
Node-type-based load-balancing routing
for Parallel Generalized Fat-Trees

John Gliksberg
UVSQ, UCLM, Atos

Versailles, France
john.gliksberg@uvsq.fr

Jean-Noël Quintin
Atos

Les Clayes-sous-Bois, France
jean-noel.quintin@atos.net

Pedro Javier Garcı́a
UCLM

Albacete, Spain
pedrojavier.garcia@uclm.es

Abstract—High-Performance Computing (HPC) clusters are
made up of a variety of node types (usually compute, I/O,
service, and GPGPU nodes) and applications don’t use nodes
of a different type the same way. Resulting communication
patterns reflect organization of groups of nodes, and current
optimal routing algorithms for all-to-all patterns will not always
maximize performance for group-specific communications. Since
application communication patterns are rarely available before-
hand, we choose to rely on node types as a good guess for node
usage. We provide a description of node type heterogeneity and
analyse performance degradation caused by unlucky repartition
of nodes of the same type. We provide an extension to routing
algorithms for Parallel Generalized Fat-Tree topologies (PGFTs)
which balances load amongst groups of nodes of the same type.
We show how it removes these performance issues by comparing
results in a variety of situations against corresponding classical
algorithms.

Index Terms—HPC, routing, fat-tree, PGFT, Dmodk, Smodk,
heterogeneity

INTRODUCTION

Routing algorithms for HPC systems aim, for one thing,
to avoid congestion during application execution. No perfect
agnostic algorithm exists, and designing a good routing
algorithm usually requires paying attention to the topology and
communication patterns which will take place. As detailed by
Vigneras & Quintin [8], we can consider that the topology of an
HPC cluster never changes, so algorithms are usually designed
for a given topology class (i.e. topology-aware algorithms). On
the other hand, communication patterns are hard to observe (it
is distributed information and can evolve rapidly), rarely known
in advance (sometimes unpredictable, sometimes not predicted,
sometimes classified), and in the case of multiple applications
running concurrently it is potentially impossible to reroute the
cluster on-the-fly for optimal performance of each application
without causing deadlocks; indeed, there are few algorithms
which rely on real communication patterns. Existing research
instead focuses on common worst case scenarios: scatter, gather,
n2pairs, all-to-all, hot-spots, etc.

We observe that when nodes are not all of the same type
(compute, I/O, service, GPGPU, . . .) communication patterns
for applications will usually be subsets of worst-case scenarios
with only one type of source nodes and one type of destination
nodes. In the case of parallel generalized fat-trees (PGFTs), it
is intuitive to observe how existing load-balancing algorithms
(namely Dmodk and Smodk) can result in avoidable congestion

during type-specific communication phases. The aim of this
article is to propose new routing algorithms which will provide
the same performance for type-specific patterns as existing
ones do for type-unspecific patterns.

Section I describes the existing context in detail to improve
understanding of the performance issues. Characteristics of
fat-tree topologies and their routing algorithms are presented
to ease analysis of routing algorithms’ quality. A case-study to
this effect is introduced alongside a description of node type
heterogeneity in Section II. A corresponding communication
pattern is chosen in Section III, alongside a statically-computed
congestion metric; three routing algorithms are then analysed
in detail to show how they under-utilize available network
resources. Section IV provides a new technique to use these
resources more efficiently without losing properties of the
existing algorithms.

I. BACKGROUND

A. Types of fat-tree topologies

Fat-tree topologies were introduced by Leiserson [3] for
their high capacity to represent any network for a given size.
All fat-tree topologies are deadlock-free when routed with
shortest paths; this property is one of the main advantages
of fat-trees. K-ary n-trees were subsequently formalized by
Petrini & Vanneschi [5] and describe real-life implementations
of fat-trees with low-radix switches while being rearrangeably-
non-blocking for any n2pair pattern. Extended Generalized
Fat-Trees (XGFTs), introduced by Ohring et al. [4], describe a
more general class of topologies which keep some properties
of k-ary n-trees but allow building much smaller and cheaper
networks with only partly reduced overall performance. These
topologies are generally not capable of providing full cross-
bisectional bandwidth (CBB) for a given number of end-nodes
and switch radix.

