
Conditioning vs. Excitation Time for Estimating Impedance
Parameters of the Human Arm

Dominic Lakatos, Florian Petit and Patrick van der Smagt

Abstract—The human arm’s capability to alter its impedance
has motivated multiple developments of robotic manipulators
and control methods. It provides advantages during manipula-
tion such as robustness against external disturbances and task
adaptability. However, how the impedance of the arm is set
depends on the manipulation situation; a general procedure is
lacking. This paper aims to fill this gap by providing a method
to estimate the impedance parameters of the human arm, while
taking the numerical stability of the approach into account. A
dynamic arm model and an identification method is presented.
Confidential criteria to determine the accuracy of the estimated
parameters are given. Finally, the procedure is validated in an
experiment with a human subject and the results are discussed.

I. INTRODUCTION

Dynamic interaction with the environment means handling
impacts and unknown contact forces. Therefore compliant
systems are active topics of research in the field of humanoid
and service robotics. The DLR light-weight robot LWR-III
[1] is an example for active impedance controlled robots,
i.e. the joint torques are adjusted to behave like a spring-
damper system, and the DLR Hand-Arm System [2], [3]
is actuated via passive variable stiffness joints. Surpassing
traditional rigid robots, the control loops of both systems are
extended with additional impedance parameter, viz. stiffness
and damping.

Even though the above-mentioned systems are outstanding
examples of variable impedance robots, one important issue
is not resolved: how are the impedance parameters set to
optimally perform a predefined task? Traditionally, robotic
tasks are only defined in target end-effector positions or,
in some cases, end-effector trajectories; but the impedance
around these positions or trajectories remains a matter of
common sense, at best. For instance, when performing a
peg-in-hole task, high stiffness in the perpendicular and low
stiffness in the lateral directions, so as to allow for imprecise
positioning while solving the task, appears to be useful. But
how do we find general rules-of-thumb for setting these extra
parameters?

Beside heuristic methods tuning the impedance parame-
ters, mimicking the behavior of the human arm is an auspi-
cious field of research, and leads to what we call biologically
inspired robotics. By measuring and subsequently analyzing
human arm impedance parameters, we can attempt to extract
general rules and project these to the robotic domain.
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However, analyzing the mechanics of the human arm needs
a reliable method for measuring the impedance parameters.

A. Related work
In [4], [5], [6], [7], [8], [9], [10], [11], several methods to

analyze and measure the impedance of the human arm are
proposed. The underlaying model in those works describes
the inverse dynamic in the transversal plane by a two link,
two joint multi body system, where viscoelasticities acting
on the hinges.

The most straightforward method is described in [7]. Here
the endpoint of the arm is perturbed by a planar manipu-
lator. After reaching a steady-state in position, the ratio of
the difference in force (after and before perturbation) and
displacement is considered to estimate the stiffness. Since the
performance of the manipulator is limited, the steady-state is
not reached before 500ms after onset of the perturbation.
An extension to the method proposed by [7] is described
in [10]. It is used to identify the complete dynamic model,
i.e., inertia, stiffness and damping. Therefore the endpoint of
the arm is disturbed by a smooth displacement. In order to
estimate the model parameters, a two times integrated second
order linear model is fitted to the observed motion and force
data. The length of the observation window is about 450ms.
Another approach to identify the whole dynamic model is
based on frequency analysis, and was developed in [8],
[9]. This non-parametric identification method uses a band-
limited white noise in position, to excite the human arm. By
means of the fast Fourier transforms of the recorded force and
displacement data, scalar transfer functions were computed.
Obtaining the impedance parameters, these transfer functions
can be parametrized by nonlinear optimization. To meet the
requirements for this identification method, the length of the
observation window must be about 30 s [9].

