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Abstract—The study of graph-based submodular maximization
problems was initiated in a seminal work of Kempe, Kleinberg,
and Tardos (2003): An influence function of subsets of nodes is
defined by the graph structure and the aim is to find subsets
of seed nodes with (approximately) optimal tradeoff of size and
influence. Applications include viral marketing, monitoring, and
active learning of node labels. This powerful formulation was
studied for (generalized) coverage functions, where the influence
of a seed set on a node is the maximum utility of a seed item to
the node, and for pairwise utility based on reachability, distances,
or reverse ranks.

We define a rich class of influence functions which unifies and
extends previous work beyond coverage functions and specific
utility functions. We present a meta-algorithm for approximate
greedy maximization with strong approximation quality guar-
antees and worst-case near-linear computation for all functions
in our class. Our meta-algorithm generalizes a recent design by
Cohen et al (2014) that was specific for distance-based coverage
functions.

I. INTRODUCTION

Submodular maximization problems are extensively studied
and used in many application domains. The aim is to compute
a subset S of items of a certain size that maximizes some sub-
modular and monotone influence (valuation) function Inf(S).

Even for the special case of coverage problems, the problem
of computing, for parameter s, a set S of s items with
maximum Inf(S) is NP hard and also hard to approximate. A
simple and practical algorithm is Greedy, which sequentially
selects the item

i = argmax
h

Inf(h | S)

with maximum marginal influence

Inf(i | S) = Inf(S ∪ {i})− Inf(S) .

We refer to the computed permutation of items as the greedy
sequence and to the process as greedy maximization.

A classic result of Nemhauser et al [21] shows that for
submodular monotone functions, any s prefix of the greedy
sequence of items has influence that is at least 1−(1−1/s)s ≥
1−1/e of the maximum possible. Feige [13] showed that this
is the best worst-case approximation ratio we can hope for
by a polynomial time algorithm. Hence the greedy sequence
approximates the full Pareto front of seed set size versus
influence. A very useful relaxation is approximate greedy
which selects in each step an approximate maximizer that
has at least (1 − ε) of the maximum marginal influence.

Approximate greedy often scales up the computation while
lowering the approximation ratio guarantee by at most O(ε).

We are interested here in influence functions that are ex-
pressed in terms of utility values uij between our items and
elements. The influence of the seed set S can then be defined
as the sum over elements j of the maximum utility of a seed
item to j:

Inf(S) =
∑
j

max
i∈S

uij . (1)

Coverage functions are the special case where for any elements
j, there is cj > 0 such that uij ∈ {0, cj}. A natural exten-
sion replaces the maximum in (1) with another submodular
aggregation function F applied to the multiset {uij | i ∈ S}.

Graphs are a common model of representing relations be-
tween entities : Edges represent stronger affinity between their
end points but more generally, affinity can be derived from
the ensemble of paths connecting nodes. A sparse graph can
therefore represent dense and intiricate affinity relations be-
tween all pairs of nodes. With graph-based influence, items and
elements are nodes in a graph and utility values are affinity. In-
fluence is derived from utility using max aggregation (1). Seed
sets with high influence and small size optimize coverage,
diversity, and information and have low redundancy. Among
the many applications are selecting anchors/hubs/coresets for
monitoring/analysing/sparsifying the network, active learning
candidates in semi-supervised learning context, or viral mar-
keting in social networks. Graph-based influence is rooted in
classic graph formulation of the set (maximum) cover problem
and notions of centrality (influence of a single vertex) in
social networks [2], [14]. It was popularized and extended
in a seminal work of Kempe, Kleinberg, and Tardos [17].