Zahavi introduced Parallel Generalized Fat-Trees which
can provide slimmed topologies with full CBB [10];
they are also useful for their fast tolerance to faults on
duplicated links. PGFTs are defined by their number
of levels h, the upwards arity w, downwards arity
m, and link parallelism p, each parameter for every
level in the topology. (The corresponding function is
PGFT (h;m0, . . . ,mn−1;w0, . . . , wn−1; p0, . . . , pn−1).)
They are built recursively with duplicated subgroups composed

ar
X

iv
:2

21
1.

11
81

8v
1

 [
cs

.D
C

]
 2

1
N

ov
 2

02
2

of smaller PGFTs (containing only interconnected switches
of lower levels). Each switch is addressed with a tuple
(l, ah, . . . , al) where l is its level and a is the vector describing
the sub-trees the node is located at.

B. Vocabulary

Fat-trees are composed of levels consisting of switches
connected above and below. As a result, elements related to a
switch can be classified using an up or down prefix. For example
up-switches are switches linked to the switch in question which
are in the level above; the same logic applies to its ports and
links.

Up and down-routes also relate to the direction level-
wise. It is worth pointing out that this differs from existing
topology-agnostic Up/Down routing algorithms, where up
means “towards the root node” and conversely for down.

Top-switches are those in the highest level; leaf -switches
are (as in all indirect topologies) those connected to end-nodes.
For fat-trees we call all switches in the lowest level leaves.

Hereafter, L1 switches are those at the first level (leaves),
followed by L2s, etc.

C. Side-note on adaptive routing

Adaptive routing can react to congestion by diverting
communication towards alternative routes. In the case of
network congestion, spreading congested traffic as much as
possible is a right approach, because the congestion was caused
by unnecessarily colliding traffic flows in the first place.

Congestion can, however, originate from end-nodes them-
selves (it can then be referred to as end-node congestion), in
that case spreading congested traffic will not solve the situation
and will instead further increase the problems arising from that
traffic to the rest of the topology. In particular, more traffic
flows will share paths with congested traffic, hence increasing
the probability of the latter causing head-of-line blocking to the
former [6]. Furthermore, traffic that was routed adaptively loses
the property of being transmitted in-order, potentially causing
supplementary cost to the application or communication layer;
for that reason the communication layer can mark packets to
forbid them from being routed adaptively.

Since adaptive routing cannot differentiate between end-node
congestion and network congestion, it does not undermine the
need for high-quality deterministic routing. Instead, research
focuses on techniques to either reduce the potentially harmful
collateral impact of adaptive routing or reduce congestion from
happening in the first place with injection-throttling [1] or
better deterministic routing. The latter is the aim of this article.

D. Overview of routing algorithms across fat-tree topologies

Pure fat-trees are never used in supercomputers, because
they rely on very high-radix switches when there are many
nodes. However if we were to route them, that would simply
mean following the single shortest path available between any
two nodes. Any pair of nodes is associated with a single switch
at an equal and minimal distance from both, it is called the
nearest common ancestor (NCA).

When routing k-ary n-trees, every pair of nodes has multiple
NCAs. Optimal routing then comes down to distributing NCAs
via which to route to avoid network-congestion from happening
in the first place. For XGFTs and PGFTs, the problem is
extended to take into account per-level arities and parallel
links.

1) Random routing: When multiple NCAs are available
in fat-tree topologies, one approach to balancing the load of
deterministic routes is to randomly choose upwards routes.
There is only one downward route from a switch to a node.
However in PGFT topologies there is a choice among parallel
links. This choice is made randomly too.

On average, the routes are randomly load-balanced: all-to-all
traffic will not cause implicit bias towards any part of the
topology. Deviations from the average will, however, cause
routes to overlap and induce network congestion.