The mentioned methods are useful to measure impedance
parameters in steady arm postures. Some approaches to
analyze the mechanics during arm movement are given in
[4], [5], [6]. The method developed in [4] is based on the
prediction of the unperturbed motion trajectory. Stiffness can
be estimated by comparing position and force of the per-
turbed and unperturbed trajectories. Therefore the perturbed
motion must be formed to have a plateau phase, during
which the error velocity (between perturbed and unperturbed
motion) is zero. The stiffness was estimated in the interval of
120ms and 180ms. The method is restricted to estimating
the stiffness, i.e., velocity-proportional damping forces were
not acting under those conditions. Accurate estimates can
only be obtained when Coriolis/centrifugal forces are taken
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Fig. 1. Control loop of the neuromusculoskeletal system.

into account, but that means that inertia parameters must

be known. This drawback can be overcome by calculus of

variation of the nonlinear equations of the arm model, as it

was done before in [5], [6]. The resulting model describes the

dynamic of the arm between free and disturbed trajectories,

and is linear in the unknown parameters (i.e., inertia, stiffness

and damping). Hence local linearized impedance can be

estimated at a working point during movement by means of

force perturbations. The recorded data used to identify the

parameters is observed in an interval beginning at the onset

of the perturbation with a length of 280ms.

B. This work

Since the neuromusculoskeletal system of the human arm

is closed-loop controlled via the central nervous system

(CNS), at least the stiffness parameters vary over time (see

Figure 1 and [12]). That means, disturbances are detected by

the sensors, and the delayed transmitted signals will cause

a change of muscle activation and mechanical properties

(e.g., stiffness and damping). This functional chain is called

reflex in biological context. The most important reflex loops,

affecting the impedance measurements, will be described as

follows:

• The stretch reflex is activated by stretching the muscle

fibers. This so-called low-latency reflex occurs after

25ms to 50ms and is controlled through the spine; the

parameters of this type of feedback are fixed.

• The spinal reflex acts on joint level, e.g., flexing the

forearm (due to activation of m. biceps) activates the

m. triceps in order to restore the equilibrium of joint

torques. The latency of spinal reflexes is 70ms to

110ms. This type of feedback is controlled through the

spine, and its parameters are fixed.

• Long-latency reflexes with reaction time of at least

110ms are operating at human cognitive level, after

which time we can deliberately steer our muscles; the

feedback parameters are cognitively determined and

cannot be realistically modelled.

As described in the above-mentioned publications, identi-

fying the parameters of the whole dynamic arm model (i.e.,

inertia, stiffness and damping) requires observing the data in

an interval of at least 280ms length (after onset of pertur-

bation). Since the reaction time of reflexes is in the range

of 25ms to 110ms, this is in conflict with the assumption

that stiffness and damping parameters are constant; especially

the long-latency reflexes are to be avoided. The topic of this

paper is minimizing the length of the observation window un-

der a viewpoint of conditioning (for linear optimization) and

criteria derived from basic mechanical laws (e.g. integrability

of vector fields). This will be done by proposing a model

and identification method, defining criteria for reliability of

the parameter estimate, and demonstrating, by experiments,

which interval length is sufficient.

II. MODELING OF THE NEUROMUSCULOSKELETAL

SYSTEM

The neuromusculoskeletal system of the human arm can

be modeled as a rigid multi-body system, composed of two

bodies (i.e., the upper arm and the forearm). The muscles

are considered as force elements, actuating the bodies in

joint space, and coupled via motion (and neural) inputs.

Additionally it is assumed that the muscles mass can be

added to the mass of skeletal bodies.

A. Rigid body dynamics of the skeletal system

The inverse dynamic equations of the masses for n joint

variables q ∈ IRn is given by

Γ(q, q̇, q̈, ξ) = M(q, ξ) q̈+C(q, q̇, ξ) q̇+ g(q, ξ), (1)

where M ∈ IRn×n is the positive definite and symmetric

mass matrix, C ∈ IRn×n the Coriolis/centrifugal matrix (C

can be computed to make Ṁ−2C skew symmetric), and g ∈
IRn the vector of gravity forces. ξ is the vector of the constant

so-called base inertial parameters, determining the mass,

mass moment of inertia, and first-order mass moments of

the bodies. It is necessary that the components ξi are linearly

independent (i.e., ∀αi 6= 0, α1ξ1 + α2ξ2 + . . . + αkξk 6= 0,

where k is the length of ξ) in order to be identifiable [13].