There are several natural ways to derive utility values from
graph structure (See example in Figure 1). The hugely popular
Independent Cascade (IC) model of [17] uses uij = 1 if j is
reachable from i and 0 otherwise. Gomez-Rodriguez et al pro-
posed distance-based (“continuous time”) utility, where edge
lengths model propagation times [15], [12]: For a threshold
parameter T , uij = 1 if and only if dij ≤ T , where dij
is the shortest path distance. More generally, [10] considered
utility that smoothly decreases with distance. Smooth distance-
based utility was studied in social network analysis [2], [22],
[14], economic models [3], and general network analysis [11].
Reverse-rank utility is based on the order induced by distances
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utility with α(x) = 1/x
distance dBA = 2 uBA = 1/2

dCA = 1 uCA = 1
dDA = 5 uDA = 1/5
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Fig. 1. Utility example for toy graph with edge lengths/lifetimes

instead of the magnitudes and by doing that, it “factors out”
the effect of varying density. The special case of “reverse
nearest neighbors” influence, where uij = 1 if i is the nearest
neighbor of j, was formalized by Korn and Muthukrishnan
[18]: The influence of a seed set is the number of reverse
nearest neighbors it has. Buchnik and Cohen [4] generalized
it to higher order reverse near neighbors and smooth decrease
with reverse rank.

A powerful extension is to use a randomized model that
selects edges or edge lengths from the base graph [17], [8],
[1]. Utility values are then defined as the expectation. This
allows reachability or distance-based utility values to capture
finer properties of the connecting paths ensemble: In particular,
utility increases not only for shorter paths but also with more
disjoint paths. We note here that popular spectral kernels
(e.g. effective resistances or hitting probabilities of random
walks) [6] share these basic qualities. The IC model of [17]
selects edges from the base set with independent probabilities.
Distance-based models assign edge lengths drawn from (typi-
cally exponential or Weibull) distributions [15], [12], [8], [1].
Computationally, randomized models are handled by generat-
ing multiple sets of edges using Monte Carlo simulations and
averaging over simulations.

Massive data sets pose significant scalability challenges.
The exact greedy algorithm is polynomial but we seek al-
gorithms that are near linear. A fruitful research thread pro-
posed many different heuristics and algorithms for influence
maximization [19], [5], [16], [23]. Most of these algorithms
can guarantee both near-linear computation and approximation
quality only for small seed set sizes. The only approach
that computes a full approximate greedy sequence using
near-linear computation is the SKIM (sketch based influence
maximization) algorithm of Cohen et al [9], which efficiently
maintains samples of the marginal influence sets of nodes.
SKIM was initially designed for reachability-based influence
and extended to distance-based [10] and reverse-rank influence
[4].

Contribution and outline

Our main contribution here is presenting a general frame-
work for efficient greedy influence maximization that gener-
alizes and extends this previous work.

Previous work focused on influence functions with max
aggregation (1), where the contribution of an element j to the
influence of the seed set S is equal to the maximum utility
maxi∈S uij of a seed item. With max aggregation, the value
of a seed set of videos to a user is equal to that of their
favourite video in the seed set. Often, however, elements derive

additional value from other seed items. In our example, user j
may be able to watch another video and thus values its second-
favourite seed video i at uij/2. In our toy graph example of
Figure 1 when considering distance-based utility, the value of
the seed set {B,C,D} to node A is 1 with max aggregation,
and is equal to uCA, but is uCA + uBA/2 = 1.25 when
the second favourite B contributes half of uBA. In Section II
we define submodular top-` aggregation functions that depend
on the ` highest utility values of seed items to the element.
We also show that when the utility matrix {uij} is provided
explicitly, an approximate greedy sequence can be computed
in time that is near-linear in the number of nonzero entries.

In a graph setting, explicit computation of {uij} is com-
putationally prohibitive. SKIM and its extensions are efficient
because dense utility values {uij} are represented by a sparse
structure and SKIM performs the greedy maximization using
computation that is near-linear in the size of the structure.
SKIM ultimately obtains utility values for a number of pairs
that is near-linear in the number of nodes. In Section III we
present an abstraction of two access primitives to the utility
matrix that suffice for performing a “SKIM-like” influence
maximization computation: reverse sorted access oracle and
forward search oracle. In Section V we present the SKIM
meta-algorithm that performs approximate greedy influence
maximization for influence functions with submodular top-
` aggregation using near-linear computation and number of
oracle calls.