2) Dmodk routing: The regular structure of fat-tree topolo-
gies can be used to uniformly distribute routes and achieve
load-balancing routing with a deterministic method based on
packet destination ID, instead of random routing. Zahavi defines
such a routing algorithm for PGFTs in a closed form with
upwards routes PU leading to destination d for all switches in
level l computed as follows [10]:

PU
l (d) :=

⌊
d∏l

k=1 wk

⌋
mod (wl+1pl+1)

This formula assigns an index among the switch’s up-ports,
which must be indexed beforehand to match the topological
addressing scheme. All switches in a level that are not in
the same subgroup as the destination are assigned the same
upwards route. (Those that are in the subgroup must be routed
downwards.) This formula and its corresponding algorithm are
called D-mod-k or Dmodk. This method can be simplified
for fat-trees simpler than PGFTs and in all cases balances
the load while concentrating routes to the same destination,
thus concentrating the undesired effects of same-destination
end-node congestion within a single-root subtree.

In the case of PGFTs, parallel links are indexed in a round-
robin manner so that all up-switches are assigned a route before
multiple routes are assigned towards a single switch (via those
multiple links). This, combined with the above formula, ensures
a distribution similar to the one defined sequentially in Zahavi
et al.’s previous work concerning fat-trees [11].

Gomez et al. [2] routes k-ary n-trees with a method which
applies bitmasks to the destination number. This method is
defined in detail for k = 2; a similar approach can be extended
for higher values of k. This algorithm can be considered as a
specialized version of Dmodk routing.

3) Smodk routing: If switches can determine the sources
of messages, routing algorithms can use that information
as well. From this an alternative to Dmodk can be defined:
Smodk, which propagates messages similarly to Dmodk but
based on source node ID rather than destination ID. This
algorithm concentrates together routes from the same source,

thus concentrating the undesired effects of same-source end-
node congestion as much as possible.

In cases where communications are symmetrical between
patterns with several destinations per source and those with
several sources per destination, there is no reason for Dmodk
or Smodk to be better than the other. Otherwise there isn’t
necessarily one choice which is always better, but choosing
Smodk for multiple-destination heavy patterns (and Dmodk for
multiple source heavy patterns) is a reasonable heuristic [7].

We refer to Dmodk and Smodk together as a class of
algorithms as Xmodk for the rest of this article.

II. HETEROGENEOUS CLUSTERS

Supercomputers are often clusters made of several types
of nodes, rather than the common description of a single
type of computing nodes. Other types of nodes can include
IO nodes for short and long-term data storage; service or
management nodes for login, node reservation, deployment,
monitoring, fault-tolerance; GPGPU and FPGA nodes for
optimized computations

There are various strategies to place secondary nodes (IO or
service) in existing clusters, which are usually not described
in research material. In the case of fat-trees, strategies can
include:
• Placing a constant number of secondary nodes of each

type at every leaf
• Adding an irregular subgroup with secondary nodes

connected to the top switches like the other regular
subgroups (this generally breaks fat-tree properties)

• Connecting the cluster to an external topology via routers.
For example if using a Lustre file system, Lustre routers
can be nodes of the cluster leading to an array of IO servers
of which the fabric management and routing algorithm
are not aware.

As a concrete example, BXI1 switches have 48 ports. Some
BXI switch have only copper ports, some others have three
optical ports. The optical ports are placed identically on all
switches and are dedicated to nodes physically far within the
topology (i.e. management nodes and IO proxy nodes).

III. ANALYSIS OF A TYPE-BASED
COMMUNICATION PATTERN

We will use a simplified case-study to show how node-
type-oblivious load-balancing routing can result in unnecessary
network congestion. The topology for this case-study is a
pruned 3-level PGFT with low-radix switches and nonfull cross-
bisectional bandwidth (CBB) (see figure 1). Nodes are indexed
by port rank on their leaf and by leaf address comparison
between leaves. The last port of every leaf is reserved for IO
nodes; they have NIDs whose modulo by 8 is 7. We use a
topology with nonfull CBB because otherwise there would be
no possible congestion at any top-port.

1BXI is the interconnect technology developed by Bull/Atos. It comprises
hardware (switches, links) and software (firmware, low-level and high-level
development environment on which are built the fabric management and
routing algorithms).

