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Abstract— Robots operating in real world environments re-
quire a high-level perceptual understanding of the chief physical
properties of the terrain they are traversing. In unknown
environments, roughness is one such important terrain property
that could play a key role in devising robot control/planning
strategies. In this paper, we present a fast method for predicting
pixel-wise labels of terrain (stone, sand, road/sidewalk, wood,
grass, metal) and roughness estimation, using a single RGB-
based deep neural network. Real world RGB images are used to
experimentally validate the presented approach. Furthermore,
we demonstrate an application of our proposed method on the
centaur-like wheeled-legged robot CENTAURO, by integrating
it with a navigation planner that is capable of re-configuring
the leg joints to modify the robot footprint polygon for stability
purposes or for safe traversal among obstacles.

I. INTRODUCTION

Disaster scenarios which pose severe danger to the res-

cue efforts by human operators have highlighted the need

for more autonomously functioning wheeled/legged robots

capable of navigating and operating in such environments.

A first step towards such a direction comprises of robust

environmental perception. Perceptual methods in structured

indoor environments have achieved impressive levels of reli-

ability over the past years [1]. On the other hand, uncertain

outdoor varying environments increase the challenge for

robot navigation.

Humans are capable of reasoning about navigation and

contacts in various environments using their visual cues. In

particular, it has been shown that humans usually operate

by recognizing materials and their properties (e.g. rough-

ness or slippage) [2]. Material recognition enhanced with

implicit quantitative information such as the slipperiness of

ice is thus, an important aspect for high-level environment

understanding. Similarly, robot perception for navigation in

any environment, should include both terrain recognition and

characterization, as discussed in [3] for planetary exploration

and in [4] for material perception.

Recently, state-of-the-art performance on visual terrain

recognition has shown robust results using deep learning,

such as Convolutional Neural Networks (CNNs) [5]. How-

ever, inferring properties from vision is a complex task,
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given that true values of a property may be unknown.

This statement was explored in [2], claiming that human

brain is able to understand variations based on appearance-

based features, such as reflections and lighting. Based on

this rationale, we simultaneously estimate roughness and

roughness properties of the terrain around the robot. We

focus on roughness, given its distinct role in path-planning,

traversability, and safety analysis during navigation. Such

navigation decisions involve speed adjustments [6] or robot

path-planning reconfiguration [7]. Notice that even though

roughness is the focus of this work, we believe that the same

principle holds for other visual terrain properties.

In this work, we firstly focus on the joint problem of

terrain recognition and roughness estimation. We then create

wheeled-legged robot navigation plans and execute motions

based on this information. In particular, we train a single

network, which includes a primary CNN for the terrain

recognition and a secondary module for estimating the terrain

roughness variations, using low-level RGB features (Fig. 1).

Even though the technique of sharing layers and parameters

for multiple tasks is well known and used to improve the

computational complexity [8], in this work we focus on

pixel-wise label prediction on one side (terrain type) and

continuous values estimation on the other side (roughness

calculation). The application of this combined information on

robotic planning/navigation, contributes to the novelty of this

work. For the network training we use transfer learning and

data augmentation to comply with limited training databases.

RGB data are used as input to the network. Even though this

aligns with the current state-of-the-art in terrain recognition,

it was only recently used for the determination of terrain

properties, such as depth [9]. The reasoning behind this

direction of research, lies to the time efficiency advantage

of using CNNs on RGB data and also to the fact that RGB

cameras are cheap and light (versus lidar scanners), sunlight

independent (versus RGB-D cameras), and provide dense

sensing, which make them ideal for any type of robot. Having

a method for accurate terrain properties computations (versus

stereo cameras), as proposed in this work, makes them ideal

for fast computations. Moreover, the RGB-based method

allows the enhancement or replacement of any network

module (e.g. roughness) with another that could recognize

terrain properties which are not strictly connected to depth

information, such as slipperiness.