In Section IV we tie back our meta-algorithm to previous
work by reviewing how the two access oracles are realized
for reachability, distance, and reverse rank utilities. We also
present oracles for Survival threshold utility [7], which gen-
eralize reachability utility and is inspired by survivability
analysis [20]: For graph with edge weights interpreted as
lifetime values, the survival threshold τij is the maximum t
such that j is reachable from i through edges with lifetime at
least t. We use uij = τij (See example in Figure 1).

Our near-linear meta-algorithm for approximate greedy
maximization is the first to apply to influence functions
with (i) previously-studied utility and aggregation function
other than maximum, (ii) smooth reverse-rank utility, and (iii)
survival threshold utility.

II. INFLUENCE FUNCTIONS

We consider here influence functions of a particular form.
We have n items, elements, pairwise utility values uij ≥ 0 of
an item to an element, and an aggregation function F that is
applied to a multiset of numbers.

We define the utility

uSj = F (USj)

of a seed set S of items to an element j as the aggregation
function F applied to the multiset of pairwise values

US(j) = {uij | i ∈ S} .
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Finally, the influence of a seed set S of items is defined as the
sum over elements j of the utility uSj of S to the element

Inf(S) =
∑
j

uSj =
∑
j

F (US(j)) .

The simplest and most common aggregation function is the
maximum F (USj) = maxi∈S uij . We define a natural class
of more general aggregations that are monotone submodular
functions of the ` largest values in USj . We start with a useful
definition of a domination partial order on multisets of positive
numbers:

A � B ⇐⇒ ∀i, ith(A) ≥ ith(B),

where ith(A) is the ith largest value in A when i ≤ |A| and
is 0 otherwise. For a parameter `, a function F is submodular
top-` if and only if:

F (∅) = 0 (2)
∀a > 0, F ({a}) = a (3)
∀A, F (A) = F (top-`(A)) (4)
∀A,B A � B =⇒ F (A) ≥ F (B) . (5)

Some examples of submodular top-` functions are: max
F (A) = maxa∈A a, sum of top-` values F (A) =

∑`
i=1 ith(A),

or a weighted sum F (A) =
∑`
i=1

1
i ith(A)

Lemma 2.1: If F is submodular top-` then

∀A,B,C A � B =⇒ F (A ∪ C) ≥ F (B ∪ C) .

Proof: Note that for all C,

A � B =⇒ A ∪ C � B ∪ C

We show that when the utility matrix uij is provided explic-
itly, the lazy approximate greedy algorithm has a guaranteed
approximation ratio of 1− 1/e− ε using computation that is
near-linear in input sparsity (number of nonzero entries).

A. Utility Digest

To efficiently compute marginal utility as seed items are
added, we maintain a utility digest, uDigest[j], for each
element j. The digest is a summary of USj with internal
implementation that depends on the aggregation function F .
It always suffices to store the ` largest values in USj , but a
compact representation (e.g. histograms) suffices for some F .
We will use the following operations:
• uDigest[j].init initializes an empty digest with threshold

0.
• uDigest[j].thresh ← infx F (USj ∪ {x}) > F (USj)

returns the threshold value x that can increase utility of
the seed set.

• uDigest[j].marg(x)← F (USj ∪ {x})− F (USj) returns
the marginal gain of adding a seed i 6∈ S with utility
x = uij

• uDigest[j].AddMarg(y, x) ← F (USj ∪ {y, x}) −
F (USj∪{y}) For two items h, i 6∈ S with utility y = uhj

and x = uij , the marginal gain of adding i if h is already
added to S.

• uDigest[j].val← F (USj)
• uDigest[j].update(x): Compute a digest of USj ∪ {x}

given x and digest of USj . Updating digest with a new
seed item i with utility uij = x.

B. Approximate lazy greedy

The algorithm maintains all items i in a max heap with
priorities equal to their marginal influence at the time of
insertion. The initial priority of i is Inf({i}) =

∑
j uij . We

iterate the following until the heap is empty. We pop the item i
at the top of the heap and compute its exact marginal influence

Inf(i | S) =
∑
j

uDigest[j].marg(uij) .