B. Impedance of the neuromuscular system

The model of a muscle is given by the general state-space-

representation

ẋ = f(x,u)
y = g(x)

(2)

where f(x,u) describes the dynamic of the muscle states

x, u is the input vector, and g(x) the output function. An

explicit description of f(x,u) is beyond the scope of this

paper1. Assuming f(x,u) can be integrated, one can write

an explicit function for the forces generated by a muscle

hm = hm(lm, l0, vm, a), (3)

where lm is the muscle length, l0 the initial length, vm the

muscle shortening rate, and a the neural activation. Collecting

the force functions and input variables of each muscle in

vectors, the impedance of the arm can be written in the form

h(q, q̇,a) = Lhm(q, q̇,a), where h ∈ IRn. (4)

1possible descriptions can be found in, e.g., [14], [15]
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Herein the matrix of moment arms L is introduced, and the

following terms were substituted:

∆lm = −LT ∆q

∆vm = −LT q̇
(5)

where ∆lm = lm − l0 and ∆q = q − q0. Notice q0 is

assumed to be constant; its dependency in (4) is neglected

accordingly.

C. Partial linearized model

Superimposing the torques due to muscle impedance (4)

on the inverse dynamic (1) leads to the equations of motion

M(q, ξ) q̈+C(q, q̇, ξ) q̇+g(q, ξ)+h(q, q̇,a) = τ ext, (6)

where τ ext are externally applied forces/torques. In order

to describe the impedance part in (6), h(q, q̇,a) can be

linearized around an operating point. Hence the Taylor ap-

proximation in q0 ≡ q(t0), q̇0 = 0 and a0 ≡ a(t0)
(neglecting higher order terms) holds:

h⋆ = h|q0,a0
+

∂h(q, q̇,a)

∂q

∣
∣
∣
∣
q0,a0

∆q

+
∂h(q, q̇,a)

∂q̇

∣
∣
∣
∣
q0,a0

∆q̇+
∂h(q, q̇,a)

∂a

∣
∣
∣
∣
q0,a0

∆a

(7)

Since q0 is an equilibrium point and assuming a(t) = const.

(this is only valid during latency time, i.e., no reflexes acting)

(7) reduces to

h⋆ = K∆q+Dq̇, (8)

where the constant Jacobian’s K ∈ IRn×n and D ∈ IRn×n

represent the positive definite, symmetric matrices of local

linearized stiffness and damping.

Substituting (8) in (6) leads to the partial linearized model

of the neuromusculoskeletal system, which will be used for

further investigations.

III. IDENTIFICATION METHODS

First, the identification model, which is linear in the param-

eters, is derived. Second, trajectories exciting the identifica-

tion model suitably are proposed. Finally, some confidential

criteria for evaluating the “quality” of the parameter estimates

are proposed.

A. Identification model

In the following, the multi-joint arm movement in the

transversal plane will be considered. Therefore the gravity

term in (6) vanishes, and the dynamic model can be written

as

M(q, ξ) q̈+ (C(q, q̇, ξ) +D) q̇+K∆q
︸ ︷︷ ︸

Ψ(q̈,q̇,∆q,ξ,D,K,)

= ∆τ ext, (9)

where q ∈ IR2, and Ψ is the vector of inverse dynamics (in-

cluding impedance). For the planar model with two degrees

of freedom2 it can be shown that ξ ∈ IR3. Thus the unknown

model parameters are

ζ = [ξ1, ξ2, ξ3, D11, D12, D21, D22,K11,K12,K21,K22]
T
,

(10)

and the identification model can be written as

W ζ = y, (11)

where W ∈ IRr×c is the observation matrix and y ∈ IRr

the output vector (r is the number of scalar linear equations

and c the number of unknown parameters). If the observation

interval consists of N samples, W and y are composed of

W =








X(1)
X(2)

...