The simultaneous inference of terrain labels and pixel-

wise roughness from an input RGB image, is experimentally

used on the centaur-like robot CENTAURO [10] for driving



leg-reconfiguration wheeled navigation in rough terrains. The

network, dataset, and code can be found under: https:

//sites.google.com/site/tsrenet

Next, we review the related work (Sec. II) and describe

the methodology (Sec. III). Then, we experimentally validate

our algorithm (Sec. IV) and apply the methodology on

CENTAURO robot navigation system (Sec. V). Last, we

conclude with the future work (Sec. VI).

II. RELATED WORK

Terrain segmentation emerged in the beginning as a pro-

cess of image representation, either using color [11], tex-

ture [12], or features [13], [14] for patch-based classification.

The use of hand-based image features for representing an

image to perform real-time segmentation has been eliminated

with end-to-end learning, an important aspect of deep learn-

ing. Thus, deep learning methods such as CNN classifiers

belong to the state-of-the-art in image-based segmentation,

compared to traditional techniques that use multi-class detec-

tors [15]. Terrain and material perception were studied with

the same underlying principle. Bell et al. [16] used CNN

and Conditional Random Field (CRF) as a segmentation

architecture that labels (i.e. predicts independently) material

patches in the image with a sliding window approach.

Wang et al. [17] fine-tuned a Fully Convolutional Network

(FCN) [18] to weigh similar patch-trained CNN on 4D light-

field data. Schwartz et al. [19] improved material recognition

by integrating global context. The aforementioned methods

were trained on image patches, whereas our segmentation

approach is closer to that of the study in [5] where the FCN

model was trained on the cityscapes dataset [20]. The model

of the local terrain is then fine-tuned using the pre-trained

weights of hand-labelled images. Instead, we fine-tune the

pre-trained model on the specific terrain dataset (see Sec. IV-

A.1).

Roughness prediction was broadly used for terrain

traversability in the past [21], [22]. The study in [23]

used an image-based approach to detect rock concentration

as a roughness measure. Recently, the study [24] used a

CNN architecture for image and roughness-based material

identification, based on reflectance. The study [25] used

SegNet [26] for a fast terrain roughness prediction, dis-

cretized into four classes. Contrary to that approach, our

regression framework estimates roughness as a continuous

value. Similar to our approach, there are methods to predict

properties such as friction [27] or slippage [28]. The joint

friction-material distribution was experimentally determined

on a humanoid robot for different terrains using a SegNet

CNN, while slippage was determined through appearance

and geometry properties acquired by stereo vision. Terrain

recognition based on appearance enables non-linear map

learning between slopes and slip. Our RGB-based deep

neural network method differs from these approaches by

using a unified architecture to determine terrain classes and

regress their roughness. Sharing layers [8] in a single network

for joint learning tasks were used in the past, for example to

perform semantic segmentation and depth prediction [29], 3D
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Fig. 1. The proposed architecture: the encoder-decoder system to predict
the pixel-wise terrain type labels and the module to regress the roughness.

reconstruction [30], or intrinsic properties estimation [31].

Compared to these works, our proposed method is an end-

to-end solution to perform segmentation and curvature esti-

mation (that, as far as we are concerned, was not proposed

before), for which each module is trained with different

datasets. We use the predicted values to perform robot

planning on our wheeled-legged robot.

III. METHODOLOGY

In this section, we present our unified terrain segmentation

labeling and pixel-wise roughness estimation method. The

proposed architecture is visualized in Fig. 1.

A. Terrain Segmentation

We treat terrain segmentation as a semantic pixel-wise la-

beling problem, using a deep convolutional encoder-decoder

architecture. The encoder abstracts features through a pool-

ing operation and the decoder is upsampling. Real-time

performance for driving robot actions require computational

and memory efficient predictions. We have implemented our

method using the SegNet [26] and the recently introduced

ERFNet [32] architectures. Compared to other networks,

such as FCN-based ones (see Sec. II), these offer a better

trade-off between inference time and performance. Using

techniques, such as storing the max-pooling indices for

upsampling in SegNet as opposed to encoder feature maps

in FCNs, and factorized convolutions in ERFNet, results in

better memory efficiency. The inference time is reduced also

by merging the batch normalization and dropout layers after

training.