If Inf(i | S) is at least (1 − ε) of the current priority
of item i, it is added to the seed set S and we update
∀j, uDigest[j].update(uij). Otherwise, if Inf(i | S) >
maxh Inf({h})/n2, item i is placed back in the heap with
current priority equal to Inf(i | S).

Since this is an approximate greedy sequence, we have a
guaranteed approximation ratio of 1− (1− 1/s)s− ε for each
s prefix of the sequence. The computation is near linear when
` is small:

Lemma 2.2: Approximate lazy greedy uses

O(m`ε−1 log n+ ε−1n log2 n)

computation, where m is the number of nonzeros in uij .
Proof: Each marginal influence computation for item i

amounts to 2mi digest operations, typically O(`) each, where
mi is the number of elements j with uij > 0. Thus it is
O(`mi).

Each time an item is placed back on heap, its marginal
influence decreased by at least a factor of (1 − ε) from the
value it had when previously placed on the heap. Hence, this
can happen ε−1 log n times. Therefore, the total computation
for item i is O(ε−1`mi log n) and O(ε−1 log2 n) for heap
operations. The claim follows by summing over items i.

In the sequel we address settings where u is dense (m
is much larger than the number of items and elements) or
expensive to compute and show how the maximization can be
performed by only accessing “relevant” entries.

III. ORACLE ACCESS TO UTILITY VALUES

We define two access oracles to the utility matrix {uij} that
allow us to perform approximate greedy maximization while
only retrieving a fraction of entries: Reverse sorted access
from elements, and forward search from items.

A. Reverse sorted access
The reverse sorted access oracle REVSORTEDACCESS for

element j returns items and utility value pairs (i, uij) in non-
increasing order of uij . It supports the following operations:

• REVSORTEDACCESS[j].init: Initialize reverse sorted access
from j
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• REVSORTEDACCESS[j].top: Return uij of next item without
popping it.

• (i, uij) ← REVSORTEDACCESS[j].pop: pop return the next
item in the sorted order of uij .

• REVSORTEDACCESS[j].delete: Delete the data structure.

We use this oracle as the seed set S grows. We show that
for all influence functions in our class and all seed sets S, the
marginal utility order is the same as the utility order.

Corollary 3.1:

∀S, uij ≤ uhj =⇒ (u | S)ij ≤ (u | S)hj ,

where
(u | S)ij ≡ uS∪{i},j − uS,j .

Proof: We apply Lemma 2.1 with C = USj , A = {uhj}
and B = {uij}.

B. Forward search

The forward search oracle FORWARDSEARCH for item i 6∈
S returns all elements j for which (u | S)ij > 0 along with
the value uij . The oracle supports initialization (with respect
to the seed set S) and retrieving element utility pairs:

FORWARDSEARCH[i].init(S)

(j, uij)← FORWARDSEARCH[i].pop .

The implementation of forward search is subtle. Our in-
fluence functions allow that for some i, j, S uij > uih and
(u | S)ij < (u | S)ih, so the implementation can not just use
a sorted order of j by uij that is oblivious to the current seed
set S, but has to adapt to S to work efficiently.

IV. GRAPH-BASED UTILITY

In graph-based settings, the input is represented by a graph
or a set of graph instances {G(h)(V,E(h))} (obtained for ex-
ample from Monte Carlo simulations of a randomized model).
All instances share the same set V of nodes, which correspond
to items. Our elements j are node instance pairs (v(j), h(j)).
The edges are directed and can have associated weights w(h),
with interpretation that varies between definitions of utility.