(2,0,0) (2,0,1)

(1,0,0) (1,0,1)

(0,0,0)

[0–7]

(0,0,1)

[8–15]
(0,0,2)

[16–23]

(0,0,3)

[24–31]

(1,1,0) (1,1,1)

(0,1,0)

[32–39]

(0,1,1)

[40–47]

(0,1,2)

[48–55]

(0,1,3)

[56–63]

Fig. 1. Case-study topology PGFT (3; 8, 4, 2; 1, 2, 1; 1, 1, 4) — IO nodes
(in black) have the largest NID of every leaf (7, 15, 23, · · · ≡ 7 mod 8)

This case-study is based on a communication pattern
commonly found in distributed applications: data collection
from all compute nodes to IO nodes, each compute node
sending to the IO node of its symmetrical leaf (e.g.: (0, 0, 1) is
symmetrical to (0, 1, 1), so NIDs 8 to 14 send to NID 47). In
this case all routes will have to go through a top-switch. This
might be contained in a short time frame, following a barrier, or
spread out through the application lifetime, it does not matter.
For a given complete set of routes R, we call C2IO(R) the
subset of routes affected by this pattern.

A. Static congestion metric

This study relies on a static metric to describe the potential
sources of contention. The aim of this metric is to give a formal
way to describe contention, which abstracts the fine-grain
causes of latency to help build a general understanding of how
to avoid contention. This contrasts with common techniques
based on simulation or experimentation which do not link
observations of contention with a corresponding explanation.
This simple technique of estimation of contention is new; it is
also used in concert with the architecture described by Vigneras
& Quintin [8] with the goal of automating computation of that
metric for potential integration into the fabric management’s
decision making. Analysis in terms of this metric is sufficient
to prove and explain drawbacks and benefits of algorithms, but
a simulation-based analysis would complement this work to
give tangible results for real-life applications.

Worst-case scenario contention can be measured by the
number of possible flows going through a port at the same
time. Once the topology is routed, if a given port p is used as
output for routes, we can count the number of distinct sources
(src(R, p)) and destinations (dst(R, p)) for these routes:

• Both values are non-nil, since there are routes going
through the port.

• If one of these values is equal to 1, this port will never be
used for unrelated communications; the port is subjected
to only one flow of communication. Any potential packet
concurrency at the port means that there is a corresponding
concurrency at the sending end-node or receiving end-
node. That end-node will be the cause of unavoidable

congestion of an order of magnitude more important, and
no packet from another flow could be affected.

psrc dst

p dst

psrc

Fig. 2. Example sets of routes for which p is subjected only to one flow

• If both values are greater than one, there are unrelated
communications that might interact at this port. This can
lead to potentially avoidable network congestion.

p

Fig. 3. Example routes for which p can be subjected to multiple flows

For a given set of routes R, we call this metric Cport:

Cp(R) := min(src(R, p), dst(R, p))

This metric does not imply there will always be network
congestion at ports with Cport > 1, but it shows the worst
case. Assuming all flows are similar, collisions will happen
more frequently when more flows are involved. As a result we
claim that in general port a will tend to be more congested
than port b if Ca > Cb, even if it depends on the exact timing
of communications. From this we can deduce a reasonable
metric for the whole topology:

Ctopo(R) := max
p∈topo

(Cp(R))

Routing in a balanced manner means minimizing that metric.
Studying a communication pattern means applying this metric
only to the routes affected by the pattern rather than all the
routes computed.

For this metric we consider ports as output for the routes, but
the same analysis can be made with ports as input. This does
not cause Ctopo(R) to vary when the pattern has symmetrical
communications between sources and destinations.

B. Dmodk performance

With Dmodk routing, destinations will be assigned one
switch through which to route in every subgroup. More
specifically, we will describe which up-port is routed as output
for switches not directly above the destination, and which down-
port is routed as output for switches directly above, when there
are several parallel ports available.

w1 = 2, p1 = 1: every destination is assigned the L2 switches
corresponding to its index modulo two. (E.g.: 47 mod 2 = 1,
thus destination 47 is assigned the second L2 switch of each

subgroup.) The eight IO destinations are all assigned the same
two L2 switches ((1, 0, 1) and (1, 1, 1)), and more specifically
the last up-port of the L2 switch not in their subgroup.
w2 = 1: there is only one L3 switch each L2 switch leads

to. It still corresponds to the destination’s index modulo 2. IO
destinations are assigned the second L3 switch.
p2 = 4: they are more specifically assigned the last port of

the four leading to their subgroup. This leaves four destinations
per top-port. Figure 4 shows this for (2, 0, 1).