To avoid training the networks from scratch, which re-

quire several man-hours and big training data (see Sec. IV-

A.1), we utilize transfer learning. In particular, we fine-

tune the weights of a pre-trained model of our networks

on the cityscapes dataset [20]. In this way, we achieve fast

and generalized results versus freshly trained models [33].

Cityscapes, being an outdoor-based dataset, is closely related

to the task of terrain segmentation and hence, suitable for

initialization.



Outdoor environments often suffer from ambiguity, which

requires the model to generalize fairly to unforeseeable

terrains. To solve this problem in training, we enable data

augmentation [34], such as random horizontal/vertical flips

and contrast/brightness changes with a 0.25 probability. We

do not crop the images, due to sparse label annotations.

Fine-tuning is performed on RGB images with resized

dimensions of 256 × 512. Class imbalance causes the net-

works to minimize a weighted cross-entropy loss by gradient

descent with a constant learning rate of 10−3, the momentum

is set to 0.9, and weight decay to 0.0005. Median frequency

balancing [35] is used to compute the weights for the loss

function. Finally, an experimentally determined confidence

measure of 0.4 is used to threshold the model softmax output,

labeling predictions to “unlabelled” if it is not reached. Post-

processing steps (e.g. CRF) could have further improved

the results, but were avoided, keeping the computational

efficiency high.

B. Roughness Estimation

In deep learning, feature space specificity increases with

the CNN depth. Thus, to estimate the roughness we use

the bottom layers (closer to the input image) of the trained

network which correspond to primitive appearance features.

In particular, given an input image I and the features

F = f1, f2, .....fn (where n is the number of features), the

network’s bottom layers provide the probability distribution

P (F |I) from the initial fine-tuning and the roughness estima-

tion module computes the probability distribution P (R|F, I)
to estimate roughness R. The mathematical formulation is

given by:

P (R,F |I) = P (R|F, I)P (F |I).

As the bottom layers of SegNet provide sufficient feature

abstraction, the introduced roughness module serves as a

decoder (decodes features to roughness) only. Up-projection

blocks are used [36], to increase the spatial resolution

of the downsampled feature maps. Thus, memory-intensive

regression of fully connected layers are eliminated and the

network converges faster. The roughness module includes: 1)

a 3×3 kernel convolutional layer, 2) two up-projection blocks

separated by a 1 × 1 convolution (i.e. feature pooling), and

3) convolutional layers with ReLU activation, which estimate

the pixel-wise roughness values. Batch-normalization follows

the convolutions during up-projection.

During training, terrain segmentation weights are frozen

and the second pooling layer of the model is appended with

the new roughness module branch. Notice that, adding the

module at a deeper pooling layer did not improve the regres-

sion performance. We used the same training setting, only

with a lower learning rate of 10−7 and an increased batch size

of 25. During regression we experimentally tried both the

conventional Euclidean (L2 norm) and the berHu [37] loss.

The latter switches between the L1 and L2 norms depending

on a threshold c:

Image Ground-Truth  SegNet 
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Fig. 2. Terrain segmentation on validation set images: from the ADE20K
(top) and from the OpenSurfaces (bottom) datasets.
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where x is the error between the prediction and the ground-

truth, and c =
1

5
maxk(|xk|) is computed for every step

of gradient descent for an output with k pixels. BerHu

outperforms Euclidean loss, due to small errors being given

higher weightage.

IV. EXPERIMENTS

In this section, we present the terrain and roughness

datasets (available on our web-page) and the visual results

of the introduced method.

A. Datasets

1) Terrain Dataset: Segmentation has been developed on

pixel-wise annotated image datasets, such as ADE20K [38],

which usually include very sparse sets of terrains. On the

other side, datasets focused on materal segmentation, such as

OpenSurfaces [39], include only indoor images. The classes

of our interest, such as rocks and sand, are distributed among

these datasets. Thus, we formed a new terrain dataset by

extracting only related images and annotations. In this way,

we were able to use available datasets and eliminate the need

for hand-labelled annotations.