Reverse-sorted access is implemented by an appropriate
graph search algorithm that is executed incrementally from
a node in an instance corresponding to element j and re-
turns nodes that correspond to items in decreasing uij order.
Forward search is guided by an appropriate basic search
algorithm by increasing uij with the additional property that
the search tree partial order on elements j preserves marginal
utility order: If h is a descendant of j then for all S,
(u | S)ih ≤ (u | S)ij . Our forward search follows the basic
search tree and accesses digest structures of visited elements
to compute marginal utility value uDigest[j].marg(uij). The
search is pruned when the marginal utility is 0. Pruning is
critical to efficiency, since ultimately we perform forward
searches from all items. The tree order property is critical
for the pruning correctness – so that it does not prevent us
from reaching elements for which i has positive marginal
utility (u | S)ij > 0. The total number of nodes visited in

a forward search are those adjacent to nodes with positive
marginal utility.

We use the digest structures to guide the forward search
pruning. Our SKIM meta-algorithm will use the forward
search to update the digest structures. Two useful subroutines
are MARGGAIN, which computes the marginal influence of
an item given the current seed set, and ADDSEED which also
updates digests of elements to reflect the addition of the new
item to the seed set.

Function MargGain(i): Marginal influence of i 6∈ S
Input: item i
Output: Inf(i | S)
M ← 0 ; // sum of marginal contributions
FORWARDSEARCHi.init(S) ; // init forward search
from i with respect to S
while (j, uij)← FORWARDSEARCHi.next 6=⊥ do

M
+← uDigest[j].marg(uij)

return M

Function AddSeed(i): Update digests of all elements
Input: item i
M ← 0 ; // sum of marginal contributions
FORWARDSEARCH[i].init(S) ; // init forward
search from i with respect to S
while (j, uij)← FORWARDSEARCHi.next 6=⊥ do

M
+← uDigest[j].marg(uij);

uDigest[j].update(uij)

return M

A. Distance-based utility

Distance-based utility is defined using a non-increasing
function α. For item i and element j, uij = α(d

(h(j))
iv(j) ), where

d
(h)
ij is the shortest path distance from i to j in instance h with

edge lengths w(h).
Reverse sorted access for element j is implemented by Di-

jkstra’s algorithm from v(j) in the transposed (reversed edges)
instance h(j). Initialization places v(j) in the heap and nodes
are returned by increasing dij (decreasing uij = α(dij)).
When incoming edges are sorted by length, the computation is
dominated by the number of traversed edges, which are edges
adjacent to returned nodes.

Forward search from item i is implemented by running a
copy of pruned Dijkstra from node i in each instance h. The
computation is guided by the digest structure and pruned at
nodes j with ui(h,j) < `th(US(h,j)). Pruning correctness is
established in Lemma 4.1.

B. Reverse-rank utility

Reverse-rank utility is similarity defined as uij =

α(π
(h(j))
v(j),i ), where the Dijkstra rank π

(h)
j,i is defined as the

number of nodes that are at least as close to j as i is. Following
Buchnik and Cohen [4], we work with approximate ranks π̂.
The graph is preprocessed to obtain all-distances sketches,
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which are used to compute π̂ij from dij . Approximation is
necessary because search by exact reverse ranks is provably
as hard as all-pairs shortest paths computation [4].

The forward search implementation uses a pruned ap-
proximate reverse-rank search [4], which also traverses a
shortest-path tree. The correctness of pruning is established
in Lemma 4.1. The reverse sorted access oracles uses an
adaptation of Dijkstra on the transposed graphs that is guided
by approximate ranks.

Interestingly, our framework does not handle “forward” rank
utility uij = α(πji), as we are not aware of an efficient reverse
sorted access implementation that is stable when seed nodes
are added.

C. Reach and survival threshold utility

Reachability utilities are uij = 1 if and only if there is a
path from i to v(j) in instance h(j). The more general survival
threshold utilities are defined as uij = τ

(h(j))
iv(j) where τ (h)ij is

the maximum t such that there is a path from i to j in instance
h using edges with w

(h)
e ≥ t. The reverse sorted access and

the forward search oracles are similar to distance utility, with
Dijkstra-like survival threshold search algorithm [7] replacing
Dijkstra’s algorithm. A survival-threshold search tree from
source node i has the property that for any node j, the lifetime
of all edges e on the path from i to j have te ≥ τij . By
definition of τij , there must be at least one edge on the path
with te = τij .