(2,0,0) (2,0,1)

(1,0,0) (1,0,1)

(0,0,0)

[0–7]

(0,0,1)

[8–15]
(0,0,2)

[16–23]

(0,0,3)

[24–31]

(1,1,0) (1,1,1)

(0,1,0)

[32–39]

(0,1,1)

[40–47]

(0,1,2)

[48–55]

(0,1,3)

[56–63]

Fig. 4. Set of all routes (in red) going towards IO nodes of the right subgroup,
under Dmodk routing. (2, 0, 1)’s port with highest rank is used as output for
all routes.

Furthermore, each destination has exactly one corresponding
source:

C(2,0,1):7(C2IO(Dmodk)) = C(2,0,1):8(C2IO(Dmodk))

= min(56, 4) = 4

(2, 0, 1) : 7 is the last of (2, 0, 1)’s four ports leading to the
left subgroup, and (2, 0, 1) : 8 is the last leading to the right
subgroup.

There are 8 (leaves) times 7 (compute nodes per leaf) = 56
compute destinations, to which are assigned all top-ports except
for the two ports of (2, 0, 1) assigned to IO nodes = 14 top-ports,
in a balanced manner; this leaves four compute destinations
per port. None of these routes are affected by C2IO, therefore,

∀p /∈ (2, 0, 1), Cp(C2IO(Dmodk)) = 0

Ctopo(C2IO(Dmodk)) = 4

To reformulate this result: for the given communication
pattern most of the top-ports are unused while two top-ports
have a strong risk of congestion. This can be seen for one of
these ports on Figure 4: the routes shown by the red arrows
concentrate around the top-port like those shown in Figure 3.

This is sub-optimal, while spreading both subgroups of
four IO destinations any disjoint way among the 8 ports
leading to each in the top-switches would have lead to
Ctopo(C2IO(Rdst)) = 1. The object of Section IV will be to
define such a set of routes Rdst.

C. Smodk performance

With Smodk, routes from compute to IO nodes are spread
per source. With the same process as Dmodk for compute
nodes as destinations, we determine which ports are used with
Smodk for computed nodes as sources. More specifically, we
will describe which down-port is used as output for switches
not directly above the source, and which up-port is used as
output for switches directly above, when there are several
parallel ports available.

There are 8 top-ports that lead to each subgroup, and 28
compute sources per subgroup; after every group of 7 sources,
one NID is skipped, which corresponds to skipping the last
considered port of (2, 0, 1). We conclude that two ports of
(2, 0, 1) have no compute source, and every other top-port
has four compute sources which are all connected to different
leaves and as a result send to different IO destinations. This
results in Cp(C2IO(Smodk)) = 4 for each affected top-port
p. This is shown in Figure 5.

This means that in this case there are fourteen top-ports with
a high risk of congestion; The sets of routes depicted by red and
light-blue arrows in Figure 5 also correspond to the situation
shown in Figure 3 to show how high congestion risk for two
of the fourteen concerned top-ports. For this communication
pattern Smodk is less suited than Dmodk.

(2,0,0) (2,0,1)

(1,0,0) (1,0,1)

(0,0,0)
[0–7]

(0,0,1)
[8–15]

(0,0,2)
[16–23]

(0,0,3)
[24–31]

(1,1,0) (1,1,1)

(0,1,0)
[32–39]

(0,1,1)
[40–47]

(0,1,2)
[48–55]

(0,1,3)
[56–63]

Fig. 5. Two subsets of C2IO(Smodk): red routes have source NID 0 mod 8,
light blue routes have source NID 1 mod 8.

Optimizing a source-based routing for this pattern and metric
means coalescing routes to the same destination. This would
be possible for a given pattern; however this article aims to
route based on node-type only, therefore we cannot use specific
distribution information. If we always have colliding routes
lead to distinct destinations, the best we can reach in this
situation is still Ctopo(C2IO(Rsrc)) = 4.

Since the pattern considered has few destinations and
many sources, it is reasonable that a routing algorithm which
concentrates routes from the same sources will be difficult to
improve. The opposite will happen for the opposite pattern.
Section IV will also define the set of routes Rsrc.