We generate a dataset with six terrain classes that occur

frequently: sand, stone/gravel, wood, metal, road/sidewalk,

grass. We tried to include varying images that balance

between terrain classes (imbalances generate biases). For the

construction of our dataset we first select an image subset

from ADE20K, which includes only a sparse and minimum

set of wood and metal surfaces. We balance these type of

terrains from OpenSurfaces. In total, our dataset includes

1380 images, from which 65% are used for training and

the remaining for evaluation. In Sec. V-B, we collect RGB

images from RGB cameras and RGB-D sensors mounted

on the CENTAURO robot and uses these images for the

validation of the terrain segmentation module.



Fig. 3. Data augmentation: an RGB image (left), prediction without
(middle), and with (right) brightness and contrast tweaks.

2) Roughness Dataset: In this work, for time efficiency

we attempt to estimate roughness (surface irregularities)

using RGB images, compared to traditional techniques [22].

For the training, we use the GeoMat [40] dataset which

includes terrain image patches with the associated 3D depth

data, generated by Structure from Motion (SfM) and interpo-

lation. The depth data are transformed to point clouds [41].

The roughness ri at each point (xi, yi, zi) is then calculated

by fitting a local plane (ax + by + cz + d = 0) in the 3D

point cloud data using the least squares method [21]:

ri =
|−d− axi − byi − czi|√

a2 + b2 + c2
.

From the dataset we use the patches that have sizes 400×400
and 800×800 pixels, given that in 3D, these dimensions ap-

proximate to the size of robot parts such as the wheel/footpad

surfaces. We use 1375 images for training and 880 for

evaluation.

B. Visual Experimental Results

In this section, we experimentally validate the visual

terrain and roughness output of the networks implemented

in Caffe [42] (the weights provided for fine-tuning can be

found in the caffe model zoo).

1) Terrain Segmentation: The average accuracy and the

mean Intersection over Union (IoU) metrics [43] are used

for the assessment of the terrain segmentation performance.

Being focused on real-time applications, inference time is

crucial and thus we compare three networks, i.e., ENet [44],

SegNet, and ERFNet. When evaluated on images of 256 ×
512 pixels, compared to the latter two, ENet is found to be

the fastest (10.25ms per frame), ERFNet is slightly slower

(3.86ms per frame slower than ENet), while SegNet is the

slowest over all (8.29ms per frame slower than ENet). More-

over, evaluation on the validation set showed that the class

average accuracy of ENet is 54%, SegNet 64%, and ERFNet

65%. Similarly, the mean IoU of ENet is 27%, SegNet 43%,

and ERFNet 49%. All network architectures were trained

in the same dataset for comparison purposes, while for ENet

and ERFNet we merged the batch normalization and dropout.

After the assessment on our dataset, it is clear that the

state-of-the-art ERFNet is more accurate than the other two

networks and also has the best segmentation performance.

Moreover, we noticed that the predictions improve when

we freeze the first layer of the convolution in the model,

and given the small size of the dataset, we train only for

50 epochs to avoid overfitting. Fig. 2 illustrates terrain

Ground-TruthImage Our model

Fig. 4. Roughness estimation on the transformed GeoMat dataset (for
visualization purposes the heatmaps are scaled equally).

a) b) c)

Fig. 5. An RGB image (a), the roughness estimation from the freshly
trained model (b) and by using the appearance-based features (c).

segmentation example results on the validation images. Data

augmentation aids with biases and ambiguous labelling in

the dataset, e.g. the “path” class in the ADE20K dataset

could be classified both as sand or road. As illustrated in

Fig. 3 random variations in contrast and brightness moderate

labeling ambiguity, and thus make the model more general

and accurate.

2) Terrain Roughness: We also assess the pixel-wise

roughness regression, using two metrics: the Root Mean

Square Error (RMSE) and Root Mean Square Log Error

(RMSLE). Table I includes our model’s error using the two

loss functions (Euclidean and berHu).