D. Pruning correctness

We establish correctness of the pruning performed by the
forward search for distance-based, reverse-rank, and survival-
threshold utility.

Lemma 4.1: With distance-based utility, let node j be on
the shortest path from i to r in instance h. With (exact or
approximate) reverse-rank utility, let j be on a shortest path
from r to i. With survival-threshold utility, let j be on a
maximum survival threshold search tree path from i to r in
instance h. Then,

ui(h,j) < `th(US(h,j)) =⇒ (u | S)i(h,r) = 0 .

Proof: We start with distance utility. For a node a, let ya
be the `th smallest distance of a from a node in S. A forward
search from i is pruned at a node a if dia ≥ ya.

By definition, there are at least ` nodes X ⊂ S such that
djx ≤ yj . From triangle inequality we have

∀x ∈ X, dxr ≤ dxj + djr ≤ yj + djr.

Since there are at least ` nodes in S with distance at most
yj + djr from r we have

yr ≤ yj + djr . (6)

Finally, if the search is pruned at j then dij ≥ yj . Combining
with (6) we obtain yr ≤ dij + djr = dir. Therefore, (u |
S)i(h,r) = 0 .

For reverse-rank utility we apply a similar argument on a
transposed graph. We work with a shortest path from r to

i that contains j. For a node a, let ya be the `th smallest
rank a has to a node in S. If the search is pruned at j then
πji ≥ yj and in particular, there is a set X ⊂ S of ` nodes
such that ∀x ∈ X, djx ≤ dji. From the triangle inequality, for
all x ∈ X , drx ≤ drj + djx. From the shortest path property,
dri = drj + dji. Combining, we obtain

∀x ∈ X, drx ≤ drj + djx ≤ drj + dji = dri . (7)

This implies that πri ≥ yr and therefore (u | S)i(h,r) = 0.
We now consider survival-threshold utility. For node a, let

ya be the `th largest value in {τaj | a ∈ S}. Since our path
from i to r is a survival-threshold search path, the minimum
weight path edge between any two path nodes h1, h2 has
weight τh1h2

. Let e be the critical (minimum weight) edge
on the subpath from j to r. Then τir = min{e, τij}. From
definition, yr ≥ min{yj , e}. If the search is pruned at j then
τij ≤ yj . Combining we obtain

τir = min{e, τij} ≤ min{yj , e} ≤ yr

and therefore (u | S)i(h,r) = 0.

V. GREEDY MAXIMIZATION

We now present our SKIM meta-algorithm (Algorithm 1)
for approximate greedy maximization. The algorithm uses the
oracle calls to access utility values. It maintains approximate
marginal influence values for items (in a lazy priority queue
Qitems), which are computed from weighted samples.

We obtain weighted samples by assigning random rank
values rj to elements. The REVSORTEDACCESS[j] oracles are
used, together with a heap structure Qelements on elements,
to return item element pairs by non-increasing order of

wj
rj

(u | S)ij .

The heap is prioritized by wj

rj
(u | S)x(i)j , where x(j) is the

next item to be returned by REVSORTEDACCESS[j].
The algorithm works with a threshold value τ which de-

creases during the execution. The sample Ai for each item i
contains all elements j such that

wj
rj

(u | S)ij ≥ τ . (8)

We also maintain an estimate of the marginal influence Inf(i |
S). The estimate is an inverse probability estimate that is
computed from all elements satisfying (8). The probabilities
are the inclusion probability of j ∈ Ai over the random
selection of rj : The probability that an element j satisfies
(8) is min{1, (u | S)ij/τ} and its contribution to the marginal
influence of i is (u | S)ij . The estimate is therefore

Înf(i | S) =
∑
j∈Ai

(u | S)ij
min{1, (u | S)ij/τ

}

=
∑
j∈Ai

max{(u | S)ij , τ} . (9)