D. Random routing performance

Dmodk was unable to reach Ctopo(Dmodk) = 1 because
the modulo operation depends on NIDs and has no information
about the communication pattern. Random routing does not

depend on NID; it spreads every route uniformly over the
available ports, and as a result every subset of routes is also
spread uniformly. Therefore C2IO(Random) does not have
particularly coalesced routes.

In practice, distributing each group of 28 routes into its
corresponding 8 top-ports always causes collisions between
routes that have different destinations. The probability of
collision is very close to 1.2 Therefore, we can safely state that
Ctopo(C2IO(Random)) is always greater than 1. Repeated
computation of Random routing for the given topology and
communication pattern resulted in Ctopo(C2IO(Random))
values of either 3 or 4: i.e. rarely better than Dmodk.

Random routing will usually give slightly better results than
Dmodk or Smodk as soon as the communication patterns have a
given bias, but they will always leave some ports with avoidable
congestion. Just as Xmodk algorithms aim to compute perfect
routes for the general worst-case scenario, we want to compute
perfect routes for the type-specific worst-case scenario.

IV. GROUPED XMODK

In the previous section we show that the existing routing
algorithms do not balance the load correctly when the topology
has mixed node types.

To improve routing for type-specific communication patterns,
we can use knowledge of node types and modify Xmodk
algorithms. The aim is to optimize resource usage depending
on node type. For example the optimization should achieve
the best throughput for communications towards IO proxies or
compute nodes.

We suggest balancing each group of nodes separately to
improve load-balancing under worst-case type-specific patterns.
This corresponds to the previously mentioned Rdst and Rsrc.

A. Description of indexing

Grouped Xmodk algorithms, or Gxmodk, consist of prepro-
cessing NIDs. Knowing each node’s type, the algorithms begin
by updating the NIDs accordingly, as shown in algorithm 1.

Algorithm 1 Reindex NIDs by type

n o d e t y p e s = s e t ((node . type f o r node in t opo . nodes))
newnodes = l i s t ()
f o r node type in n o d e t y p e s :

f o r nid , node in enumerate (t opo . nodes) :
i f node . type == node type :

newnodes . append (node)
topo . nodes = newnodes

Re-indexing in the order of the original NIDs ensures that
consecutive reindexed NIDs are topologically close.

Xmodk is then applied as usual but with the updated NIDs.

2Determining with what probability there will be a conflict between two of
the 28 routes (leading to different destinations) spread through the 8 top-ports
is an example of collision probability between sets of random variables [9] (a
generalization of the girl/boy birthday problem). However in this case the total
number of variables is greater than the number of choices. In that situation,
the article’s formula for generalized number of sets has a term which always
cancels out for part of the computation; it seemed possibly ill-adapted and
was therefore discarded.

B. Analysis for previous topology and communication pattern

We choose to call gNID a reindexed NID. Let’s suppose
that compute nodes are reindexed first: there are 56 so they
are assigned gNIDs 0 to 55. IO nodes are assigned gNIDs 56
to 63. Now routing depends on whether Gdmodk or Gsmodk
is used.

1) Gdmodk results: For Gdmodk, each IO destination is
assigned a unique L2 switch in each subgroup (e.g.: gNID 61
is assigned (1, 0, 1) and (1, 1, 1)). Each L2 switch is assigned
two IO destinations of the opposite subgroup, therefore the up-
routes from L2 switches use only half of the available parallel
ports in a balanced manner.

Cp∈(1,∗,∗)(C2IO(Gdmodk)) ≤ 1

Each L3 switch is shared by two IO destinations for each
subgroup (e.g.: (2, 0, 1) is shared by NIDs 15, 31, 47 and 63;
or gNIDs 57, 59, 61 and 63), which are assigned distinct output
ports. Figure 6 shows how Gdmok distributes routes efficiently
when considering type-based communication patterns. It can
be interpreted by pointing out that each set of routes specified
by a given color has only one destination (and matches the
situation described in Figure 2), with no overlap on output
ports in the two upper levels between two sets of routes.