TABLE I

ERROR ASSESSMENT FOR EUCLIDEAN AND BERHU LOSS FUNCTIONS

Our model RMSE RMSLE

Euclidean 0.4350 0.1123

berHu 0.4335 0.1119

As can be seen, the two loss functions have similar estima-

tion errors. Furthermore, we observed that berHu produces

better results on our validation dataset. As illustrated in

Fig. 4, the quality of the roughness estimation is good,

despite the variations due to ground-truth depth data noise

from the SfM. The flat surfaces (inner area of brick) are

estimated to have low or no roughness while the boundaries

(between the bricks) have higher roughness. Notice that

during regression the estimated roughness magnitude values

were downscaled to 0.05 − 1.4cm range compared to the

ground-truth 0−3.7cm. This is possibly due to biases towards

almost flat surfaces that dominate most of the dataset. We

do not consider this as a problem since human vision system

acts similarly, by capturing relative variations of roughness

to drive human actions [2]. During training, it appears

that the gradient descent calculates low magnitude values

conservatively. These biases are less when the model is

trained with appearance-based features compared to freshly

trained models (Fig. 5).



V. ROBOTICS APPLICATIONS

In this section, we present two applications of terrain

segmentation and roughness estimation on the centaur-like

robot CENTAURO (Fig. 6). Both of them utilize roughness

as a risk measure for terrain traversability of non-deformable

terrains (stone/road/sidewalk). In particular, in the first set of

experiments the robot detects rough surfaces of the upcoming

terrain to modify its Center-of-Mass (CoM) position for

stability purposes, while in the second set of experiments the

robot plans paths around risky surfaces (of high roughness)

if possible.

A. The Robotic Platform

Fig. 6. The centaur-like CENTAURO robot.

CENTAURO [45] is a 42-DoF wheeled-legged robot of

93kg and 1.5m height. In this work, we have used a monoc-

ular RGB camera (PointGrey BlackFly) mounted on its head.

The lower body of the robot includes four 7-DoF legs with

wheels for end-effectors. We control the robot in real-time

through a Robot Operating System (ROS) interface named

CartesI/O [46] to drive Cartesian references. In particular, we

customize a module of CartesI/O to drive hybrid wheeled-

legged locomotion actions on the robot, that allow full 6D

pose control of its CoM by wheel steering and spinning.

B. Online Segmentation and Roughness Estimation

First, using images from CENTAURO’s camera published

at 30 FPS, we evaluated the real-time visual terrain seg-

mentation and roughness estimation. We vary the roughness

of the surface manually to assess the estimations. In Fig. 7

we illustrate some of the experimental outcomes of terrain

and roughness estimation. We notice that even though we

have focused on the model generalization, there are some

segmentation failures (outliers in the last row) where some

parts of large rocks may be confused with road/sidewalk

surfaces due to similar appearance. In these images of 256×
512 size, the inference time is on average 15.37ms (using

the ERFNet architecture), as previously shown in Sec. IV-B.

We have tested the time efficiency of the method for cropped

192× 384 images in the robot’s closest observable area (of

width slightly bigger than the distance between the two front

wheels), which improves the inference time by roughly 5ms.

Moreover, this proves the generalization and flexibility of the

network with respect to different image sizes. Lastly, it is

noticeable that the camera’s motion blur affects the results

Input from Kinect Segmentation Roughness

Fig. 7. Terrain segmentation and roughness estimation results (for better
visualization, the heatmaps are downscaled).

and we leave the use of cameras with minimum blurring

during motion as future work.

C. CoM Modification for Balancing

Rough surfaces may be risky for robot navigation, due

to the possibility of the robot loosing contact with the

environment which may result in balancing instabilities that

can cause falls or motor failures. A common technique

used from animals/humans to achieve better balance is to

increase the support polygon area formed from their feet and

lower their CoM height. Similar to these strategies, we allow

CENTAURO lower its pelvis height while increasing its

support polygon by extending its wheeled feet end-effectors.