The threshold τ is decreased and samples and estimates
are accordingly updated until at least one item i satisfies
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Algorithm 1: SKIM meta-algorithm
Input: IM problem: items, elements, REVSORTEDACCESS oracle for each

element, FORWARDSEARCH oracle for each item, function F
Output: Sequence of items
// Initialization
rank← map elements to ∼ U [0, 1] (or randomly permute elements E and use
rank that maps j to its position divided by |E|. );
forall the elements j do

index[j]←⊥ // Reverse sample of j
uDigest[j].init // initialize digest of j
REVSORTEDACCESS[j].init // Initialize reverse sorted
access by j
Insert j to Qelements with priority
wjREVSORTEDACCESS[j].top/Rank[j] // place in Qelements
with priority wj maxi uij/rank[j]

forall the items i do Est.H[i]← 0; Est.M [i]← 0 seedlist←⊥ // List
of seeds & marg. influences
s← 0; τ ← Qelements.top/(2k); coverage← 0 // coverage of
current seed set
while increase in coverage of last seed was at least 1/n2 of first seed do

// Build PPS samples of marginal influence sets
until confidence in next seed

while ((x, Îx)← NextSeed()) =⊥ do
τ ← τλ; MoveUp() // Update est. components
forall the elements j in Qelements with priority ≥ τ do

Remove j from Qelements
while (i, uij)← REVSORTEDACCESS[j].top 6=⊥ do

if uij < uDigest[j].thresh then Terminate
REVSORTEDACCESS[j]; Break ; // utility below
threshold
c← uDigest[j].marg(uij) if c == 0 then
REVSORTEDACCESS[j].pop; Continue;
// Equivalently, i ∈ S
if c/rank[j] < τ then

place j with priority c/rank[j] in Qelements; Break

else // c/rank[j] ≥ τ
REVSORTEDACCESS[j].pop // remove i from
top of REVSORTEDACCESS[j]
append i to index[j]
if c ≥ τ then Est.H[i]

+← c; // H entry
else // M entry

Est.M [i]
+← 1

if HM[j] =⊥ then
HM[j]← |index[j]|; Insert j with priority
c to Qhml

Update the priority of i in Qitems to
Est.H[i] + τEst.M [i] // Can be lazy

// Process new seed item i
Ii ← 0 // Exact marginal influence
Initialize FORWARDSEARCH[i](S) // Initialize forward
search from i
while j ← FORWARDSEARCH[i].next 6=⊥ do // pop elements j
until ⊥

MoveDown(j, uij)

Ii
+← uDigest[j].marg(uij); uDigest[j].update(uij)

s
+← 1; coverage

+← Ii; seedlist.append(i,Îi,Ii)
return seedlist

Înf(i | S) ≥ kτ , for a parameter k. The item argmaxi Înf(i |
S) with maximum estimate is then added to the seed set.
Samples and estimates are then updated to reflect new marginal
utility values. Note that any item with a sample of size ≥ k
has estimate ≥ kτ . Therefore, the total size of all samples
at any given point need not exceed O(kn). A choice of
k = O(ε−2 log n) would guarantee with high probability that
the selected item has marginal influence that is at least (1− ε)
of the maximum. It is often possible to adaptively determine
the stopping condition on sample size and work below this
worst-case bound [9], [10].

Efficient maintenance of the samples and estimates requires
careful data structures and updates. The algorithm maintains
inverted samples: index[j] for an element j contains all items
such that j was sampled for i. The items are added using the
reverse sorted access oracle REVSORTEDACCESS[j] and kept
in that order by decreasing uij/rj . Note that this is the same
order as decreasing (u | S)ij for any S. (Note that rj is fixed
here, so the order of uij stays the same). The inverted sample
of j, index[j], is logically partitioned into three segments. The
first segment of index[j] contains H entries, defined as those
with utility (u | S)ij ≥ τ . The second contains M entries
which have utility (u | S)ij < τ but satisfy (8), and the last
includes L entries. L entries are those that entered as M or
H , but no longer satisfy (8). They are kept because they may
become useful later as τ decreases. The algorithm maintains
indices HM[j] and ML[j] to the position of each segment. It
also maintains the sum Est.H of H entries and the number
Est.M of M entries, which suffice to compute the estimate (9)
as Est.H + τEst.M .