X(N)







, y =








∆τ ext(1)
∆τ ext(2)

...

∆τ ext(N)







. (12)

In the case of the planar arm model, the matrix of indepen-

dent variables is given by the Jacobian

X =

(
∂Ψ(q̈, q̇,∆q, ξ,D,K, )

∂ζ

)

∈ IR2×11

X1,1 = q̈1
X1,2 = (2q̈1 + q̈2) cos q2 − (2q̇1q̇2 + q̇22) sin q2
X1,3 = q̈2
X2,2 = q̈1 cos q2 + q̇21 sin q2
X2,3 = q̈1 + q̈2
X1,4 = X2,6 = q̇1
X1,5 = X2,7 = q̇2
X1,8 = X2,10 = ∆q1
X1,9 = X2,11 = ∆q2
X1,6 = X1,7 = X1,10 = X1,11 = X2,1

= X2,4 = X2,5 = X2,8 = X2,9 = 0

(13)

The least squares solution of the overdetermined system of

linear equations (11) can be computed by

ζ̂ = (WT W)−1 WT y = H−1 WT y, (14)

where the Hessian H = WT W is the second derivative of

the squared error function.

B. Excitation trajectory

The “quality” of the parameter estimate (14) strongly

depends on the choice of the excitation trajectory. As one can

see from (13) the columns of W consists of displacements,

velocities and accelerations terms. Thus, if the order of

magnitudes of motion variables (e.g., between displacements

and accelerations) are widely distributed, the conditioning

of the Hessian diverges (i.e., H gets close to singular),

that means the parameter estimate becomes inaccurate since

H can no longer be stably inverted. A possible trajectory

generation method is based on the minimum jerk theory,

proposed by [16]. The solution of

min
q(t)

1

2

0.5∫

t=0

...
q (t)2dt (15)

2E.g., consisting of the shoulder and elbow joints.
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is a fifth-order polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5, (16)

see, e.g., [17]. The polynomial order of five is necessary to

specify all boundary conditions for a point-to-point motion

with equilibrium start/goal-points. In order to compare the

ability of fifth-order polynomials compared to higher-order

polynomials w.r.t. well-conditioned Hessians H, the ratio

Cij =

1

tf

tf∫

t=0

i
q(t)2dt

1

tf

tf∫

t=0

j
q(t)2dt

, (17)

is defined. Herein, i/j denotes the ith/jth time-derivative

t, and tf the time elapsed for reaching the goal-point qf .

Notice, that the numerator/denominator are squared mean

values of the motion variable
i/j
q (t). Thus, if Cij = 1 the

order of magnitude between
i
q and

j
q is equal. Comparing

a fifth- and sixth-order polynomial, the following boundary

conditions are defined: q(0) = 0, q(tf ) = qf , q̇(0) = 0,

q̇(tf ) = 0, q̈(0) = 0, q̈(tf ) = 0, and
...
q (tf ) = 0. The

cross combinations of Cij (for i = 1, 2 and j = 2, 3, where

i < j) of both polynomials are faced in Tab. I. For each

TABLE I
CONDITIONING RATIO COMPARING POLYNOMIALS

order C12 C13 C23

5th 181

660
t2
f

181

7920
t4
f

1

12
t2
f

6th 329

1560
t2
f

329

22880
t4
f

3

44
t2
f

combination, the values Cij of the fifth-order polynomial

are closer to 1 than the values of the sixth-order polynomial.

Hence the profile of the fifth-order polynomial (16) is used

to generate excitation trajectories.

C. Confidential criteria

Since the measurement procedure is biased, and the math-

ematical model is only an approximation of the real human

arm behavior, confidential criteria are needed to evaluate the

“quality” of the parameter estimate.