Experimentally, we have realized the shaky instabilities of

the robot rolling while keeping its legs straight over rough

surfaces as illustrated in Fig. 8.

When the robot expands its support polygon by bending its

legs the joint motors increase their torques, which results to

higher energy consumption, unlike the case of straight legs,

where the support polygon is much smaller but the produced

torques are also minimal. Thus, in the first experiments we

allow the robot to move with stretched legs over flat terrain,

forming a support polygon of 0.36m2 with the pelvis height

being 0.95m, while when very rough terrain is detected, we

let the robot modify its support polygon using the CartesI/O

module for better stability, with a 0.63m2 support polygon

and 0.75m pelvis height from the ground. We also allow an

intermediate level with pelvis height of 0.85m.

To drive the aforementioned actions, a threshold of the

average roughness of the upcoming terrain is required (we

experimentally set this to 0.3cm). Even though the roughness

magnitude is approximated by our model, similar to humans

perception, the relative roughness is enough to drive robot

navigation. Notice that the robot requires some rolling time

while changing its configuration, and thus we drive the

support polygon change well before the front wheels reach

the rough terrain.



a) b) c) d)

Fig. 8. Rough terrain experiments, with the estimated roughness. a) CENTAURO with stretched legs on a flat surface, b) detection of the upcoming rough
terrain from our network, c) CENTAURO while bending its legs, and d) traversing the rough surface.
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Fig. 9. The hip pitch joints torques for three experimental CENTAURO terrain navigation: 1) traversing the surface with stretched legs, 2) traversing the
surface with bent legs, and 3) traversing the surface with stretched legs over the flat terrain and bents them for the detected rough terrain. The splits for
each figures illustrate: [A1] static stretched legs configuration; [A2] acceleration with stretched legs configuration; [A3] transition from stretched to bent
legs; [A4] acceleration with bent legs; [A5] traversing the rough surface with bent legs; and [A6] deceleration.

We run, three experiments with CoM variation being

high (stretched), low (bent), and adaptable (stretched-bent).

Fig. 9 illustrates the hip pitch torques of a leg during the

experiments. We focused on hip joints since the knee and

ankle are aligned with the ground reaction forces and do

not contribute much in the torque generation. In the first

experiment, the robot with stretched legs produces almost

zero torques. However, when vibrating due to rough terrain

instabilities, there are high torque fluctuations (torque sign

alterations indicate loss of leg contact with the ground). In

the second experiment, the extended support polygon of the

robot results in bigger energy consumption due to increased

torques (see [A6] in Fig. 9), but torque fluctuations over

the rough surface are smaller, which results in rare loss of

contacts with the ground. As a result, it is clear that when

in less rough terrain it is preferable to have the legs of

the robot stretched and bend them for the upcoming rough

terrains. In this way, maximum stability and minimum energy

consumption is possible on the robot.

D. Re-configurable Navigation Planning

A second application that uses the roughness information

estimated from our network, involves the re-configurable

path planning algorithm for CENTAURO, using the same

principle of modifying the robot’s footprint polygon and the

pelvis height. This allows the robot to expand over certain

wide obstacles and narrow its polygon in tight spaces. To

plan for re-configurations over rough surfaces in difficult

scenarios, we modify the planner introduced in [7]. We

use roughness information in addition to the low-frequency

(∼0.3Hz) lidar data based heightmap used in the original

algorithm in [7], which is obtained from the data of the

rotating (2rad/s) Velodyne VLP-16 lidar sensor mounted on

the head of the robot. Since they are parallel processes

and the roughness estimation runs in real-time, no extra

calculations or computing power are needed and the two

modules can be interfaced directly. In this section, we briefly

explain the three steps of the path planning algorithm and

the conducted experiments.