As said, the sample data structures are modified when τ
is decreased and when an item is added to the seed set. The
former results in new entries getting retrieved from the oracle
and entries being “upgraded” from M/L to H and and from L
to M/H. This is done by the function MoveUp. The latter
results in decreased marginal utility values (u|S)ij and in
entries being “downgraded” and is handled by MoveDown.

To facilitate working with marginal utility (u|S)ij and
computing it from uij , the algorithm maintains a utility digest
uDigest[j] for each element j (see Section II-A). The digest
is initially empty and is kept current by the algorithm as seeds
are added. The digest support the forward search oracles.

The running time (computation) bound analysis follows that
of [10] with some adaptations to our general aggregation
functions and use of oracles.

We first bound the number of calls in forward searches.
An element j can be returned by a forward search from i
when uij is larger than the `th largest value in USj . The
total number of calls by forward searches is the sum over
elements of the number of times top-` set is modified as we
add seed items. For analysis, we partition the greedy sequence
into phases such that the marginal influence decreases by at
most 1−ε in each phase. Our approximate greedy sequence has
the property that at each step we make a near uniform selection
from all items with marginal influence that is at least 1−O(ε)
of the maximum. Thus, the expected number of updates in
each phase is at most ` lnn′, where n′ ≤ n is the number
of items in the phase. The algorithm terminates when the
maximum marginal influence drops below 1/n2 of its initial
value. Therefore, the total number of phases is O(ε−1 log n)
and the total number of calls of the forward search oracle is
O(`nε−1 log2 n).

The algorithm simplifies for coverage problems with uni-
form utility to follow the basic SKIM design [9]. In this
case, marginal contributions are either 0 or 1 and the reverse
sorted access oracles REVSORTEDACCESS[j] are invoked se-
quentially by increasing rj , removing the need to concurrently
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maintain active oracles for many elements. The samples are
uniform and do not need to be broken up to segments and es-
timates correspond to samples size. The additional machinery
was introduced in [10] in order to handle smooth distance-
based utility functions.

Function NextSeed
Output: The item i which maximizes Est.H[i] + τEst.M [i], if happy with

estimate. Otherwise ⊥.
while true do

if max priority in Qitems < kτ then return ⊥ else
Remove maximum priority i from Qitems;
Îi ← Est.H[i] + τEst.M [i];
if Îi ≥ kτ and Îi ≥ max in Qitems then

Ii ← MargGain(i);
if Ii ≥ (1− 1/

√
k)Îi then return (i, Îi)else

Place i with priority Ii in Qitems;
return ⊥

else
Place i with priority Îi in Qitems

Function MoveUp Update estimates after decreasing τ
foreach j in Qhml with priority ≥ τ do

delete j from Qhml
// Process index[j]
if HM[j] 6=⊥ then // move entries from M/L to H

while HM[j] < |index[j]| and i← index[j][HM[j]] satisfies
(c← (u | S)ij ≥ τ do

Est.H[i]
+← c

if ML[j] =⊥ or ML[j] > HM[j] then // Entry was M

Est.M [i]
−← 1

HM[j] +← 1

if ML[j] 6=⊥ and ML[j] < HM[j] then
ML[j]← HM[j]

if HM[j] ≥ |index[j]| then
HM[j]←⊥; ML[j]←⊥

if ML[j] 6=⊥ then // Move from L to M
while ML[j] < |index[j]| and i← index[j][ML[j]] satisfies
(u | S)ij ≥ rjτ do

ML[j] +← 1; Est.M [i]
+← 1

if ML[j] ≥ |index[j]| then ML[j]←⊥
UpdateReclassThresh(j) // update Qhml

Function UpdateReclassThresh(j)
Output: Update priority of element j in Qhml
c← 0;
if HM[j] 6=⊥ then

i← index[j][HM[j]]; c← (u | S)ij
if ML[j] 6=⊥ then

i← index[j][ML[j]]; c← max{c, (u | S)ij/rj}
if c > 0 then

update priority of j in Qhml to c
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