A measure quantifying the conditioning of a linear op-

timization problem, can be derived from the singular-value

decomposition of the observation matrix W (see, e.g., [18])

W = UΣVT . (18)

U ∈ IRr×r and V ∈ IRc×c are orthogonal matrices, and

Σ ∈ IRr×c is diagonal, containing the singular values σi in

decreasing order. Thus the condition number is defined by

cond(W) =
σmax

σmin

. (19)

For cond(W) = 1 the problem is perfectly conditioned, and

for cond(W) → ∞ the Hessian H is singular. The condition

number is a measure, evaluating the sensibility of the least

squares solution due to model uncertainties. Since the model

accuracy is unknown, it is hard to determine an upper limit

for the condition number. Thus further criteria have to be

addressed.

Two other confidential criteria used are based upon the

stiffness matrix K. The stiffness matrix of a captive mechan-

ical systems is positive definite. Hence the general property

∀δq 6= 0, δqT K δq > 0 (20)

holds (δq is arbitrary). This can be interpreted as the strain

energy, which must be positive for finite displacements. An

extension to this property is derived from the force field

∆τ (∆q) = K∆q, (21)

which is a potential field for passive mechanical systems, if

the integrability conditions

curl(∆τ ) = 0 ⇔ (K−KT ) = 0 (22)

are fulfilled. Accordingly, the stiffness matrix K must be

symmetric.

Summarizing the confidential criteria, one can trust the

parameter estimate if

• the condition number (19) is small;

• K is positive definite (20);

• K is symmetric (22).

IV. EXPERIMENTAL RESULTS

As stated above, the length of the observation interval

should be less than the latency time of the CNS. This could

be in conflict with the conditioning of the least squares iden-

tification procedure. In order to find a minimum observation

interval empirically, which fulfills the proposed confidential

criteria, an experiment will be performed.

A. Experimental setup

The experimental setup is shown in Fig. 2. The main part

is a position/torque-controlled light-weight robot, which is

used to perturb the human arm and measure the arm position

via the joint sensors (i.e., manipulators forward kinematics).

The participant is fixed to a body-contoured seat to allow

only motions of the subject’s arm. The robot and the seat are

mounted on a metal frame standing on the ground.

A six-axis JR3 force/torque sensor is mounted on the

robot’s end effector, in order to measure the forces and

torques applied by the human arm. The robot end effector

is connected to the human arm via a plastic cuff, which

includes a metal beam supporting the arm against gravity.

Both force/torque and position data are recorded by the real-

time operating system VXWORKS at the sampling rate of

1 kHz.
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B. Methods

One healthy subject was tested. The upper body was

restrained by the shoulder belts in the seat, and the right

forearm was fixed in the plastic cuff. The subject’s arm was

held in the initial configuration q0 = (0.08, 1.00) by the

robot. On a display the interaction forces the human arm is

exerting on the robot’s end effector were shown. The subject

was instructed to exert a force of 5N distal with least effort

as possible, so as to prevent co-contraction. After a random

waiting time of 1 . . . 3 s, the robot performed a perturbation

in one of six randomly chosen directions. In order to estimate

one parameter set, this procedure was repeated until the

data of 30 trials had been recorded. The desired perturba-

tion trajectories were computed in joint coordinates of the

human arm by means of the fifth order polynomial (16).

The desired perturbation amplitudes ∆qf = qf − q0 were:

(0.05, 0), (−0.05, 0), (0, 0.05), (0,−0.05), (0.05,−0.05)
and (−0.05, 0.05). The experimental boundary conditions

had been changed by varying the length of the interpolation

interval Tk = 40ms + k · 10ms, where k = 1, 2, . . . , 26. A

typical perturbation is shown in Fig. 3.

C. Data analysis

In order to estimate the kth parameter set (10), the data

observed in the interval Tobs = Tk + 70ms (see Fig. 3)

over 29 trials (one trial is used to validate the prediction)

is considered in (12) and (13), respectively. Therefore the

joint angles q are computed via an analytical inverse kine-

matics, by means of the recorded end effector position.