In the first step of the planning, a segmented map is

generated using the point cloud from the lidar sensor. The

map classifies points in the robot surrounding environments

into three categories: 1) short obstacle points (with height

from the ground lower than 0.4m); these areas can be easily

cleared or negotiated by the robot, 2) high obstacles (with

height greater than 0.4m); these areas are non-traversable

areas, and 3) completely free space points.

In the second step of the planning, the aforementioned

segmented map acts as input to the proposed A*-based re-

configurable planner. Firstly, a point in the map is checked

for robot polygon collisions with obstacles. In case a colli-

sion with a negotiable obstacle is exits, the planner selects

from three strategies: 1) avoid the obstacle, 2) expand over

the obstacle to encompass it, such that the wheels roll on the

sides of the obstacle, or 3) narrow into a polygon that doesn’t

collide with the obstacle. In case of a high obstacle, the robot

avoids or narrows the polygon to fit into the free space. The

aforementioned decisions are integrated into A* [47] using

the following cost functions:

g(xc, yc) = g(xp, yp) +Wt ×
|θent − θext|

2π
+Wc × (|δw|)

θent = acos

(

xp − xc
√

(xp − xc)2 + (yp − yc)2

)

(1)

h(xc, yc) =
√

(xg − xc)2 + (yg − yc)2 +Wg ×
|θgoal − θent|

2π

θgoal = acos

(

xg − xc
√

(xg − xc)2 + (yg − yc)2

)

(2)

where (xp, yp) is the parent node (point in 2D segmented

map) and (xc, yc) is the target node currently being eval-

uated. As in standard A*, the exact cost moving from the

starting point to (xc, yc) is given by g(xc, yc) (Eq. 1) and

the heuristic estimated cost of moving to (xc, yc) with respect

to the goal node (xg, yg) is given by h(xc, yc) (Eq. 2). Wt

is the weight on the cost of turning, Wc is the weight on the

cost of changing configurations, |δw| is the change of the

width of the robot polygon and Wg is the cost of turning

away from the goal.

The third step of the planning involves the estimated

roughness from our model. In particular, when our A* plan-

ner is unable to find a valid path, the roughness information

of the low obstacle points in the segmented map are obtained.

If these points that obstruct the robot’s path to the goal

have small roughness (experimentally set to 0.3cm), then

we change the class of these points in the segmented map

to free space points. In this way the A* planner can plan

paths through them, with an inferred lower velocity when

traversing them.

To demonstrate the application of the roughness applica-

tion for navigation planning, three experiments depicting the

usefulness of readily available information, are illustrated in

Fig. 10. The left column depicts the case where the robot

chose to avoid the rough obstacles as it had enough space,

as observed from only the lidar point cloud data. The middle

column depicts the case where the segmented map from only

the lidar point cloud data shows that the robot is further

limited in space and hence has to narrow to safely pass

through the line of small rocks. The right column represents

the situation where the planner has no possible path to reach

the goal and hence, it uses roughness information of the low

points and chooses to roll straight over the rough obstacles

with low speed as the roughness is within traversable limits.

The re-configurable planner on an average takes 20ms to

give a valid plan or indicate the nonexistence of a safe

valid plan. With the roughness module providing roughness

estimates every 15.35ms, it was possible to re-plan almost

instantaneously without needing any extra processes, for the

third case. This instant availability of roughness is bound to

aid in the flexibility and dynamism for future planners.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have utilized end-to-end deep convo-

lutional neural networks to segment terrains and estimate

their roughness. For training the models we customized a

dataset (provided under our web-page) of several labeled

terrain images with their roughness. Finally, we evaluated

the visual method on the CENTAURO robot by performing

real-time tasks, such as leg reconfiguration for planning

and balancing purposes during navigation. We plan to test

the roughness model (in an extended dataset) with more

state-of-the-art segmentation networks to investigate their

accuracy and computational complexity. Moreover, we plan

on improving the robotic applications by driving various

actions, such as speed regulation, for path planning. Last

but not least, we plan in fusing the vision-based terrain and

roughness computation with other terrain estimation, such as

force/torque-based ones [48], to enable autonomous planning

and control during robot navigation.
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