
the given feature values of trained data and test data to
find the K-Nearest neighbors, from which the average of the
neighbors becomes the predicted value. We aim to improve
the prediction performance by using the training dataset
that includes jobs having common I/O characteristics. To
evaluate our clustering-based prediction models, we train
the models and measure the R-squared score using five
different datasets: the four clusters we get in Section III, and
the un-clustered dataset that has undergone only the data
preprocessing step for baseline evaluation. The training set
and test set are created by randomly dividing the jobs
of each dataset into an 8:2 ratio, respectively. The input
parameters to the model are the five user-configurable
features, information of which can be obtained before the
job execution time.

Table I shows the number of applications, jobs and the R-
squared score, which can represent the predictive accuracy,

TABLE I
EVALUATION OF PREDICTION MODELS USING DIFFERENT DATASETS

Dataset Number of Apps Number of Jobs R-squared score

Cluster 0 35 51,100 0.86
Cluster 1 22 32,120 0.91
Cluster 2 6 8,760 0.82
Cluster 3 3 4,380 0.20

Un-clustered Data 84 122,640 0.84

Fig. 3. Prediction plots of the measured versus predicted I/O performance
(MB/s) of jobs being in logarithmic format (top left Cluster 0, top right
Cluster 1, bottom left Cluster 2, bottom right Cluster 3)

on five types of datasets. The number of applications and
jobs in the un-clustered dataset is larger than the sum
of those in the four clusters, because we only include
applications that have similar I/O characteristics across the
runs in the four clusters. The evaluation result shows that
the R-squared score is higher with Clusters 0 and 1, when
compared to the score of the un-clustered dataset. One
of the reasons why the score of Cluster 3 is extremely
poor is because only three applications are included in the
cluster, which is considered to be too small to train the
model. Also, since most of the jobs in Cluster 3 use a fixed
value of user-configurable parameters, the prediction model
cannot accurately predict I/O performance with different
configurations. Figure 3 plots the measured and predicted
I/O performance of the jobs in logarithmic scale in the
four clusters. The horizontal dots in the bottom right graph
indicate that the prediction model trained by jobs in Cluster
3 predicts the same I/O performance most of the time, due
to the lack of training data. In contrast to Cluster 3, the
prediction model created from Cluster 1 shows the highest
R-squared score, due to the dynamic configuration settings
the users configured in running the jobs. The average R-
squared score with different weights for Cluster 0, 1, and
2 based on the cluster size is calculated as 0.87, which
is higher than the score of un-clustered dataset. Overall,
our result shows that clustering the jobs with similar I/O
behaviors can help increase the R-squared score and makes
it possible to predict I/O performance of the jobs with
improved accuracy.



Fig. 4. The optimal user-configurable parameters obtained from the
Cluster 0-based prediction model. The applications have different colors
in the graph

V. EVALUATION

In this section, we search for the optimal system con-
figuration settings for HPC workloads, using the trained
prediction model. We only show the Cluster 0-based trained
prediction model and omit the other models due to page
limitation. Other than the Cluster 3-based model, which has
poor performance because of the lack of information in the
training data, Cluster 0, 1 and 2-based models show the
similar performance. We create the test dataset by varying
the five user-configurable parameters in different ranges,
which are determined based on the Cori system user log
data, run from July to September 2019 (PDT). Specifically,
numNode has the range between 1 to 3,850 and numCPU
is determined as the product of 64 or 272 times numNode,
which is the number of cores in the Haswell and KNL nodes
respectively. Also, the product of numNode times 2 to the
power of 0 to 8 is determined as numProc, referring to the
log data. numOST ranges from 1 to 248, which is same
as the number of OSSs in the Cori system, and stripeSize
is determined to have one of 1, 2, 4, 8, 16, and 32MB
values. I/O performance is predicted for every combination
of the five parameters in the prediction model. Then the
configuration parameters with the highest I/O performance
in the model are selected.

Figure 4 shows the distribution of the user-configurable
parameters of the jobs and the optimal configurations that
give the highest I/O performance, using the prediction
models based on Clusters 0. Among the applications in-
cluded in the cluster, we plot the top five I/O-intensive
applications, run from July to September 2019 (PDT), which
is the time period that starts right after our training period.
The red marks in the graphs represent the optimal con-
figuration settings that are searched from the prediction
models. Compared to the performance of the jobs in all five
applications, the red marks show the highest I/O through-
put. Although we omit the figures showing the results
of the Cluster 1 and 2-based models, the optimal user-
configurable parameters that are searched using the two

models also give the highest I/O performance compared
to the performance of the jobs that run between the test
time period. By using the predicted performance for various
configuration settings, not only can users get a better
understanding of configuring the jobs and achieve higher
performance, but also the system can efficiently schedule
the limited amount of resource in the HPC environment.

While we show that I/O performance can be predicted
with different combinations of configuration parameters,
only the methodology for building the prediction model
based on the clustering results is applicable to other HPC
systems. We obtain the optimal configuration settings from
the regression models that are trained with jobs run in
the specific analysis period, January to June, 2019 (PDT).
Considering that the supercomputer system changes sig-
nificantly over time for multiple reasons, such as peri-
odic maintenance, hardware replacement, and software
upgrades, the results that we observe are not expected to
be found in general. The objective of our work is to provide
the methodology that can predict I/O performance of HPC
workloads with high accuracy, using various machine learn-
ing models. By periodically searching for the optimal user-
configurable parameters using our methodology, HPC users
can be provided with the configuration setting guidance
that can give improved I/O performance.

VI. RELATED WORKS

Many researchers and HPC users wonder about how to
achieve optimal performance on HPC systems for each
application they utilize [14]. In order to enhance overall
I/O performance for the applications run on HPC systems,
it is crucial to analyze logs from the past jobs and search
for optimizable features. [20]–[22] tried to understand the
correlation of various features collected by Darshan logs in
HPC environment. Gauge [23] provided a web application
that calculates unorganized logs of HPC jobs and showed
a interactive visualization of the workloads that ran on the
HPC system. However, only 61.4% of the data variances are
taken into account with PCA. On the other hand, through
Min-max feature selection and SBS, all the features are
thoroughly considered in order to get the best clustering
result in our work. Also, by utilizing these methods, most
of the applications we analyzed gather into a single cluster,
such that users can easily look for the cluster they need.

Alos, there have been numerous works that have tried
to predict the performance of applications to enhance
the overall result. Lux et al. [24] analyzed a benchmark
with a set of configurations in order to build a prediction
model. The study suggested that the multivariate model can
accurately predict I/O performance. Other works [5], [25]–
[27] also predicted I/O performance for HPC-scale clusters
using various methods. Our work also targets prediction of
the performance of the application using characteristics of
the HPC workloads. In contrast, our work is focused on
analyzing the system using Darshan logs and makes the
prediction based on the historical logs collected in the same



HPC environment. This enables our work to make a predic-
tion based on I/O behaviors of HPC applications and give
suggestions for input parameters for various applications.

VII. CONCLUSION

We used multiple machine learning techniques together
to efficiently discover hidden information in the complex
I/O behaviors of scientific workloads with low compu-
tational cost. By clustering the unlabeled user log data,
applications having similar I/O characteristics with each
other can be grouped together. Our results showed that
the R-squared scores on the prediction models built on
each of the clusters are higher than the score of the un-
clustered dataset, indicating that the clustering can help
improve the prediction accuracy. Using the methodology
that we introduced, I/O performance can be predicted for
any system configuration setting in advance, which can help
users find the best configuration settings for improved I/O
performance of the jobs. Also, efficient resource scheduling
in the HPC environment can be achieved by using the
constructed prediction models.
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