After phase free low-pass filtering, the derivatives q̇ and

q̈ are computed by numerical differentiation. The external

applied joint torques are obtained by τ ext = J(q)T Fext,

where Fext are the Cartesian forces (measured by the JR3

force/torque sensor) and J(q) = ∂f(q)/∂q is the Jacobian

for the human arms end effector position x = f(q) (f must

be a bijection). ∆q = q(t)− q0 and ∆τ ext = τ ext(t)− τ 0

Fig. 2. Experimental setup
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Fig. 3. Typical Perturbation: onset of perturbation is marked by tp,
interpolation interval length by Tk = tf − tp, and observation interval
length by Tobs = te − tp.

are computed by the difference of the actual values at time

t, and the mean values during the initial steady-state, e.g.,

q0 = 1
tp

∫ tp
0

q(t)dt.

D. Results

The dependency between excitation time (i.e., length of ob-

servation interval Tobs) and confidential criteria (proposed in

Sec. III-C) of the experimental parameter estimate is shown

in Fig. 4. Evaluating whether the stiffness and damping

matrix K and D are positive definite, the eigenvalues of

the symmetric parts λK = eig(Ks) and λD = eig(Ds),
where Ks = 1/2(K + KT ) and Ds = 1/2(D + DT ), are

considered. Additionally, the components Kij and Dij are

shown to assess the symmetries.

For Tobs > 320ms the stiffness matrix gets positive

definite, and for Tobs > 370ms stiffness and damping

is quasi-symmetric. When Tobs > 400ms, the whole pa-

rameter set is quasi-constant. Beside stiffness and damping

values—which strongly depend on the experimental bound-

ary conditions—the base inertial parameters ξ are compa-

rable, and in the order of magnitude of values estimated

in [5]. This motivates to analyze the recorded data with

fixed ξ = (0.391, 0.155, 0.149)T , obtained from the full

dynamic model identification (12). Thus the unknown model

parameters are reduced to

ζred = [D11, D12, D21, D22,K11,K12,K21,K22]
T
, (23)

which must be considered in the output vector

yi = ∆τ ext − (M(q, ξ) q̈+C(q, q̇, ξ) q̇), (24)

and in the Jacobian of independent variables

Xred = ∂Ψ(q̇,∆q,D,K)/∂ζred. (25)

Substituting (23) to (25) in (11) and (12) respectively and

using the same data and estimation procedure as above leads

to the results shown in Fig. 5. Additionally, Fig. 6 depicts

the prediction of ∆τ ext for the data not used in the training

set.
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Fig. 4. Condition number, estimated stiffness, damping and inertial
parameters over the length of the observation interval Tobs.
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Fig. 5. Condition number, estimated stiffness and damping over the length
of the observation interval Tobs, where the inertial parameters are set to be
constant and known.
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Fig. 6. Prediction of ∆τ ext for the data not used in the training set.

V. CONCLUSION

In this paper a method for estimating the full dynamic

model of the human arm is addressed, and confidential

criteria evaluating the accuracy of the parameter estimate

are proposed. The method is validated by an experiment.

We have shown that accurately estimating the parameters

of a partially linearized arm model (i.e., inertia, stiffness,

damping) requires an observation window of about 370ms,
which can be reduced to about 300ms when the inertial

parameters are known. This is an important result with

a relevant impact on previous publications where human

arm impedance parameters are measured. Conversely, the

time window of about 300ms is in clear contrast with the

requirement of preventing cortical feedback or even spinal

feedback in the measurements, since those feedback times

are around 100ms.
With the method that we have introduced, the impedance

parameters are obtained during a postural task. Due to the

length of the observation window they can be seen as

an average of “controlled” stiffness and damping. From a

viewpoint of conditioning and spinal reflex time, an extension

of this method to impedance estimation during arm motion

may be prohibitive. We will therefore concentrate on mea-

suring intrinsic limb impedance, i.e., the impedance of the

tendonmusculoskeletal structure without controlled feedback.

This would allow us to quantity the nonlinear relationship

between, e.g., EMG, and impedance, and subsequently use

that to estimate impedance parameters during arm motion.

This in turn would allow us gain a deep insight in the

interaction dynamics of the human arm and use subsequent

models as guidelines for robotic impedance control.
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