(2,0,0) (2,0,1)

(1,0,0) (1,0,1)

(0,0,0)

[0–7]

(0,0,1)

[8–15]
(0,0,2)

[16–23]

(0,0,3)

[24–31]

(1,1,0) (1,1,1)

(0,1,0)

[32–39]

(0,1,1)

[40–47]

(0,1,2)

[48–55]

(0,1,3)

[56–63]

Fig. 6. Simplified representation of all routes going to IO nodes in the right
subgroup, under Gdmodk routing. Arrows not displayed can be deduced by
shortest paths to displayed ones.

Cp∈({1,2},∗,∗)(C2IO(Gdmodk)) = 1

All leaves’ up-ports have seven sources and two destinations.
Cp∈Up−ports((0,∗,∗))(C2IO(Gdmodk)) = 2 as is shown with
the overlapping dashed red and double-dotted green arrows in
Figure 6. It is unavoidable for some of them to have more than
one for the given pattern, so Gdmodk gives the best possible
quality of routing tables.

Ctopo(C2IO(Gdmodk)) = 2

2) Gsmodk results: For Gsmodk, the 28 compute sources of
each group are assigned all 8 up-ports of the two L2 switches
of their subgroup in a balanced manner: there are 7 compute
sources per up-port which are used to lead to 4 distinct IO
destinations. The 7 top-ports leading to the other subgroup are
used the same way.

Ctopo(C2IO(Gsmodk)) = 4

Figure 7 shows all routes of C2IO(Gsmodk) that use one
example top-port as output.

(2,0,0) (2,0,1)

(1,0,0) (1,0,1)

(0,0,0)

[0–7]

(0,0,1)

[8–15]
(0,0,2)

[16–23]

(0,0,3)

[24–31]

(1,1,0) (1,1,1)

(0,1,0)

[32–39]

(0,1,1)

[40–47]

(0,1,2)

[48–55]

(0,1,3)

[56–63]

Fig. 7. Subset of C2IO(Gsmodk) with source gNID 0 mod 8

Gsmodk improves route distribution for this pattern com-
pared with Smodk: Since an eighth up-port is now used in
both L2 switches (1, ∗, 1), (and two down-ports of (2, 0, 1)),
each port now has 7 sources. All of these ports that were used
by Smodk had 8 sources. This improvement is comparatively
minor, because few resources had been spared by Smodk on
this pattern. This shows that type-awareness doesn’t solve
the existing asymmetry issue between optimizing routing to
coalesce sources or destinations, but it does improve routing
with regards to type-specific patterns any time Xmodk missed
out on available resources.

On the symmetrical communication pattern we would see
the same improvement as we do between Dmodk and Gdmodk
for the considered communication pattern. In general, if pattern
P is symmetrical to Q, we should always find:

Ctopo(P (Dmodk)) = Ctopo(Q(Smodk))

Ctopo(Q(Dmodk)) = Ctopo(P (Smodk))

Ctopo(P (Gdmodk)) = Ctopo(Q(Gsmodk))

Ctopo(Q(Gdmodk)) = Ctopo(P (Gsmodk))

CONCLUSIONS AND FUTURE WORKS

In this paper we have defined realistic communication
patterns depending on node type which are present on our
production cluster. From this real-life scenario we analyzed how
existing solutions fare against these patterns. We have specified
how type-based communications can result in unnecessary
congestion. To counter this we have provided new algorithms to
improve existing solutions. We have shown a realistic example
with, in one case, a sevenfold decrease in congestion risk.

The congestion issue of Xmodk stems from nodes of a same
type having the same NID, modulo arities. This also affects
communications unrelated to node-type, but optimizing for
these means knowing about application usage. Gxmodk aims
only to improve the situation when node-type is known; having

early knowledge of applications’ communication matrices
would warrant writing specific deterministic algorithms.

This article relies on a static flow metric from which we
deduce probable congestion. A more thorough analysis of
the relationship between this metric and actual congestion
depending on fine-grain communication interaction would also
be warranted. A corresponding study of the new algorithms
based on simulation rather than only a static congestion metric
would also provide results in terms of performance.

This work focuses on fat-trees, for which node indexing
allows intuitive understanding of NCA distribution; from this
we derive type-based pattern analysis and devise a new node
indexing to solve corresponding issues. For other topologies
(e.g. DragonFly, Generalized HyperCubes) a similar work could
also be attempted. Furthermore, a procedural routing algorithm
for fat-trees (which can be useful for routing degraded fat-trees
or similar topologies) was omitted; a similar technique could
be used to improve it.

ACKNOWLEDGEMENTS

This BXI development has been undertaken under a cooper-
ation between CEA and Atos. The goal of this cooperation is
to co-design extreme computing solutions. Atos thanks CEA
for all their inputs that were very valuable for this research.

This research was partly funded by a grant of Programme
des Investissments d’Avenir. This work has been jointly
supported by the Spanish MINECO and European Commission
(FEDER funds) under the project TIN2015-66972-C5-2-R
(MINECO/FEDER).

BXI development was also part of ELCI, the French FSN
(Fond pour la Société Numérique) cooperative project that
associates academic and industrial partners to design and
provide software components for new generations of HPC
datacenters.

REFERENCES

[1] Jesus Escudero-Sahuquillo, Ernst Gunnar Gran, Pedro Javier Garcia,
Jose Flich, Tor Skeie, Olav Lysne, Francisco Jose Quiles, and Jose
Duato. Combining congested-flow isolation and injection throttling in
hpc interconnection networks. In International Conference on Parallel
Processing (ICPP), pages 662–672. IEEE, 2011.

[2] Crispı́n Gomez, Francisco Gilabert, Marı́a Engracia Gomez, Pedro López,
and José Duato. Deterministic versus adaptive routing in fat-trees. In
IEEE International Parallel and Distributed Processing Symposium, pages
1–8. IEEE, 2007.

[3] Charles E Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE transactions on Computers, 100(10):892–901,
1985.

[4] Sabine R Ohring, Maximilian Ibel, Sajal K Das, and Mohan J Kumar.
On generalized fat trees. In Proceedings of the 9th International Parallel
Processing Symposium, pages 37–44. IEEE, 1995.

[5] Fabrizio Petrini and Marco Vanneschi. k-ary n-trees: High performance
networks for massively parallel architectures. In Proceedings of the 11th
International Parallel Processing Symposium, pages 87–93. IEEE, 1997.

[6] Jose Rocher-Gonzalez, Jesus Escudero-Sahuquillo, Pedro J Garcı́a,
and Francisco J Quiles. On the impact of routing algorithms in the
effectiveness of queuing schemes in high-performance interconnection
networks. In 25th Annual Symposium on High-Performance Interconnects
(HOTI), pages 65–72. IEEE, 2017.

[7] German Rodriguez, Cyriel Minkenberg, Ramon Beivide, Ronald P
Luijten, Jesus Labarta, and Mateo Valero. Oblivious routing schemes in
extended generalized fat tree networks. In IEEE International Conference
on Cluster Computing and Workshops, pages 1–8. IEEE, 2009.

[8] Pierre Vignéras and Jean-Noël Quintin. Fault-tolerant routing for exascale
supercomputer: The bxi routing architecture. In International Conference
on Cluster Computing (CLUSTER), pages 793–800. IEEE, 2015.

[9] Michael C Wendl. Collision probability between sets of random variables.
Statistics & probability letters, 64(3):249–254, 2003.

[10] Eitan Zahavi. D-mod-k routing providing non-blocking traffic for shift
permutations on real life fat trees. CCIT Report, 776, 2010.

[11] Eitan Zahavi, Gregory Johnson, Darren J Kerbyson, and Michael Lang.
Optimized InfiniBand fat-tree routing for shift all-to-all communication
patterns. Concurrency and Computation: Practice and Experience,
22(2):217–231, 2010.

	I Background
	I-A Types of fat-tree topologies
	I-B Vocabulary
	I-C Side-note on adaptive routing
	I-D Overview of routing algorithms across fat-tree topologies
	I-D1 Random routing
	I-D2 Dmodk routing
	I-D3 Smodk routing

	II Heterogeneous clusters
	III Analysis of a type-based communication pattern
	III-A Static congestion metric
	III-B Dmodk performance
	III-C Smodk performance
	III-D Random routing performance

	IV Grouped Xmodk
	IV-A Description of indexing
	IV-B Analysis for previous topology and communication pattern
	IV-B1 Gdmodk results
	IV-B2 Gsmodk results

	References

